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Abstract

The computation power of SDN controllers fosters the development of a new generation of control

plane that uses compute-intensive operations to automate and optimize the network configuration across

layers. From now on, cutting-edge optimization and machine learning algorithms can be used to control

networks in real-time. This formidable opportunity transforms the way routing systems should be

conceived and designed. This paper presents a candidate architecture for the next generation of routing

platforms built on three main pillars for admission control, re-routing and monitoring that would have

not been possible in legacy control planes.
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I. INTRODUCTION

Software-Defined Networking (SDN) technologies [1] are radically transforming the network

architecture of data centers, network overlays, and carrier networks. They provide programmable

data planes that can be configured from a remote controller platform. SDN controllers are

implemented on top of commodity servers which provide a tremendous computational power

compared to legacy network devices. They also use modern distributed computing technologies
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(e.g., loosely consistent databases, parallel computing, consensus algorithms, transactional up-

dates) to gather and keep a global view of the network status in real-time and to push consistent

configuration updates to the network equipment.

While initial SDN deployments focused mainly on automated provisioning of tunnels and

virtual networks, essentially virtualizing known concepts, it becomes clear today that SDN

presents an opportunity for a paradigm shift in network optimization. Departing from the clas-

sical autonomic routing systems we migrate to a new centralized routing paradigm, where a

powerful controller is aware of the static parameters and time-varying conditions, and centrally

orchestrates the entire network reaching unprecedented levels of efficiency. Indeed, the necessary

ingredients are in place: (i) the power of modern SDN controllers, and (ii) the recent advances

in optimization and machine learning theories can be married to produce the desired outcome.

This proof of concept was recently demonstrated in large scale datacenter interconnects with the

B4 controller [2].

This paper presents a candidate architecture for compute-intensive control planes where new

types of algorithms can be deployed for online and global network optimization. It fully exploits

the processing power and the central position of the controller to globally optimize routing and

admission control using efficient mathematical tools ranging from online algorithms, combinato-

rial optimization, control theory and machine learning. It improves the accuracy of network

monitoring at low overhead costs by using data completion techniques and online learning

algorithms to better coordinate the data collection effort. Finally, it tightens the link between

monitoring and routing which can now co-exist on the same platform.

Our candidate architecture for the next-generation of routing platforms relies on three funda-

mental building blocks:

Admission control with experts. The centralized nature of SDN architectures unleashes the

potential of using online algorithms which have been initially defined for online covering and

packing problems with provable guarantees compared to an offline optimal. Due to the un-

predictable nature of network traffic, it is difficult to choose a priori which online algorithm

should be used. We thus perform admission control with expert advice. This setting is classical

in machine learning, and it is commonly called boosting algorithms. Past decisions and past

rewards obtained by the different algorithms are used to track and follow the advice of the best

algorithm in hindsight.
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An iterative routing solver. To maintain the best flow configuration in the network, we propose

to use an iterative routing solver which outputs a sequence of feasible solutions. As the routing

solver may work on multi-commodity problems with millions of variables and constraints in large

networks, the convergence to the optimal can take a few iterations. To avoid pushing the solution

of each iteration into network equipments, we propose a control framework that operates on top

of the routing solver and decides which feasible configuration to apply. Given a reconfiguration

budget, it aims at minimizing the flow allocation cost.

Parsimonious monitoring. A severe complication that arises in network monitoring is the

incredible amount of measurements collected. This big data includes important information for

network control, but due to its immense size is difficult to handle. Although the computational

power available at SDN controllers is an helpful ally, intelligent data handling is also necessary.

In fact, recently developed algorithmic tools from machine learning, graph theory, and signal

processing can be efficiently combined to enable the SDN controller to have an accurate view of

the time-varying network conditions and their evolution. We show how to combine 1) perform

parsimonious and adaptive network measurements, 2) recover missing information and infer

global traffic properties from the measurements, and 3) predict future variations in network

traffic using spatial and temporal correlations.

The rest of this article is organized as follows. After describing the overall architecture of the

routing platform., we present the core elements for admission control, re-routing and real-time

monitoring. For each of them we discuss their operational benefits and future directions.

II. ARCHITECTURE

We have in mind a classical SDN controller architecture depicted in Fig. 1. The controller is

connected through north bound interface to the application layer enabling a wealth of applica-

tions like bandwidth on demand, load balancing, etc, while the decided routing commands are

dispatched to the network devices using SDN protocols such as OpenFlow via the south bound

interface. The latter is also used to collect measurements. This work is primarily concerned with

highlighting the architecture of the SDN controller. In Fig. 1 we depict the three fundamental

building blocks of our architecture, namely 1) the monitoring system, 2) the analysis system,

and 3) the routing system. Below we explain in detail each system operation and functionality.
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Figure 1: Global Routing Optimization Platform with three main pillars for admission control, re-routing and monitoring.

SDN controllers classically receive service requests from applications and send routing com-

mands to programmable switches. At the same time, they monitor the network status to quickly

react to system changes. Although it might be tempting to reuse control plane algorithms

from legacy routing software, their formidable computation and strategic location spur the

development of a new generation of control plane that uses compute-intensive operations to

automate and optimize the network in real-time. This routing platform can embed a set of

complementary optimization and machines learning algorithms which seat together and tightly

cooperate. Fig. 1 presents a candidate architecture with three main sub-systems for routing,

monitoring and analysis.

Routing system. When connection requests arrive at ingress nodes or when a group of de-

mands have to be rerouted after a failure, the controller has to find a set of feasible paths satisfying
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multiple constraints (e.g., network capacity, QoS, protection). In addition, smart decisions must

be taken to accept or reject service request to optimize long term objectives such as throughput

maximization or load balancing. Although this Fast Connection Setup problem refers to a single

commodity flow problems, it is still quite complicated to solve. Hence at this stage, the goal is

not to optimize the network, but rather to quickly find a good path allocation.

The network configuration obtained as a result of fast connection setups and of flow departures

poses significant concerns on the evolution over time of the global objective function (e.g., routing

cost). Therefore, periodic or event-based reconfiguration of the overall flow allocation can help

reduce the optimality gap. We call this mechanism Garbage collection of network resources

since it mirrors the way Java reorganizes the memory. For this, an iterative routing solver works

on an evolving instance of the routing problem to provide a sequence of better configurations.

A deployment policy, which works on top of the iterative solver, decides which configuration

should be applied, taking into account a fixed reconfiguration budget.

Monitoring system. The main objective it to feed the routing system with the most accurate

view of the network in terms of traffic and topology. The central position of the controller

allows to implement completely new monitoring systems compared to legacy architecture where

equipments were statically configured to report periodic traffic samples and statistics. The data

collection effort can from now on be driven by the controller to avoid redundant and low value

measurements. Traffic sampling can be adapted in real time to maximize the accuracy of traffic

estimation algorithms while keeping the overhead low or below a given budget. It can be used [3]

to better classify flows in real time (e.g., heavy hitters identification, DDoS detection) and to

guide the routing system for the provisioning of custom flow configurations.

Analysis system. On top of the monitoring system and at a larger time scale, SDN controllers

can embed traffic and fault prediction algorithms that can spare the routing system from taking

myopic decisions. They can exploit this estimation and its uncertainty to optimize network

resources in a robust fashion [4].

III. ADMISSION CONTROL WITH EXPERTS

A key task of the SDN controller is the Admission Control (AC) of incoming connection

requests, in an online fashion. Its goal is to gracefully manage service requests when the network

becomes highly utilized, as new incoming requests arrive. Non-myopic accept or reject decisions
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have to be made to maximize a given profit, such as the total accepted throughput, the financial

revenue generated or the quality of service experienced by users.

The existing admission control implementations are in their majority threshold-based. They use

max-, min-, exclusive- and non-exclusive-limits on resource portions that the network operator

can define for different classes of flows. At any time, routers inspect the sum of exclusive and

non-exclusive portions and perform a threshold decision. If the sum is higher than a certain

(engineered) percentage of the network capacity, then new connections are rejected. The main

problem here lies in defining the threshold in a dynamic fashion, as the optimal configuration

depends on the network traffic conditions, which fluctuate over time. Several proposals on how to

optimize the configuration of thresholds can be found in the literature. Worst-case strategies have

been put forward for the sake of network planning. They are based on sophisticated stochastic

models using queuing theory and require some a priori information on the stochastic model for

the traffic evolution. Such information is typically extracted offline with the aid of long-term

traffic estimators available at the controller.

Admission Control can be formulated as an online packing problem, as the goal for instance

is to maximize the number of accepted requests subject to some constraints. The challenge

in this context comes from the online nature of the optimization problem. New variables and

additional constraints are revealed sequentially, as soon as an arrival or departure of a flow

occurs in the system. The theory on online algorithms has evolved significantly in the last

decade for this type of problems. Algorithms with theoretic guarantees over the offline optimal,

which has full information on the future state of the system, have been proposed for online

packing problems.These guarantees hold only when consistent decisions are taken by all devices

within the network. The centralized nature of SDN lies the ground to apply online algorithms

for admission control [5].

A. Competitive online algorithms

Motivated by the considerations above, we first review and adapt, well-known and recent

algorithms from the online literature to the admission control problem in SDN. We then test

their performance under different traffic conditions to understand and highlight the strengths and

weaknesses of each of them. Traditionally, online algorithms for admission control fall into two

main categories: i) worst-case and ii) average-case.
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Figure 2: Admission control module with expert advice from Greedy, Agrawal and AAP-PD (Primal Dual). Performance evaluation results on

GEANT network (see [5] for more details).

Worst-case algorithms are characterized by max-min performance guarantees under specific

worst-case scenarios where a malicious adversary chooses the worst possible sequence of connec-

tion requests. Due to their conservative nature, they generally underperform under more standard

traffic conditions. One of the first online algorithms for admission control has been AAP. The

algorithm is log competitive, meaning that it cannot reject O(log n) times more requests than

the offline optimal (n being the number of nodes. Buchbinder et al. proposed in [6] a primal

dual framework to derive algorithms for online packing and covering problems with performance

guarantees in the worst-case scenario. Such framework developed the theory behind the initial

intuition of AAP.

On the other hand, ii) average-case algorithms show high expected performance over random

traffic conditions, but cannot guarantee good performance in specific adversarial scenarios. The

Primal-Beats-Dual (PBD) algorithm has been introduced by Kesselheim et al. in [7] . It computes

the optimal (fractional) solution of the relaxed Linear Program (LP), by considering all the past

requests and scaling the capacity of the graph. It then attempts to route the request over a

path randomly selected, with a probability proportional to the value of the computed fractional

solution. PBD suffers from computation complexity. Agrawal et al. [8] have proposed a fast
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algorithm with multiplicative updates to solve this issue. It applies to i.i.d. and random order

inputs. It implements an efficient stochastic gradient descent that we adapted for our admission

control problem.

B. Using expert advices

As observed in practice and highlighted on Fig. 5 which plots a performance evaluation on

GEANT, worst-case and average-case online algorithms for admission control are better than

Greedy, the naive strategy which accepts every demand until bottlenecks appears. However,

there is no algorithm outperforming all the remaining ones under all traffic conditions. Luckily,

modern SDN control platforms, which are running on top of commodity servers and are built

upon cutting-edge distributed computing technologies, enable the parallel execution of different

algorithms to solve a single decision problem. Such algorithmic architecture, called boosting or

prediction with expert advice setting, is commonly used in machine learning. It executes all the

algorithms in parallel and attempts to track the best one in an online fashion.

The bulk of the literature on experts focuses on proving theoretical performance bounds in

the basic non-reactive scenario where the action taken by the decision maker does not affect the

state of the system, which is definitely not the case for admission control. We identified that the

Strategic Expert meta-Algorithm (SEA) [9] applies to out reactive setting. Under some stationary

conditions on the system, SEA is proven to perform at least as well as the oracle which steadily

selects the algorithm with best average performance. As shown on Fig. 5, this approach achieves

very good performance in practice. In the worst case, SEA performs as Follow-the-Leader meta-

Algorithm (FLA) which alway picks the most instantaneous rewarding decision (i.e., Greedy).

However, we believe there is room to improve these encouraging results by better combining

the advices and integrating traffic predictions.

The advent of Software Defined Networks (SDN) advocates a paradigm shift in the implemen-

tation of admission control (AC) protocols for at least two main reasons. Firstly, SDN control is

centralized, which finally allows to utilize online AC algorithms developed for online packing

and covering problems. Secondly, we can now afford to run several online admission control

algorithms in parallel and integrate real-time traffic predictions in our decision making.
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Figure 3: Routing optimization module based on an iterative routing solver and a policy to control its output (top). Evolution of the optimality

gap obtained using the iterative routing solver (red points) and the control policy (dashed green curve). The black curve is the interpolation of

the points computed by the solver at each iteration. Solid dots show where the solution computed by the solver is applied.

IV. ITERATIVE ROUTING SOLVER

Traditionally, routers collaboratively share topological information and establish end-to-end

paths using traffic engineering protocols such as OSPF and MPLS with TE extensions [10]. How-

ever, TE solutions that rely on hot standby mechanisms to quickly handle topological changes

(in case of link failure) suffer from possibly long recovering times, while other mechanisms at IP

level, more reactive, do not offer a fine-tuned control of paths and may lead to sub-optimal flow

allocations. Hence these approaches fall short of optimizing network utilization while meeting

QoS requirements and guaranteeing resilience at the same time. Conversely, SDN architectures

unleash the potential to reconfigure in real-time custom paths for each flow, so that network

resources are optimized and performance requirements are met (in QoS, resilience).

To maintain the best network flow configuration, the SDN controller has to solve variants of

the classical Multi-Commodity Flow (MCF) problem in real-time, which may involve millions

of variables and constraints in large networks. Several and different constraints can be imposed

on each commodity such as node or edge inclusion, protection mechanisms with a maximally

disjoint backups paths, or a maximum end-to-end delay. In addition, some flows may receive a
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special treatment such as elephant flows which must be split over multiple paths while only a few

split configurations are possible due equipment limitations (e.g., hash functions, group tables). As

the overall problem instance itself evolves over time due to time-varying demands or topological

failures, the SDN controller solves a sequence of routing problems and needs to constantly

reconsider the flow configuration. Finally, to satisfy application requirements, the controller

needs to solve these problems under tight timing constraints. Due to the large problem size, the

routing solver has to iterate to deliver a sequence of feasible configurations. The sequence of

sub-optimal network configurations obtained as a result of the iterative execution of the solver

typically exhibits diminishing returns.

At each time slot the SDN controller has the option to reconfigure the network flows as per the

current computed solution. However, flow reconfigurations degrade QoS and introduce inertia

into the system, hence we may avoid them and neglect to apply the most recent computed

configuration. Ideally, the objective function of the problem includes a cost that models the

distance between two resource allocations (e.g., the number of edge or flow changes) so that the

iterative solver finds a good trade-off between the allocation and the reconfiguration costs. On

the other hand, using the existing configuration may quickly become costly since the new flows

that are coming, or the ones that need to be repaired after a network failure, are configured with

quick suboptimal routing decisions.

We propose a control framework that operates on top of the iterative SDN routing solver to

limit the number of network reconfigurations and to reduce at the same time the flow allocation

cost. The control policy applies to switches the solution of the SDN routing solver only when

the benefit is larger than a threshold, which is dynamically and optimally updated over time. At

any time instant such a dynamic threshold combines the gap between the current and optimal

configurations and the number of reconfigurations applied so far. Therefore the control policy

strives to balance the surcharge and the reconfiguration rate.

The goal of minimizing the number of flow reconfigurations clearly conflicts with the goal

of minimizing the average optimality gap. It is possible to apply the best found solution at a

frequency less than one, which will incur less reconfigurations but it will increase the optimality

gap. We recently proposes [11] a drift-plus-penalty policy using a virtual queue as a fundamental

tool, which is essentially a counter on which a dynamic threshold is applied.

In order to showcase the validity of our approach, we implemented around an iterative routing
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Figure 4: Performance comparison on GEANT in term of routing cost for Shortest Path (SP), the offline optimal (LP), and the policies which

limit network reconfigurations (top). Number of routing entry changes at each reconfiguration with the two policies (bottom).

solver the control framework with the drift-plus penalty (DP) control policy. As the goal is to

stay below a target reconfiguration rate while minimizing the routing cost, we compared the

performance of our policy against a Periodic Policy (PP) that selects reconfiguration points

periodically.

Numerical results obtained in real-life network conditions show that SDN controllers can

effectively track the evolution of traffic, thus opening a new era for the dynamic control of

online routing solvers. Fig. 4 presents a performance comparison between a greedy Shortest

Path (SP) where the allocation is never reconfigured, the offline solution of the Linear Program

(LP), and the online policies with a limited reconfiguration budget. We can clearly see that DP

drastically limits reconfigurations while minimizing the allocation cost.

This framework can be extended towards a number of interesting directions. First, the devel-

opment of scalable multi-commodity flow solvers that could work on large evolving problems,

without the need to converge to the optimal configuration before the system changes. Second, the

integration of traffic predictions to avoid myopic decisions with regards to the evolution of traffic

so that reconfigurations could be even further limited. Third, other metrics that model the distance
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between two configurations in terms of equipment and flow changes can be designed to be

included in the objective function. Finally, traffic and network uncertainty can be considered [12]

using stochastic and robust optimization techniques.

V. PARSIMONIOUS MONITORING

The inherent centralized nature of SDN controllers requires a non-negligible amount of signal-

ing between SDN switches, monitoring the traffic over links, and the SDN controller, exploiting

such information to take routing decisions. When both the network size and the frequency at

which new requests arrive are large, the need to reduce the signaling traffic arises. Hence,

parsimonious collection of statistics, e.g., flow statistics, link loads, just to name a few, becomes

essential. For this reason, we propose to undersample the measurement collection and to exploit

techniques which spring from the compressed sensing algorithmic family, such as matrix com-

pletion techniques, to estimate the missing information. The rationale behind this approach is

that the observed traffic exhibits inherent time and space dependencies and that one can take

advantage of such dependencies to collect partial information on the traffic characteristics and

yet be able to complete the missing information.

We propose a framework to parsimoniously and intelligently collect information on link loads.

We assume that one has only access to the data from a few links at any given time instant (see

bottom of Fig. 5) and that we wish to recover all the link loads at every instant to inform

the routing system. In this context, there are clear spatial and temporal dependencies in the

traffic patterns that can be exploited. More specifically, these dependencies are manifested in the

low dimensionality of the observed data. The space-time traffic matrix capturing the link loads

evolution over time is inherently low rank. To complete the missing data, we use the matrix

with the lowest rank consistent with the observed data. In Fig. 6.a, we report the approximation

error of the aforementioned matrix completion algorithm and compare it to naive approach that

completes the missing load for a given link using the most recent available measurement for

that link when we increase the number of observed links per time-epoch.

We also use these link-load estimates to run the admission control algorithm in a scenario

where guaranteed services coexist with best effort traffic which fluctuates over time, see Fig. 6.b.

More precisely, online routing algorithms ideally need a pervasive and seamless knowledge of

the residual capacity on each link. For this reason, we propose a method to parsimoniously
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Figure 5: Parsimonious monitoring process driven by the controller.

monitor the best-effort traffic on subsets of links and then estimate the missing entries via matrix

completion techniques, e.g., Singular Value Thresholding (SVT). We show that the introduction

of traffic estimation techniques is beneficial both in terms of reduction of rejected demands. We

(a) Rejected demands (b) Monitoring Error

Figure 6: Left: percentage of rejected demand vs. measurement portion ξ under Random traffic conditions, for Agrawal’s AC algorithm with

matrix completion (Agrawal MC), with full information (Agrawal Full info), and without information about the presence of best-effort traffic

(Agrawal No info). Right: Total estimation error over all matrix elements for SVT matrix completion and the naive strategy, vs. the portion ξ

of measured links.
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evaluated the effectiveness of all the proposed solutions on the GEANT topology.

The above paragraph assumes that we only have access to link loads and leverage these direct

measurements to complete the missing information. In many realistic SDN settings, the controller

can retrieve several counters about flows. In OpenFlow for instance, a counter is maintained for

every single rules in flow tables. Each entry can correspond to a specific flow by matching on

the traditional 5-tuple or to a given flow aggregate. Based on this information, the goal is for

example to recover the complete origin destination traffic matrices over time. A simple way of

modeling such a problem is to see it as a linear system where we the unknown vector is the per

flow traffic and what we observe the vector of aggregate flows as the (matrix) product of the

aggregation matrix and the individual flow vector. It is worth noting that the number of observed

aggregate flows is generally much smaller than the actual number of flows in the system. Indeed,

rules are stored in TCAM of hardware switches. This type of memory can perform high-speed

packet lookups but are extremely expensive and thus limited in space.

In a recent paper, a system called iSTAMP [13], such an under-determined system is solved

by adding a sparsity constraint to the flow vector (analogous to low-rank constraints for link-

load matrices). The rationale behind this assumption is that a small number of flows explain

the observed traffic. The iStamp proposal goes a step further and extends the setting to adaptive

measurements aiming at monitoring the most informative flows to complete the information

gleaned from aggregate measurements. In particular, given the opportunity to directly observe a

few individual flows, which flows should one measure to optimally improve the error in solving

the above under-determined linear sysem. To this end, a multi-armed bandit approach is proposed

to select the best (called most rewarding in [13]) such individual flows in terms of their estimated

size. This approach is shown to have a very good performance in the context of heavy-hitters

identification.

Another popular approach to monitor networks is to sample packets [14], [15]. Due to the

vast amount of information sampling every packet and tracking each flow of the network is

not feasible. To circumvent this, modern systems implement efficient mechanisms for picking

the relevant packets to decide which specific flow aggregates to measure. They rely on hash

functions (mapping the data into an array of buckets) to build a compact summary of the stream

of packets. These summaries and associated estimated counters are then exploited to uncover

traffic statistical patterns such heavy hitters or potential sources of denial of service attacks
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among other traffic patterns.

One of the aims of this paper is to provide some preliminary ideas, and hopefully to spur new

theoretical research, on the new and interesting field on parsimonious monitoring for admission

control. In particular, we envision to explore the field of adaptive sampling through which we

will identify and then sample the most informative pieces of information so that to fulfill our

monitoring task. Furthermore, we envision to explore the very interesting field of monitoring

of data streams via sketching and to reveal how such techniques could be combined with the

compressed sensing rationale.

VI. PERSPECTIVES

As seen in this paper, the next-generation of routing systems for online and global network

optimization is likely to embed computer-intensive machine learning and optimization algorithms.

Beyond admission control, re-routing and monitoring it will also embed algorithms for fault

prediction and analysis to drive real-time decisions in a robust fashion.

The tremendous computation power of SDN controllers does not mean that a single entity will

solve everything in real-time. Routing platforms will still follow multi-domain and hierarchical

organizations which can help to break down large network optimization problems. In this context,

all the algorithms will have to be extended to interact with their peers or superiors to reach a

global optimization objective.
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