
Network Slicing for Deterministic Latency
Sebastien Martin, Paolo Medagliani, Jeremie Leguay

Huawei Technologies, Paris Research Center, France.

Abstract—Deterministic performance is a key enabler for 5G
applications. While specific data-plane solutions have been pro-
posed to reach a low deterministic end-to-end latency and jitter,
legacy round-robin schedulers can already be used to guarantee
bounds on the end-to-end latency, when associated with per-
flow shapers. In this context, we propose a latency-guaranteed
network slicing solution that trades-off between complexity and
performance. We propose control plane algorithms to configure
sub-channelized interfaces with an independent QoS scheduler
at each physical port used by a slice. The algorithms allocate
service rates and decide about queue assignments and routing
inside each slide. Through numerical results on large network
topologies, we demonstrate that our column-generation and
two-steps algorithms can improve traffic acceptance while
reducing the amount of reserved capacity.

Index Terms—Deterministic networks, Bounded delay,
Deficit Round Robin, Network slicing.

I. INTRODUCTION

The 5th generation of networks is paving the road for
latency-sensitive network services to enable a wide-range
of Internet applications like factory automation, connected
vehicles and smart grids [1]. Traditional Internet Protocol
(IP) services allow reliable data delivery, but they cannot
provide strict Quality of Service (QoS) guarantees. Certain
classes of service can get preferential treatment but perfor-
mance remains statistical. To frame the development of new
technologies for deterministic IP networks, the IETF [2]
and the ITU-T [3] have specified target requirements for
guaranteed bandwidth, bounded End-to-End (E2E) latency
and bounded jitter.

In the industrial domain, technologies such as Determin-
istic IP (DIP) [4] and Time-Sensitive Networking (TSN) [5]
are gaining importance as they can guarantee a very low
deterministic end-to-end latency and almost 0 jitter to high
priority (HP) flows. They rely on deterministic data plane
solutions such as Cyclic Queuing and Forwarding (CQF) [6].
Resources are statically assigned at packet level, even when
the network utilization is low. In this way, the delay ex-
perienced by each flow only depends on its characteristics
(e.g., maximum burst size) and its allocated bandwidth in
the different transmission cycles. The drawback of these
solutions is that they require specific network interfaces to
support deterministic forwarding (e.g., using CQF) in the
data plane.

In more traditional IP networks, applications such as
virtual reality or online games may ”only” require a strictly
bounded end-to-end latency, instead of a ultra-low latency
with 0 jitter. These applications may have different latency
requirements and co-exist with best effort (BE) traffic. In this
context, legacy schedulers such as weighted Fair Queuing
(WFQ) [7] and Deficit Round Robin (DRR) [8], widely
available in network chipsets, can be used to share the
capacity between applications, satisfying the latency require-

ments of high priority flows and avoiding the starvation of
the best effort traffic. In the case of round-robin schedulers
(e.g., DRR), the latency experienced by a flow depends on
his arrival curve (i.e., maximum burst size and rate), the
arrival curves of the flows it interferes with, and the service
rates of queues it traverses. Thanks to network calculus
models [9], [10], worst case estimations can be derived for
the end-to-end latency of each flow. Although these models
can be complex when deriving tight latency bounds, they
can simplify for more conservative estimations and become
tractable for network optimization.

To support different latency requirements on top of the
same physical network, different “slices” or virtual net-
works, can be created in order to ensure traffic isolation [11].
Technologies such as channelized sub-interfaces [12] can be
used to allocate dedicated capacity to each slice on each port.
In this case, each slice can have its own QoS scheduler at
each port to decide how the overall allocated capacity is
shared between its virtual services. The most straightfor-
ward way to ensure a low latency is to over-provision the
reserved capacity for each slice. In this way, the network
operates in low-load regime, where the latency performance
is almost constant and known. However, to improve the
utilization of bandwidth, a more accurate knowledge of
the delay experienced is required. Leveraging on latency
bounds given by network calculus, the network controller
can assign resources to each slice, in order to respect the
QoS requirement of each virtual service, while ensuring that
a maximum of bandwidth is left for future slices.

In this paper, we focus on the design of network slices for
deterministic latency guarantees. Our architecture is based
on legacy round-robin schedulers and per-flow shapers inside
channelized sub-interfaces allocated to each slice at each
port. We show that this solution well trades-off between
complexity and the strict respect of end-to-end latency.
In order to optimize bandwidth utilization, we introduce
centralized control plane algorithms that embed a network
calculus model to decide the minimum amount of capacity
that needs to be allocated to each slice. From a traffic matrix
with arrival curves of virtual services and the available net-
work capacity, the algorithm decides about the service rate
of each queue of the sub-interfaces and the routing inside
the slice. We study two variants of the slicing problem, a
simpler one where a bounded delay is given and must be
respected for each queue (called bounded delay), and a more
complex one where the maximum delay of queues is decided
(called variable delay). For the first case, we present a col-
umn generation algorithm that solves the underlying multi-
commodity flow problem. In the variable delay case, as the
model is non-linear, we propose a two-steps algorithm that
alternatively decides about routing and rate allocation. We
show through numerical results on a large IPRAN network

that the column generation improves traffic acceptance and
decreases the total reserved capacity compared to a greedy
algorithm. We also show that when the maximum queuing
delay is decided by the two-steps algorithm, we further
increase acceptance and decrease bandwidth utilization.

The rest of this paper is structured as follows. Sec. II
reviews the state of the art. The system architecture and the
slicing problem are introduced in Sec. III, while Sec. IV
presents the mathematical formulation of the problem.
Sec. V introduces heuristics algorithms for the control plane.
Sec. VI shows the performance evaluation and Sec. VII
concludes this paper.

II. RELATED WORK

To guarantee traffic isolation between slices, different data
plane technology can be used: from soft slicing [13] with
traditional QoS and VPN technologies, where resources are
returned to the network after their utilization, to hard slic-
ing with technologies like channelized sub-interfaces [12]
or Flex Ethernet [14] that leverage on dedicated capacity
assignment to different tenants for strict isolation. In Sec. III,
we will present an architecture based on channelized sub-
interfaces that can actually work also for Flex-Ethernet
simply by considering a different slotted allocation of band-
width [15].

Approximate latency models have already been embedded
into network design or routing problems. Fortz et al con-
sidered the piecewise linear unsplittable multi-commodity
flow problem [16], [17] where the cost of links is inversely
proportional to the link utilization. Ben Ameur et al [18]
considered the Kleinrock function [19] and gave a convex
relaxation to compute a lower bound of the (fractional)
routing problem with minimum linear cost. While these
works can be used to decrease latency, they do not intend
to accurately capture the end-to-end delay and provide strict
guarantees.

In the past decade, a collection of IEEE 802.1 Ethernet
standards, known as Time-Sensitive Networking (TSN) [5],
has been developed to support professional applications over
Local Area Networks (LAN) with layer-2 mechanisms such
as priority queuing, preemption, traffic shaping, and time-
based opening of gates at output ports. To improve the
scalability of TSN solutions, the IETF DetNet (Deterministic
Networking) [20] group has been working on the Large-
scale Deterministic Network (LDN) [21] architecture. While
these solutions can ensure a small and bounded latency with
almost 0 jitter, they require specific network interfaces to
support deterministic forwarding (e.g., using CQF) in the
data plane. Advanced control plane algorithms have been
proposed to decide about routing and scheduling at each
node using column generation [4], [22].

Some works [23] have already studied how network
calculus can be used to compute the optimal route for a flow
in the presence of cross-traffic. However, due to tractability
issues of latency models, flows are processed one by one.

Our paper goes beyond state of the art by considering
a pragmatic architecture that trades-off between complexity
and performance thanks to the use of a tractable latency
model for round-robin schedulers. It presents efficient con-
trol plane algorithms to jointly optimize the routing of a set

Fig. 1: Slicing architecture with channelized sub-interfaces.

of flows in order to meet deterministic end-to-end latency
requirements.

III. NETWORK SLICING ARCHITECTURE

To prevent interferences between slices, we consider a
network slicing architecture based on the channelized sub-
interface technology [12], as currently supported by most
vendors. The traffic from the different slices is forwarded
through specific channelized sub-interfaces with 802.1Q
encapsulation. Each channelized sub-interface implements
an independent QoS scheduler, such as HQoS or DiffServ,
to serve traffic with different requirements and priorities.
Given that channelized sub-interfaces are provided with a
dedicated resource assignment, it ensures hard isolation as it
prevents a slice to interfere with the others. Indeed, as shown
in Fig. 1, a sub-interface is assigned to each slice on physical
links with a dedicated allocated capacity. Inside each sub-
interface, traffic is scheduled using a round robin scheduler
and per-flow shapers to share the slice capacity among
the different flows (i.e., virtual services). Some queues are
dedicated to HP flows, while others are dedicated to BE
traffic to avoid starvation. Depending on the amount of
traffic to serve, 2 or 4 queues can be assigned to HP traffic,
leaving the rest to handle QoS and priorities for BE traffic.

Traditional data plane scheduling methods mainly in-
clude round robin schedulers, such as Deficit Round Robin
(DRR) [8], in which queues are scheduled one after another.
At each round, an amount of data based on each queue’s
weight or deficit is scheduled. DRR is among the most
used scheduler at it exhibits a complexity in O(1). It
is a practical and efficient implementation of Generalized
Processor Sharing (GPS) [24].

Besides being useful to prioritize traffic, round-robin
methods can be used to provide deterministic guarantees as
latency bounds can be computed with network calculus [25].
While several research works have proposed tight latency
bounds (see [9], [26] for DRR for instance), a loose but
tractable estimation of the worst-case latency can be derived
considering that the scheduler is modeled as a latency-rate
server [10]. According to this model, the upper bound of
the delay Dq

e experienced by flows in each queue q on sub-
interface e (or physical link, to simplify) can be expressed
as

Deq ≤ Teq +
Bqe
Ceq

(1)

where Bqe is the sum of the bursts of all flows going through
queue q of link e, Ceq is service rate associated to queue q
over link e and T eq is a constant factor that represents the
worst-case delay seen by the first packet of a busy period
and depends on the resources (i.e., to quanta) assigned to
each queue in the scheduler.

According to network calculus terminology, each flow can
be described by an arrival curve in the form of αk(t) =
bk + rkt, where bk is the maximum allowed burst for the
k-th flow and rk is the average allowed rate. As derived
in [9], the service rate of a DRR scheduler guaranteed by
queue q to flow k can be expressed as βk(t) = Ceq[t−Teq]+.
The queuing policy of each queue can be modeled as FIFO,
resulting that the overall latency introduced by a queue is
Teq +

Bq
e

Ceq
. Considering only one flow in the network, at the

next node, the data to be transmitted would be Bqe +CeqTeq .
However, if a shaper is used at the output of the queue, the
resulting data to be transmitted is Bqe . Using [27], if a shaper
is applied after each queue as shown in Fig. 1, there is no
additional delay to be considered and the arrival curve is
preserved at each intermediate hop. It results that model (1)
can be applied safely to each sub-interface in the network
as we can consider that inside a queue there is only one
flow resulting from the aggregation of the flows traversing
the queue. In practice, the real latency of flows can be much
smaller than the worst case given by the analytical model
as (i) bursts of different flows may arrive at different time
instants and (ii) the actual flow size can be smaller than the
maximum burst. But this conservative model can be used
to ensure that end-to-end latency requirements are met. The
capacity reserved for a slice and unused by HP traffic can
be exploited by BE traffic.

When a slice needs to be created, the network controller
receives a list of virtual services described each by a pair of
source and destination nodes and an arrival curve for each
HP flow. Based on the characteristics of services and the
updated information about the remaining network capacity,
the controller decides the following: 1) how much capacity
has to be allocated to each sub-interface, i.e.,

∑
q Ceq for

q ∈ Q, e ∈ E, 2) which routing paths must be used for
each service, and 3) to which queues on the different ports
that are traversed (i.e., channelized sub-interfaces that are
created) the services must be assigned. The controller should
also take into account the amount of BE traffic in the slice
to provide at least partial acceptance. However, for the sake
of simplicity, we neglect this term for the slice planning
optimization in Sec. IV and we assume that BE traffic will
partially be able to use the resources of HP traffic as the
network calculus bound is loose and yields to some over-
provisioning. Using 4 to 6 queues can also allow prioritizing
BE traffic inside the slice.

IV. PROBLEM FORMULATION

In this section, we formulate the slice planning problem
where we maximize the number of accepted HP virtual
services, also called demands, and we minimize the total
capacity allocated to the slice. The maximization of traffic
acceptance is the first objective, whereas the minimization
of the allocated capacity is the second one. As explained

in Sec. III, each slice is deployed using channelized sub-
interfaces at physical ports. Each sub-interface has a num-
ber of round-robin queues through which demands can be
assigned. The network controller decides about routing and
bandwidth allocation so as to meet the latency requirement
of each demand, giving in output a path and an assignment
to queues and a service rate allocation for each queue. The
latency-rate model is used to calculate the worst queuing
delay in each queue. It is used to ensure that end-to-end
latency requirements are feasible for each accepted demand.

Let G = (V,E) be a graph, where V is the set of network
devices (i.e., routers) and E is the set of directed links
between devices (i.e., physical outgoing ports). For each
link e ∈ E, we define its available capacity Ce and the
set of queues Qe associated with the sub-interface that is
assigned to the slice under consideration. In the rest of the
paper, we call the link/queue eq the queue q ∈ Qe associated
with the sub-interface on link e. For each link/queue eq, the
propagation delay is denoted le, and the scheduling delay at
each queue is Teq . Let K be the set of demands (i.e., virtual
services of the slice). For each demand k ∈ K, we denote
by sk its source, by tk its destination, and its arrival curve
is defined by a maximum burst size bk and an average rate
rk. Each demand k has an end-to-end latency requirement
dlk. Let Ḡ = (V,EQ) be an extended graph of G where
each link e ∈ E is duplicated |Qe| times to represent each
link/queue eq ∈ EQ where q ∈ Qe.

We now propose a mixed integer non-linear programming
with a polynomial number of variables and constraints. The
variables are the following:
• xeqk ∈ {0, 1}: equals to 1 if the demand k is assigned

to the queue q on the link e, 0 otherwise.
• Ceq ∈ R: equals to the rate allocated to the queue q on

the link e.
• xk ∈ {0, 1}: equals to 1 if the demand k is accepted,

0 otherwise.
• deq ∈ R: equals to the maximum delay of the queue.
The mathematical model (MP) is as follows:

max
∑
k∈K

Mxk −
∑
e∈E

∑
q∈Q

Ceq (2)∑
eq∈δ+(v)

xeqk −
∑

eq∈δ−(v)

xeqk = v(k)xk v ∈ V, k ∈ K, (3)

∑
q∈Qe

xeqk ≤ 1 k ∈ K, e ∈ E (4)

Teq +

∑
k∈K bkx

eq
k

Ceq
≤ deq e ∈ E, q ∈ Qe (5)∑

e∈E

∑
q∈Qe

(deq + le)x
eq
k ≤ dlk k ∈ K (6)∑

k∈K

rkx
eq
k ≤ Ceq e ∈ E, q ∈ Qe (7)∑

q∈Qe

Ceq ≤ Ce e ∈ E (8)

where M is a big value ensuring that the number of accepted
demands is the main objective and v(k) equals to 1 if
v = sk, -1 if v = tk and 0 otherwise. Inequalities (3)
are the flow conservation constraints. Inequalities (4) ensure
that a demand is assigned to at most one queue of a link.

Constraints (5) consider the model to compute the worst-
case delay experienced in a queue. Inequalities (6) are
the end-to-end latency constraints. Inequalities (7) ensure
that for each queue the average rate is respected. Finally,
inequalities (8) guarantee that the service rate allocated to
each queue do not exceed the capacity of each link.

In the following we consider two variants of the problem.
The first one where a delay bound is given in input for each
queue and is used to compute the end-to-end delay and a
second one, more accurate but more complex, where the
delay of each queue is determined by the algorithm.

a) Bounded delay (BD): A given delay bound Deq can
be considered for each link/queue. In this case, it is used to
compute the end-to-end delay (deq = Deq) and the (MP)
model that still guarantees that the bound is satisfied can be
easily linearized. Indeed, the non-linearity comes from the
inequality (5), but if deq is a constant (replaced by Deq and
not a variable), then we can replace (5) by

CeqTeq +
∑
k∈K

bkx
eq
k ≤ CeqDeq e ∈ E, q ∈ Qe (9)

(MP) becomes similar to a classical multi-commodity flow
with additional constraints. The main challenge in this case
for the network manager is to set the delay bounds for each
queue. In Sec. VI, we explain a simple method based on the
clustering of demands.

b) Variable delay (VD): In this case, the delay deq
experienced in each queue is decided by the algorithm. The
model (MP) can be solved only using a non-linear solver
like SCIP [28] on small networks or the two-steps heuristic
presented in Sec. V.

V. HEURISTIC ALGORITHMS

We introduce heuristics for the bounded and variable
variants, respectively denoted as BD and VD.

A. Bounded delay (BD)

For the BD variant, we now present a Column Generation
(CG) based heuristic and a greedy procedure.

a) CG BD algorithm: To solve the problem on large
scale networks, a classical method to efficiently solve multi-
commodity flow problems is to use column generation [29]
on an extended model where the arc variables xeqk are
replaced by path variables xpk for each demand k ∈ K and
each path p ∈ Pk where Pk is the set of all possible paths
from sk to tk that respect the end-to-end delay constraint
dlk. The following extended model (EP) is equivalent to
(MP)

max
∑
k∈K

Mxk −
∑
e∈E

∑
q∈Q

Ceq (10)

αk : xk ≤
∑
p∈Pk

xpk k ∈ K (11)

α1
eq : CeqTe,q +

∑
k∈K

bk
∑

p∈Pk:e∈p
xpk ≤ CeqDeq q ∈ Q, e ∈ E

(12)

α2
eq :

∑
k∈K

∑
p∈Pk:e∈p

rkx
p
k ≤ Ceq e ∈ E, q ∈ Q

(13)

∑
q∈Qe

Ceq ≤ Ce e ∈ E (14)

where αk (resp. α1
eq , α

2
eq) are the dual variables associated

with the inequalities (11) (resp. (12), (13)). To solve the
extended model (EP), we use a column generation algo-
rithm. The associated pricing problem, for each demand
k ∈ K consists in finding a constrained shortest path in
the extended graph Ḡ where the cost of each link/queue arc
is equal to bkα1

eq + rkα
2
eq and its associated delay is equal

to the bound Deq plus le. If the cost of this path is smaller
than αk then the column associated with this path (i.e., path
variable xpk) for the demand k is added to the model. Each
time the restricted (EP) model is updated, it is solved using
a linear solver and dual variables are updated. When no new
columns can be found, the algorithm terminates and returns
the optimal relaxed solution of the extended model. The
pseudo-code is presented in Alg 1.

Algorithm 1 CG BD algorithm

Require: Set of demands K, graph G.
while Columns added at the last iteration or First iteration
do

Solve the restricted (EP)
for all demand k ∈ K do

Solve pricing problem for k
if path p found such that

∑
eq∈p bkα

1
eq +∑

eq∈p rkα
2
eq < αk then

add the variable xpk to the restricted (EP)
end if

end for
end while
while max number of rounding steps not reached do

current solution ← empty set of paths
for k ∈ K do

select randomly a path p with a probability propor-
tional to the linear relaxation xp∗k and add it to the
solution

end for
if the current solution is feasible and better then

best solution = current solution.
end if

end while
return Best solution

To heuristically derive an integer solution we then con-
sider a randomized rounding algorithm where we generate
100 solutions by drawing a path at random for each demand
based on the probability given by the linear relaxation.

b) Greedy BD algorithm: For each demand k ∈ K,
this algorithm computes a path and accepts this demand
if the end-to-end delay is respected and the resources are
enough for each link of the path. This algorithm aims
at minimizing the total bandwidth allocated to accepted
demands. More formally, the algorithm computes for each
demand k ∈ K a constrained shortest path in the extended
graph Ḡ where the cost for each queue/link arc is equal
to addkeq , the additional service rate needed if the demand
uses this queue so that the queuing delay equals to Deq .

Algorithm 2 2S-VD algorithm

Require: Set of demands K, graph G.
while Solution can be improved do

(Step 1) calculate the routing using CG BD algorithm.
(Step 2) allocate a minimum service rate to each queue.
Update the delay bound of each queue.

end while
return Solution

Considering the delay model, we have addkeq = bk
Deq−Teq

for all link/queue eq ∈ EQ.

B. Variable delay (VD)

We now present a two-steps heuristic, called 2S VD,
for the VD case. As the problem is non-linear and much
harder to solve than BD, we split the problem into two sub-
problems. The first part computes a path for each demand,
while the second part determines the rate allocation of each
queue such that the end-to-end delay is respected for all the
accepted demands and the capacity constraints are met on
all links.

As presented in Alg. 2, the algorithm consists in solving
the problem by iterating between two algorithms until no
improvement is achieved. The first algorithm (Step 1) solves
the BD problem using CG BD to provide a routing PK . The
second algorithm (Step 2) consists in a greedy procedure to
minimize the service rate allocation. Based on the routing
PK and the rates C∗eq decided after the two steps, a new
delay bound is given for each queue such that D∗eq = Teq +∑

k∈Keq
bk

C∗eq
(if a queue/link is not used then D∗eq = Deq).

This new delay becomes the input of the first step at the
next iteration.

(Step 2) Given a routing PK associated with a set of
demands K (one path pk per demand), the goal of the
algorithm at Step 2 is to provide for each link/queue
eq ∈ EQ a feasible and minimum quantity of service rate.
A rate allocation is feasible if all paths in PK meet their
end-to-end latency requirement and if the sum of allocated
rates to all the queues of Qe is smaller than the link
capacity Ce for each link e ∈ E. Remark that the best rate
allocation (i.e., the minimum) for a link/queue eq ∈ EQ is
BCeq =

∑
k′∈K′ bk′

deq−Teq
where K ′ is its set of demands crossing

eq and deq is its delay. The algorithm begins by fixing the
rate allocation of each link/queue to Ce. It then iterates over
all links/queues in EQ until an improvement is obtained. If
at least one link e ∈ E does not meet the link capacity
constraint (

∑
q∈Qe

Ceq ≤ Ce) then the algorithm considers
only the violated links/queues. Otherwise, the algorithm con-
siders all of them. At each iteration, for each link/queue the
algorithm performs a sort of dichotomy search by updating
the service rate as follows Ceq = BCeq +

Ceq−BCeq

2 , where
BCeq is the best rate allocation when the delay deq is

equal to maxk∈K′
dlk−

∑
e∈Pk

le

|Pk| with K ′ the set of demands
crossing the link/queue eq.

VI. EXPERIMENTAL RESULTS

We now compare our slice planning algorithms in terms of
traffic acceptance, reserved bandwidth and execution time.

Fig. 2: Accepted demands for each instance.

Fig. 3: Computational time for each instance.

A. Simulation settings

We test our algorithms on an IP-RAN (Radio Access
Network) topology with a hierarchical structure: aggregation
layers are connected to core, being themselves connected to
access layers. The topology is composed of 1000 nodes and
2498 links, and we generate 5 random sets of 5000 demands.
Although in practice, each sub-interface can handle up to
8 queues, we consider either 2 or 4 queues to analyze
the impact of the number of queues. Furthermore, we also
consider 3 scaling factors (respectively, 0.5, 1 and 2) that
multiply the end-to-end delay of each demand to strength or
relax the latency constraints, implying a decreased amount
of allocated capacity to satisfy latency requirements. In total,
we have 5 × 2 × 3 = 30 test instances and the numerical
results were realized on an Intel Xeon CPU E5-4627 v2 of
3.30GHz with 504GB RAM and 32 cores, running under
Linux 64 bits. We used 10 parallel threads and a time limit
of 600 seconds.

To initialize the delay bound for each queue, we partition
the demands in |Q| sets according to their end-to-end delay
requirements divided by the length of the shortest path
length plus a small constant (i.e., 2). Then, for each set,
representing fast to slow queues, we set the bound to the
minimum end-to-end delay requirements divided by the
same value as above. This partitioning method is used to
determine the delay bound in BD and an initial solution in
VD.

B. Results

Fig. 2 and Fig. 3 present the number of accepted demands
and the execution time for each instance, while Fig. 4
presents the total allocated service rates for instances where

Fig. 4: Reserved capacity (all demands accepted).

all demands are accepted. Remark that Greedy BD accepts
all demands only when 4 queues (i.e., 4q in figures) are
available and the scaling factor is equals to 2 thus Fig. 4
reports only results for 4 queues and a scaling factor of 2.

We first compare the results for the two algorithms
solving the BD variant, namely Greedy BD and CG BD. We
can observe that the column generation algorithm performs
much better in terms of traffic acceptance, up to 8% of
improvement, at the cost of a higher running time. On the
instances where all algorithms accept all demands, CG BD
allows saving and extra 0.4% in average of the total allocated
rate. We can also observe that increasing the number of
queues give more flexibility to the algorithms and improves
significantly traffic acceptance, also at the cost of higher
running times as the extended graph is larger.

Second, we analyze the gain when a variable delay is
decided (i.e., VD) compared to when a bounded delay given
as input (i.e., BD). We can observe in the case with 4 queues
that the accepted traffic is increased by 10% in average while
the total reserved capacity is decreased by 7% (when all
demands are accepted). As 2S VD requires more iterations
compared to CG BD, its execution time is higher while it
remains below the time limit by design.

VII. CONCLUSION AND PERSPECTIVES

We presented in this paper a network slicing architecture
for deterministic latency guarantees. Based on legacy round-
robin schedulers and per-flow shapers, the solution provides
a good trade-off between complexity and performance. We
presented two efficient algorithms for the planning of a
single slice to maximize traffic acceptance and minimize the
total reserved capacity. Future work along these lines may
include the embedding of tighter, although more complex,
delay models to further improve the utilization of resources.

REFERENCES

[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A
survey on low latency towards 5G: RAN, core network and caching
solutions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
2018.

[2] E. Grossman, “Deterministic Networking Use Cases,” RFC 8578,
May 2019. [Online]. Available: https://rfc-editor.org/rfc/rfc8578.txt

[4] B. Liu, S. Ren, C. Wang, V. Angilella, P. Medagliani, S. Martin, and
J. Leguay, “Towards Large-Scale Deterministic IP Networks,” in IFIP
Networking, 2021.

[3] R. Li, “Towards a New Internet for the Year 2030 and Beyond,”
Proceedings 3rd Annual ITU IMT-2020/5G Workshop Demo Day, 07
2018.

[5] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,
and H. Elbakoury, “Cyclic Queuing and Forwarding for Large Scale
Deterministic Networks: A Survey,” ArXiv, vol. abs/1905.08478,
2019.

[6] “IEEE Standard for Local and Metropolitan Area Networks: Cyclic
Queuing and Forwarding,” IEEE 802.1Qch-2017, pp. 1–30, June
2017.

[7] J. C. Bennett and H. Zhang, “WF/sup 2/Q: worst-case fair weighted
fair queueing,” in Proc. IEEE INFOCOM, 1996.

[8] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. on Net., vol. 4, no. 3, 1996.

[9] M. Boyer, G. Stea, and W. M. Sofack, “Deficit Round Robin with net-
work calculus,” in 6th International ICST Conference on Performance
Evaluation Methodologies and Tools. IEEE, 2012, pp. 138–147.

[10] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Transactions on
networking, vol. 6, no. 5, pp. 611–624, 1998.

[11] China Mobile Communications Corporation, Huawei Tech-
nologies Co., Ltd., Deutsche Telekom AG, and Volk-
swagen, “5G Service-Guaranteed Network Slicing White
Paper,” Tech. Rep., Feb. 2017. [Online]. Available:
https://www-file.huawei.com/-/media/corporate/pdf/whitepaper/ 5g-
service-guaranteed-network-slicing-whitepaper.pdf

[12] Huawei, “Application Scenarios for VLAN Channelized
Sub-Interfaces,” March 2021. [Online]. Available:
https://support.huawei.com/enterprise/en/doc/EDOC1100093973/
a85fddf5/application-scenarios-for-vlan-channelized-sub-interfaces

[13] A. Destounis, G. Paschos, S. Paris, J. Leguay, L. Gkatzikis, S. Vassi-
laras, M. Leconte, and P. Medagliani, “Slice-based column generation
for network slicing,” in IEEE INFOCOM demo, 2018.

[14] OIF, “Flex Ethernet 2.0 Implementation Agreement,” June 2018. [On-
line]. Available: https://www.oiforum.com/wp-content/uploads/OIF-
FLEXE-02.0.pdf

[15] N. Huin, J. Leguay, S. Martin, P. Medagliani, and S. Cai, “Routing
and Slot Allocation in 5G Hard Slicing.” in INOC, 2019, pp. 72–77.

[16] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc.IEEE INFOCOM, 2000.

[17] B. Fortz, L. Gouveia, and M. Joyce-Moniz, “Models for the piecewise
linear unsplittable multicommodity flow problems,” European Journal
of Operational Research, vol. 261, no. 1, pp. 30–42, Aug. 2017.

[18] W. Ben-Ameur and A. Ouorou, “Mathematical models of the delay
constrained routing problem,” Algorithmic OR, vol. 1, no. 2, 2006.

[19] L. Kleinrock, Communication nets: Stochastic message flow and
delay. Courier Corporation, 2007.

[20] “Deterministic Networking Architecture,” RFC 8655, Oct. 2019.
[21] L. Qiang, X. Geng, B. Liu, T. Eckert, L. Geng, and G. Li, “Large-

Scale Deterministic IP Network,” IETF Draft draft-qiang-detnet-large-
scale-detnet-05, Sep. 2019.

[22] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen,
X. Chang, and X. Geng, “Joint Routing and Scheduling for Large-
Scale Deterministic IP Networks,” Elsevier Computer Communica-
tion, 2020.

[23] A. Bouillard, B. Gaujal, S. Lagrange, and É. Thierry, “Optimal rout-
ing for end-to-end guarantees using network calculus,” Performance
Evaluation, vol. 65, no. 11-12, pp. 883–906, 2008.

[24] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM trans. on Net., vol. 1, no. 3, 1993.

[25] M. Fidler, “Survey of deterministic and stochastic service curve
models in the network calculus,” IEEE Communications surveys &
tutorials, vol. 12, no. 1, pp. 59–86, 2010.

[26] A. Bouillard, “Individual Service Curves for Bandwidth-Sharing
Policies using Network Calculus,” IEEE Networking Letters, pp. 1–1,
2021.

[27] J. Le Boudec, “A Theory of Traffic Regulators for Deterministic
Networks With Application to Interleaved Regulators,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2721–2733, 2018.

[28] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler,
M. Gasse, P. Gemander, A. Gleixner, L. Gottwald, K. Halbig et al.,
“The SCIP optimization suite 7.0,” 2020.

[29] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column genera-
tion. Springer Science & Business Media, 2006, vol. 5.

