
Load Balancing for Deterministic Networks
Shuang Chen†, Jérémie Leguay∗, Sébastien Martin∗, Paolo Medagliani∗

∗Paris Research Center, Huawei Technologies Co. Ltd
e-mail addresses: {name.surname}@huawei.com

† Beijing Research Center, Huawei Technologies Co. Ltd
e-mail address: chenshuang23@huawei.com

Abstract—With the advent of 5G and the evolution of Internet
protocols, industrial applications are moving from vertical solu-
tions to general purpose IP-based infrastructures that need to
meet deterministic Quality of Service (QoS) requirements. The
IETF DetNet working group aims at providing an answer to
this need with support for (i) deterministic worst-case latency
and jitter, and (ii) zero packet loss for time-sensitive traffic.
In particular, this working group is currently specifying Cycle
Specified Queuing and Forwarding (CSQF), an extension of
Cyclic Queuing and Forwarding (CQF) with multiple transmis-
sion queues and support for Segment Routing (SR).

In this paper, we present a load balancing extension for DetNet
that aims at improving network utilization. In order to implement
this additional feature, we show how to extend the original SR
policy in CSQF. Then, we formulate the optimization problem
that a centralized controller has to solve to produce feasible load
balancing configurations and we demonstrate on a typical 3-tiers
topology that load balancing improves traffic acceptance as the
complexity of finding the optimal configurations increases.

Index Terms—Deterministic Networking, Routing, Scheduling,
Load Balancing.

I. INTRODUCTION

The 5th generation of networks is calling for new latency-
critical network services to enable a wide-range of applications
like cloud gaming, factory automation, connected vehicles, and
smart grids [1]. Traditional IP services cannot provide strict
QoS guarantees and even if certain service classes can be given
preferential treatment, performance is still statistical. Deter-
ministic performance is now a must to support applications
with requirements of low and worst-case latency guarantee.

In the past decade, a collection of IEEE 802.1 Ethernet
standards, known as Time-Sensitive Networking (TSN) [2],
has been developed to support professional applications over
Local Area Networks (LAN) with mechanisms such as priority
queuing, preemption, traffic shaping, and time-based opening
of gates at output ports. While these mechanisms are well
suited for static traffic requirements and small networks,
they can’t scale up to support large-scale IP networks. The
IETF DetNet (Deterministic Networking) [1] working group
is taking a step further by defining Segment Routing (SR)
mechanisms so that Layer 3 can dynamically exploit Layer 2
functionalities for queuing and scheduling to guarantee (i)
deterministic worst-case latency and jitter, and (ii) zero packet
loss for time-sensitive traffic. In particular, the working group
is currently specifying Cycle Specified Queuing and Forward-
ing (CSQF) [3], a promising extension to Cyclic Queuing

and Forwarding (CQF, a.k.a. IEEE 802.1Qch) with more
than 2 transmission queues in order to relax tight time-
synchronization constraints and to schedule, in a more flexible
way, transmissions at each hop. CSQF proposes a scalable
solution where transmission cycles at each port repeat period-
ically thanks to the round-robin opening of multiple queues
dynamically selected by IP packets using segment routing
identifiers (SIDs), a label stack that determines scheduling and
routing at each hop. A network controller decides the proper
SR policy (i.e, labeling strategy) for each flow by solving a
joint scheduling and routing problem.

In the current CSQF specification [3], flows are routed over
a unique scheduled-path, a sequence of links with transmission
cycles specified at each link. As for traditional IP networks,
the use of a single path to route all packets from the same
flow can engender a poor utilization of the network bandwidth.
This is typically the case when the distribution of flow sizes
is skewed and a small set of large flows must be split over
multiple paths [4] using well known flow splitting techniques
like ECMP [5] or Weighted-Cost Multi-Path (WCMP) [6]. As
DetNet systems are intended to support a mix of low-rate
control traffic and high-rate sensor-based data streams, we also
expect to have the need to spread large flows over multiple
paths. Furthermore, as flows may have totally different trans-
mission patterns over cycles, whose periodicity is referred to as
hypercycle, it may be difficult to combine them in all cases to
maximize traffic acceptance. Splitting flows with complicated
patterns into a collection of smaller sub-flows with simpler
patterns should help making a better use of network resources
and accept more traffic.

In this context, we present a load balancing extension for
DetNet where flows can be split over multiple paths and
multiple cycles. After a necessary reminder of how CSQF
works, we propose an extension of the SR policy that needs
to be deployed at ingress nodes to enable load balancing. We
present three use cases to (i) improve network utilization as
well as traffic protection against (ii) busts and (iii) failures. To
automatically design load balancing policies, we formulate the
DetNet Load Balancing (DN-LB) planning problem to maxi-
mize the acceptance of time-triggered flows and we analyze its
complexity. Using a typical 3-tiers topology, we demonstrate
the benefits of a centralized control plane solving the DN-LB
problem to generate feasible load balancing policies over the
case where a single scheduled-path routing problem is solved.
In particular, we show that traffic acceptance can be improvedISBN 978-3-903176-28-7©2020 IFIP



by tens of percents when the complexity of finding the optimal
load balancing policy increases, i.e., when the number of flows
and the size of the hypercycle increase.

More details about CSQF are given in Sec. II. Relevant
related works are discussed in Sec. III. Sec. IV presents the
load balancing extension for DetNet. The DN-LB problem is
formulated and analyzed in Sec. V. Numerical assessments are
shown in Sec. VI. And Sec. VII concludes this paper.

II. DETNET SYSTEM MODEL WITH CSQF

Deterministic performance guarantees are getting momen-
tum thanks to standards like Cycle Specified Queuing and For-
warding (CSQF) [3] for Deterministic Networking (DetNet),
allowing the coexistence of deterministic traffic over tradi-
tional IP networks. CSQF allows exact packet scheduling—
and by consequence deterministic packet delivery—by explic-
itly stating, via a Segment Routing (SR) label stack, in which
cycle (i.e., which queue) each packet should be transmitted
after being received and processed. Precise knowledge of the
position of a packet inside the network at a generic instant
t comes from the fact that, at each node, the worst case
forwarding latency is known. Each time a packet arrives at
a node, the scheduling of its future transmission is realized by
its assignment to one of the inactive queues.

Inside a CSQF-enabled device, each port is equipped with
N queues (typically 8), normally used for DiffServ and Best
Effort (BE) traffic. In CSQF, the standard defines that out of
the N queues, NDN queues (by default 3) are reserved for
time-sensitive traffic. These queues are served in a round-robin
fashion such that the active queue is open for transmission
and closed for reception. Conversely, the NDN − 1 inactive
queues can only accept packets for future transmission. For
this reason, the assignment of packets to specific inactive
queues defines their transmission schedule and needs to be
carefully controlled. Each time-sensitive queue is drained after
the activity period and it must be dimensioned to receive all
the packets scheduled within a cycle without introducing any
packet loss.

Due to the periodic activation of queues, the time at each
node is logically divided into cycles, whose duration is as-
sumed to be the same throughout the network. The starting
time of the cycles at the different nodes is not synchronized
and can present an offset which is measured and known by
the controller. CSQF guarantees bounded jitter as all packets
experience the same maximum forwarding time, which is
deterministic and known in advance by statistically measuring
the worst-case delay. In practice, as the real processing delay
of each forwarded packet can be smaller than the worst-case,
the DetNet-enabled node introduces an artificial additional
delay to ensure that the packet forwarding delay is equal to
the worst-case.

In Fig. 1, we show an example of how a packet is propagated
from node A to node C through node B. Once the packet is
sent from A, it is received at B within a cycle (cycle 2 in the
figure). As node B decides for immediate packet forwarding,
the packet is transmitted in the next cycle. Finally, node C

Fig. 1: CSQF packet forwarding. Between nodes A and B, and,
B and C, the packet is transmitted in the next cycle, while node
C decides to schedule packet transmission two cycles later.

decides for the scheduling of the packet two cycles later, so
that the packet will be transmitted at cycle 6. As the same
considerations apply if we consider 0 offset between cycles
of different nodes, for the sake of simplicity and without loss
of generality, we will consider throughout this paper a 0 time
offset such that all cycles are aligned at the different nodes.

According to CSQF, a DetNet-enabled device decides how
and when a packet is forwarded by consuming the first
Segment Routing ID (SID) available in the label stack of
packet headers. As a first step, the receiving node maps the
SID into the corresponding output port. As a second step, the
device uses the same label to select the queue associated with
the intended transmission cycle. The SR label stack can be
provided by a centralized network controller that (a) computes
a feasible path (or set of paths) from source node to destination
node, (b) computes the right scheduling within each node
traversed by the flow, and (c) distributes the corresponding SR
label stack to all the network elements via specific protocols
(e.g., PCEP).

In order to ensure deterministic performance, DetNet traffic
is time-triggered (TT) and follows a specific pattern that
repeats over time. This period is referred to as hypercycle.
For each cycle, the application specifies how much data will
be sent. According to this definition of traffic, the routing
problem in DetNet consists in finding a path from the source
to the destination, while the scheduling problem focuses on
the mapping of each TT packet inside a specific transmission
queue. As a consequence, it is necessary to provide a schedul-
ing and routing decision at each hop and guarantee that enough
resources are available. The current limitations imposed on the
TT flows are that no load balancing is possible, neither at path
level (i.e., a TT flow must use only one path) nor at cycle level
(i.e., all the packets of the same flow received in cycle x must
be forwarded in the same cycle y). In Section IV, we will
show how it is possible to overcome these limitations in order
to achieve better network utilization.

III. RELATED WORK ON LOAD BALANCING

In the literature, a number of load balancing solutions
have been proposed for traditional IP networks. Many works
advocate skewed traffic distributions and relaxation of the
equal cost constraint [7], [8] to increase network utilization.



However, the ECMP (Equal-Cost Multi-Path) [5] extension
to OSPF is still the most commonly used technique to load
balance traffic. However, research is still focusing on efficient
and practical ways to implement unequal cost and uneven flow
splitting.

To achieve uneven load balancing problem, extensions of
ECMP such as weighted-Cost Multi-Path (WCMP) [6] routing
or Niagara [9] have been proposed for uneven flow splitting
over equal cost paths. They repeat the same next-hop multiple
times in the forwarding table to route different portions of
traffic over the paths. As these approaches can lead to a large
number of rules, they both propose rules reduction algorithms.
However, these two approaches solve a local problem and do
not aim at maximizing the overall network throughput. In a
past work from us [4], we proposed a global optimization
algorithm to configure data plane buckets (i.e;, forwarding
rules in group tables) to mitigate this problem. However, in
practice, these uneven load balancing solutions are not enough
as they are facing the problem that the size of flows is not
known in advance and the actual observed rate can deviate
the expected ones.

Fortunately, in DetNet flows are either generally described
as time-triggered flows or shaped / policed at ingress nodes so
that we know their mean rate or worst case burst size. Without
loss of generality, we will consider in the rest of this paper
time-triggered flows where the number of packets issued by
applications in each cycles is known to the network controller.
Thanks to this knowledge, an uneven load balancing of DetNet
flow can be accurately planned without the risk of problematic
deviations. Up to our knowledge, we are the first to propose
a load balancing mechanism for DetNet.

IV. CYCLE-LEVEL LOAD BALANCING WITH CSQF

In DetNet, similarly to traditionnal IP networks, the use of a
single path to route all packets for every flow engenders poor
network utilization.

The way load balancing is implemented depends on the
way flows are forwarded inside the devices. Traditionally,
there exist two different techniques to forward packets in the
devices: (i) flow tables and (ii) SR policies. Considering a flow
table, each input port is associated with a packet processor
that decides, based on forwarding rules, on which output
port (and transmission cycle for DetNet) the flow has to be
forwarded. In this case forwarding rules have to be installed in
all intermediary devices processing a flow. The other approach
is based on SR policies and the ingress node attaches the
list of SIDs to incoming packets. Intermediate nodes just
consume the associated SR label and route the packet using the
information contained in the SID. As there is a static mapping
between SID and output port, no flow tables are needed.

As CSQF leverages on segment routing to route and sched-
ule packets, in this paper we will focus on the modifications
required to the SR policies in order to support cycle-level load
balancing. The SR policies are composed by a set of Candidate
paths that can be activated by the head-end node that injects
the packet into the network. Each Candidate path is composed

Fig. 2: SR policy structure for multi-path cycle level load
balancing (new attributes are highlighted in black).

by a set of Segment IDs (SIDs) that are added to the header of
each packet and consumed by intermediary nodes in order to
forward the packets into the corresponding transmission queue.
Note that the selection of the transmission queue induces the
selection of the link as each queue is associated to a specific
link. In order to implement load balancing, some attributes
must be added in the SR policy. First, the policy contains an
attribute specific to the input cycle (Arrival cycle), it is used to
determine the input cycle to which the policy has to be applied.
Second, the policy has an attribute specific to the cycle shift
applied to packets (Cycle shift), in case it must be delayed of
one or more transmission cycles. Finally, a last attribute (Load
out) specifies the target load balancing applied to packets
arriving in the input cycle. This latter field can be implemented
either using weights (a ratio of the cycle capacity) or as
a packet number. A simple way to implement attributes is
using TLV fields. In Figure 2, we show the structure of the
new SR policy for load balancing in CSQF. For each one of
the m arrival cycles, it is possible to define n output paths
having each a different cyle shift and load distribution. The
new attributes required to handle cycle-level load balancing
are shown in black.

A practical example of how to use SR policy to load balance
traffic is shown in Figure 3. Beside to each node of the
topology on the top figure, we show the SIDs that are assigned
to every outgoing queue. For flow 1 (from a to h) and flow
2 (from b to h), the corresponding traffic pattern is depicted.
The number inside the grey area indicates an active packet
for the corresponding flow number, characterizing the active
demands at each transmission cycle (3 cycles / queues in the
example). For instance at node A there is 1 packet per cycle
for flow 1. At node b there are 3 packets per cycle for flow
2. Node b applies the following routing for flow 2. First, it
checks the arrival cycle in order to determine which SID list
to apply. For instance, for ArrivalCycle=1, the third list is
applied. According to the Load out field, a split 1/3, 2/3 is
applied. For 1 packet out of 3, the first SID list (10002, 20002,
30002) is used, while for2 packets out of 3, the second SID



Fig. 3: Example on a 8 node network with two demands from
a to h (flow 1) and from b to h (flow 2), respectively (top
figure). SR policy and detailed SR lists for cycle-level load
balancing of flow 2 (bottom figure).

list is used (10002, 40002, 50002). As it can be seen from
the example, the packets will be split by node d, which will
forward two packets per cycle of demand 2 on the link d-e
and 1 packet per cycle on link d-f. The same considerations
apply for the other arrival cycles.

Support for different use cases. Beyond network utilization
improvement, the cycle-level load balancing can also be used
to handle bursts of traffic. In case it is not possible to serve
the burst using the same path, the SR policy can be used
to distribute packets over different links according to the
best suitable distribution. If the head-end node, responsible
for assigning the SR list to the packets, detects a burst, it
can locally decide for the application of the specific load
balancing policy. In order to ensure deterministic performance,
the controller must take into account the potential presence
of bursts while computing the SR list for burst protection
for each head-end node. The same considerations also hold
for the reaction to failures. The controller can pre-deploy to
head-end nodes specific SR policies to react to failures. Once
the controller detects a failure in the network, it can instruct
the different nodes to activate different SR policies and route
traffic elsewhere to avoid the failure. The computation of
the policies must be done by the TE controller taking into
account performance guarantee for all the existing traffic into
the network. In order to support the three different use cases
(i.e., load balancing, burst protection, and failure reaction), an

additional attribute, referred to as LoadBalanceType has been
added to the SR policy, as shown in Figure 2. The scope of
this attribute is to instruct the head-nodes on the utilization
case of the policy.

A drawback of the use of cycle-level load balancing is that
it may introduce disordering into the reception of the packets.
However, this can be easily compensated in two different ways.
First, the paths used for load balancing can be designed to
present similar latency characteristics, so that the disordering
is minimized. In addition, a buffer can be used to store the
packets and order them once received, as already envisioned
in DetNet by standards like Frame Replication and Elimination
for Reliability (FRER) [10].

V. THE DETNET LOAD BALANCING PROBLEM

This section introduces two Integer Linear Programs (ILP)
for the routing of traffic in DetNet. First, it formulates the
single path routing problem and then it presents the load
balancing version where traffic can be split over different
paths. In the two formulations we consider a given set of
feasible paths for each demand (i.e., flow).

Let’s consider the network G = (V,A), a graph where V
denotes the set of routers and A the set of links. Each link
a ∈ A has a capacity ba for each cycle c. A given set of
demands D has to be routed over links and cycles. For each
demand d ∈ D, bwd

c bandwidth units are transmitted at the
source node in cycle c. We denote bwd =

∑
c∈C bwd

c the total
bandwidth for demand d and Pd the set of given feasible paths
for d. bwd

a,p(c) indicates the bandwidth used by the flow d on
the link a at cycle c on the path p. A path for a demand is
feasible if it respects an end-to-end delay constraint.

a) DetNet routing problem (DN): In the basic DetNet
Routing a demand needs to be assigned a unique feasible path
and all packets must follow this path to ensure bounded jitter
and delay. For each flow d ∈ D and for each path p ∈ Pd we
consider a binary variable xp that equals to 1 if the path is
used by d and 0 otherwise. The ILP for the DN problem to
maximize traffic acceptance is:

max
∑
d∈D

∑
p∈Pd

bwdxp (1)∑
p∈Pd

xp ≤ 1 ∀d ∈ D (2)

∑
d∈D

∑
p∈Pd:a∈p

bwd
a,p(c)xp ≤ ba ∀a ∈ A,∀c (3)

xp ∈ {0, 1} ∀d ∈ D,∀p ∈ Pd (4)

Inequalities (2) ensure that only one path is selected for each
demand. Inequalities (3) are the capacity constraints for each
link and each cycle.

The DN problem is a NP-hard problem. This problem is
harder than a multi-commodity flow problem since if we
consider only one cycle the two problems are equivalent.

b) DetNet Load Balancing problem (DN-LB): In the
DetNet Load Balancing problem (DN-LB) each cycle of a
flow can be routed on a different feasible paths and all frames



of this flow and cycle must use this path. For each demand
d ∈ D, each cycle c ∈ C and each path p ∈ Pd we consider
a binary variable xp,c equal to 1 if the path is used by this
demand at cycle c and 0 otherwise. For each demand, we
also consider a binary variable yd equal to 1 if the demand is
accepted and 0 otherwise. The ILP for DN-LB to maximize
traffic acceptance is:

max
∑
d∈D

bwdyd (5)

yd ≤
∑
p∈Pd

xp,c ∀d ∈ D,∀c (6)

∑
d∈D

∑
p∈Pd:a∈p

bwd
a,p(c)xp,c ≤ ba ∀a ∈ A,∀c (7)

yd ∈ {0, 1} ∀d ∈ D, (8)
xp ∈ {0, 1} ∀d ∈ D,∀p ∈ Pd, (9)

Inequalities (6) ensure that if a demand is accepted then one
path is selected for each cycle of this demand. Inequalities (7)
are the capacity constraints for each link and each cycle.

DN-LB is NP-hard for the same reasons as DN. As men-
tioned in Sec. IV, an extension of the problem is to consider
the split of packets inside every incoming cycle over different
paths. In this case, xp cannot actually be relaxed as all split
ratios are not allowed due to packet granularity (capacity
constraints need to be satisfied on each path). The problem
remains NP-hard in this case.

VI. NUMERICAL EVALUATION

This section presents results computed with a C++ environ-
ment on a single core 3.0 GHz machine with 10GB RAM.
ILPs are solved with IBM CPLEX 12.6.3.

A. Setup

While efficient algorithms can be found for the DN prob-
lem [11] and extended to DN-LB, our paper on load balancing
sticks to the resolution of the ILP on rather small instances
to stay within acceptable computational times. Our goal is
to demonstrate, as a proof-of-concept, that cycle-level load
balancing can improve network utilization over single path
routing when using CSQF.

We considered a typical 3-tiers topology that can be found
in IPRAN (IP Radio Access Network) or data center scenarios
(e.g., fat trees) with edges nodes, aggregation nodes and core
nodes. Edge nodes and aggregation nodes are grouped by
domain as depicted in Fig. 4. We consider 2 edge nodes and
2 aggregation nodes per domain. And we have 2 core nodes
attached to 2 domains, which makes a total of 16 links.

We consider that each node is running the CSQF standard
and up to NDN ∈ [20, 200] queues for each output port can
be used for DetNet traffic. The capacity of links is defined in
number of packets per cycle. The exact link rate is specific
to the cycle length and depends on the type of links (e.g.,
1GE, 10GE). For our numerical results and without loss of
generality, we consider ba = 1 packet / cycle.

#Edge

#Aggregation

#Domain

#Core

a3 a4

b3 b4

c1 c2

Fig. 4: 3-tiers topology.

To generate traffic, we consider traffic between all the
pairs of edge nodes (12 in total). For each pair, we generate
N demands to increase traffic intensity (i.e., we have 12N
demands in total). As N varies between 1 and 8, the total
number of demands varies between 12 and 96. Each demand
has an hypercycle of length NDN and issues 1 packet per
cycle with a given probability (13% in our case). The idea
is to generate random patterns of time-triggered flows with a
large-enough probability so that congestion can happen.

In the considered scenario, we pre-compute for each demand
all possible shortest paths. In our case, we have in total 16
paths of equal length for every demand, meaning that they have
similar latency and packet re-ordering issues at egress nodes
are manageable with a small buffer. In practice, the number
of paths may be controlled as long as their relative latency. In
the next subsection we compare the network utilization when
calculating routing with either DN (single path) or DN-LB
(multiple paths over multiple cycles).

B. Results

Fig. 5a and Fig. 5b show, respectively, the percentage of
accepted traffic and the execution time when varying the total
number of demands and fixing the hypercycle length (i.e., the
number of queues) to 100 cycles. We can see that even for
small amount of demands (e.g., 12), load balancing already
improves traffic acceptance by 17%. When the traffic increases
(up to 96 demands), the gain increases up to 36%. The
execution time remains very low below 72 demands and starts
to explode after for load balancing. We expect this situation to
happen as well for single-path routing when a larger number
of demands is considered, as in both cases the ILP is directly
solved.

We now analyze the impact of the hypercycle length. Fig. 5c
and Fig. 5d show, respectively, the percentage of accepted
traffic and the execution time when varying the size of the hy-
percycle length. We fix traffic intensity to 2 demands for every
pair of edge nodes in this case. As before, we observe that the
gain in term of traffic acceptance increases with the hypercycle
length, up to 51% when 200 cycles are used. For the execu-
tion time, as the problem becomes highly combinatorial, the
execution time increases with the hypercycle length for load
balancing. The explosion is not as high, but the trend is the



(a) Accepted traffic vs. total number of demands. (b) Execution time vs. total number of demands.

(c) Accepted traffic vs. hypercycle length. (d) Execution time vs. hypercycle length.

Fig. 5: Benchmarking results on a 3-tiers topology scenario varying the number of queues (i.e., the hypercycle length) and the
number of demands.

same. The execution time will increase if we also increase the
number of demands. Actually, increasing the hypercycle length
or the number of demands means creating more opportunities
for load balancing to improve network utilization, but at the
same time it increases the problem complexity. We remind
that our goal in this paper is to showcase the load balancing
functionality, we leave the development of a scalable algorithm
for future work (as an extension of [11]).

VII. CONCLUSION

In this paper we presented a load balancing extension for
DetNet where flows can be split over multiple paths and
multiple cycles. In particular, we proposed an extension of
the original SR policy for CSQF supporting different use
cases to improve network utilization and protect traffic against
bursts and failures. We formulated the DN-LB problem as an
extension of a multi-commodity flow problem to automatically
calculate load balancing configurations. On a typical 3-tiers
network, we demonstrated, as a proof-of-concept, gains in
terms of traffic acceptance up to 50% when the complexity
of finding the optimal solution increases, i.e, when the size of
the hypercycle length and the number of flows increase.

For future work, we leave the design of a scalable algorithm
to solve the DN-LB problem. We also leave the resolution of
several related problems such as the split of individual cycles
over multiple paths or the calculation of multiple paths with

minimum latency deviation so that packet re-ordering issues
can be limited.

REFERENCES

[1] E. Grossman, “Deterministic Networking Use Cases,” RFC 8578, May
2019. [Online]. Available: https://rfc-editor.org/rfc/rfc8578.txt

[2] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,
and H. Elbakoury, “Cyclic queuing and forwarding for large scale
deterministic networks: A survey,” CoRR, vol. abs/1905.08478, 2019.

[3] M. Chen, X. Geng, and Z. Li, “Segment Routing (SR) Based Bounded
Latency,” Internet Engineering Task Force, Internet-Draft draft-chen-
detnet-sr-based-bounded-latency-00, Oct. 2018.

[4] P. Medagliani, J. Leguay, M. Abdullah, M. Leconte, and S. Paris,
“Global optimization for hash-based splitting,” IEEE GLOBECOM,
year=2016.

[5] D. Thaler, “Multipath issues in unicast and multicast next-hop selection.
internet engineering task force: RFC 2991,” 2000.

[6] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness
in Data Centers,” in Proc. of ACM EuroSys.

[7] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “On load distri-
bution over multipath networks,” Communications Surveys & Tutorials,
IEEE, vol. 14, no. 3, pp. 662–680, 2012.

[8] G. M. Lee and J. Choi, “A survey of multipath routing for traffic
engineering,” Information and Communications University, Korea, 2002.

[9] N. Kang, J. Reumann, A. Shraer, and J. Rexford, “Efficient Traffic
Splitting on SDN switches,” Tech. Rep., 2015.

[10] “Ieee draft standard for local and metropolitan area networks – frame
replication and elimination for reliability,” IEEE P802.1CB/D2.8, March
2017, pp. 1–97, Jan 2017.

[11] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang,
and X. Geng, “Joint Routing and Scheduling for Large-Scale Determin-
istic IP Networks,” in Arxiv Preprint arXiv:2004.02717., 2020.


