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Abstract—Energy is classically considered as a critical resource
in Wireless Sensor Networks (WSNs). These networks are com-
posed of tiny devices that auto-organize around one or few
gateways, which may have various roles from simple reference
or traffic sinks to full network orchestrator.

Such a gateway could influence the network behavior, for
instance by decreasing activity when energy becomes scarce. It
however needs to be able to estimate the nodes remaining energy.
Indeed, this gateway is on the path of all traffic going in or out
the WSN. This traffic sample could be used to acquire a coarse
estimate of individual nodes energy consumption. The accuracy
of this estimation can then be improved by explicit signaling if
needed. This paper presents Tee, a set of such Traffic-based energy
estimators that operates at the WSN gateway.

We evaluate, by simulation, the accuracy of two such estimators
in IEEE 802.15.4 networks running RPL and ContikiMAC, a
duty cycled MAC layer. Results show that such silent estimators
benefit from information already available at the gateway, such
as the routing topology. However, they still underestimate the
consumption due to the routing control messages, to the packets
strobing, or to contention and collisions and can easily be
complemented by lightweight explicit calibrations.
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I. INTRODUCTION

A Wireless Sensor Network (WSN) is a network formed
by tiny devices, with limited computation, storage and com-
munication capabilities, whose role is to report measurements.
In classical surveillance and monitoring scenarios [1], these
devices self-organize to form a multi-hop wireless network
around a central, more powerful node, that either plays the
role of a gateway towards a more classical network, or acts as
a data collection point. As wireless sensor nodes are generally
deployed for long-lasting operations, dynamically adapting
nodes parameters to satisfy lifetime objectives is a key feature.

In most of research works, the WSN gateway has been seen
as the source or destination of most application traffic. It plays
the role of a reference node for several protocols (e.g., Routing
Protocol for Low-power and lossy links, RPL, [2] or slotted
802.15.4 [3] MAC protocol). More recently, the gateway has
been considered as a full network orchestrator that sets routes
and organizes medium access, like in the 6TiSCH [4] group at
IETF, where the aim is to manage label-switched networks

Jérémie Leguay & Paolo Medagliani were working for Thales Communi-
cations & Security during the redaction of this paper.

based on multichannel 802.15.4e MAC layer. Indeed, the
gateway is, in many WSN deployments, the node with the
most detailed knowledge of the network: it forwards most of
the application traffic that goes in or out of the sensor network,
and plays a central role for several routing protocols. It can
thus acquire a good vision of the network in terms of (i)
topology, (ii) data services, (iii) radio resource allocation, and
(iv) status of nodes. With such knowledge, the gateway can
estimate without explicit communications nodes status (e.g.,
remaining node lifetime).

This paper presents Tee, a set of Traffic-based energy esti-
mators that can be implemented on sensor network gateways.
Basically, Tee estimates the energy spent by each node by mon-
itoring a minimum set of parameters such as the traffic received
or forwarded by the gateway. Our primary objective is not to
increase the network lifetime, but rather to estimate it, letting
the gateway play on the various network parameters when
necessary. For instance, when the network energy becomes
scarce, the gateway could increase nodes sleeping periods,
filter unnecessary data acquisition requests, divert traffic by
influencing the routing protocol, etc.

In this paper, we study the accuracy of two Tee estimators
that opportunistically make use of an incremental amount of
available information: the first estimator only exploits informa-
tion about the source and destination of packets, whereas the
second relies also on the knowledge of the routing paths. As
Tee works from the gateway, it may not capture all the energy
consumption induced for instance by control traffic and MAC
layer mechanisms. For this reason, we introduce a rescaling
factor which takes into account duty cycles and a feedback
loop via periodic recalibrations so that the estimators can learn
and correct their errors.

This paper considers a typical monitoring deployment where
nodes are running ContikiMAC [5], a duty cycled MAC pro-
tocol, and the RPL [2] routing protocol. Through COOJA [6]
simulations, we evaluate the different strategies and compare
them against an estimated energy consumption reported by
the simulator. Results show that the knowledge of the routes
significantly improves estimations. Using recalibration, we also
demonstrate how the gateway can learn about the residual
consumption induced by the routing protocol and the radio
conditions (contention, collisions). Then it evaluates the errors
committed and corrects the estimations accordingly.

This paper is structured as follows. Sec. II reviews related
work. Sec. III describes network models that serve as a basis
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for our estimators. Sec. IV introduces our estimators and
Sec. V presents their evaluation.

II. RELATED WORK

A few contributions examined the general problem of mon-
itoring a wireless sensor network in an energy-efficient way.
For instance, [7] and [8] consider the problem of selecting a
subset of sensors (pollers) in charge of actively monitoring
the other sensors (pollees) liveliness. The pollers are in charge
of raising alarms to the gateway when they detect a fault.
[7] proposes a distributed approximation algorithm to select
a minimum number of pollers and studies the effect on the
false alarm rate. [8] proposes to reduce the polling overhead
by using routing control packets to select pollers and by
embedding monitoring reports in the control messages of the
routing protocol. However, these approaches require explicit
information acquired from sensor nodes, while we expect this
information to be optional.

In [9], the authors propose Livenet, a semi-passive monitor-
ing architecture that relies on packet sniffers located within the
network. Using aggregated traces transmitted to the gateway,
Livenet is able to reconstruct network topology and determine
various network performance metrics. This work explicitly
targets energy monitoring, but could be adapted to other
performance indicators. However, it requires the transmission
and the process of packet logs, so it is not fully relevant for
our goal.

In [1], the authors introduce a distributed method to create
an energy map of a WSN. Sensors report their residual
energy level to a neighbor node, in charge of aggregating
and compressing this information and transmitting only incre-
mental updates (digests) to the gateway. Following this idea,
[10] lets each node estimate the evolution of its energy and
transmit this prediction to the network monitor. In addition,
[10] compares a probabilistic method, based on Markov chains,
and a statistical method, based on an auto-regressive model,
with a simple, explicit reporting method. In [11], the authors
extend this idea by modeling the nodes energy with a hidden
Markov model whose coefficients are tuned with explicit
measurements. In [12], authors also build such an energy map
over clusters and change the monitoring structure regularly to
redistribute the energy cost more fairly across the network.
If the idea of building a network energy map relates closely
to our first goal, all aforementioned methods strongly rely on
explicit energy reporting from the nodes. These reports cannot
be totally avoided, as our experiments demonstrate. However,
we believe that a slight part of the information can be directly
extracted from existing control packets without any additional
overhead.

III. NETWORK MODEL

In most of today WSNs, the radio interface is the major
source of energy consumption. The micro-controller and the
system bus both operate at low frequencies and only flash
memory writing operations need comparable power. In particu-
lar, transmit and reception powers are generally similar. Indeed,

while sending data requires generating a radio signal, the re-
ception of data frames requires activating complex electronics
to filter out signal from noise [13]. This paper thus considers
cases where the consumption of nodes is only driven by their
radio interface. This section details the networks protocols that
come into play at each layer and drive the energy consumption
of nodes.

A. MAC layer

The MAC layer is in charge of organizing how nodes access
the shared wireless channel. In WSNs, it is also responsible
for defining the radio duty cycling, i.e., when the nodes turn
on or off their radio interfaces. In our work, we consider
ContikiMAC [5], a duty cycling mechanism built above the
IEEE 802.15.4 MAC and physical layers. In ContikiMAC,
nodes sleep most of the time and wake-up periodically to
check channel activity. As an emitter and a receiver may lose
synchronization, an emitter willing to send a packet will make
several successive attempts (packet strobing). Sending node
repeats packet transmission until it receives an acknowledg-
ment, or until the maximum number of attempts is exceeded.
A waking-up node senses the channel and, if it detects energy
on the channel, it remains awake until it successfully receives
the whole frame. If this node is the intended receiver, it will
acknowledge the sender that will stop packet transmission.
ContikiMAC uses the phase-lock mechanism to learn the
wake-up period of neighbors and dynamically reduce this
strobing effort.

As the gateway has no energy constraints, we consider
that the gateway node has no duty cycling and continuously
listens to the channel when it is not emitting. In this paper,
we consider the beaconless version of IEEE 802.15.4 that
implements Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA).

B. Network Layer

At the network level, the goal of a routing protocol is to
dynamically establish and maintain routes. Routing protocols
generate overhead traffic that could be significant, especially
in dynamic scenarios.

In the rest of this article, we consider a static network
deployment with RPL [2]. In RPL, the gateway periodically
broadcasts control messages, referred to as DODAG Informa-
tion Object (DIO), to build a Destination-Oriented Directed
Acyclic Graph (DODAG). A DODAG is similar to a tree,
but a node can have multiple parents in the structure, as the
graph is directed towards the root of the routing tree, i.e. the
gateway. DIO messages contain a rank value that is initialized
by the gateway at a value of 0 and that is incremented by
every forwarder. This rank is a discrete representation of the
network metric exploited by the nodes. Possible examples of
RPL metrics are the number of traversed hops, the delay,
the remaining energy, etc. A node receives DIO messages
from all its neighbors, selects the one(s) announcing the
smallest parent(s) rank in the DODAG, increases the rank
value, and broadcasts an updated DIO to all its neighbors.
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DIO messages only allow building upwards routes towards the
root. Downwards routes are an optional feature. They are built
by letting each node send a Destination Advertisement Object
(DAO) message to the root.

Since DIO control messages are broadcasted, this operation
can be costly for the sender if receiving nodes use low-power
listening mechanisms. However, RPL uses a Trickle algo-
rithm [14] to dynamically adapt the emission interval of control
messages. DIO are sent by every node to maintain the upwards
routes, but their emission rate decreases exponentially up to a
maximum when no topology changes occur. Consequently, we
can expect a large amount of RPL traffic when the network
starts up and a quick decrease after.

IV. TEE: DESIGN AND IMPLEMENTATION

Our goal with Tee is to study how much the gateway can
estimate nodes energy by looking at the data packets it receives
or forwards. As the wireless interface is the primal source
of energy consumption, the gateway tries to estimate how
much energy nodes spend for emitting and receiving each data
packet.

A. Transmission and reception cost at each hop
We first need to estimate how much energy is spent at each

hop for a frame m of size s(m)-byte sent in unicast mode and
with acknowledgment.

In IEEE 802.15.4, the time to transmit a message m (e.g.,
data packet, strobes, ACK) can be expressed as:

Tp(m) =

(
8s(m)

R
+
⌈s(m)

L

⌉
h

)
where s(m) be the size of 802.15.4 frame (expressed in bytes)
containing m, R = 250 kbit/s is the transmission rate of
802.15.4, L the maximum payload of a 802.15.4 frame (127
bytes) and h is the time required to transmit the header of a
frame. The 802.15.4 standard gives us a value of h = 992µs
for the headers, which we confirmed by simulation. Since
headers are sent for every frame, we also take into account
the overhead of sending several headers in case of a packet
fragmentation.

Let PTX and PRX be the power required to emit and receive
data respectively. If we multiply Tp(m) by PTX (respectively
PRX) we obtain the energy cost of transmitting (respectively
receiving) m. Missing parameters can be found in datasheets.
For instance, the Chipcon CC2420 radio chip [15] that imple-
ments IEEE 802.15.4 operates with a voltage VDD = 3V , the
reception current consumption is IRX = 19.7mA and the emis-
sion current consumption at 0 dBm is ITX = 17.4mA [16].

We can thus estimate Scost(m) and Rcost(m), the energy
necessary to respectively send and receive a frame:

Scost(m) = PTXNsender(m)Tp(m) + PRXt(ACK)

Rcost(m) = PRXNreceiver(m)Tp(m) + PTXt(ACK)

where Nsender(m) and Nreceiver(m) are the number of attempts
processed by the sender and the receiver, respectively. Indeed,
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Fig. 1: Average number of strobing attempts depending on
frame size.

with ContikiMAC, the sender has to transmit strobe frames
before receiving an acknowledgment. Even with the phase-
lock mechanism of ContikiMAC, clock drifts can make the
sender perform multiple attempts for a single frame.

We study this effect, in simulations, by measuring how many
attempts are necessary on average using a two-nodes topology.
Since there is only a sender and a receiver, the channel does not
suffer from contention and we can focus on the duty-cycling
impact. Fig. 1 represents the average number of transmissions
Nsender(m) necessary to send a s(m) bytes frame successfully
between two nodes. We can notice that the number of attempts
decreases as the frame size increases, which is natural as
frames occupy the medium during a larger time and wake up
the receiver more often. Hence, fewer attempts are necessary
than for shorter frames for a comparable time offset.

On the receiver’s side, the scenario is easier to model. The
receiver wakes up on average in the middle of a transmission
and waits until the next attempt is performed to fully receive
the frame and to send back the acknowledgment. The number
of frame receptions can therefore be estimated by Nreceiver =
1.5. For nodes in direct range to the gateway, the transmission
is with ContikiMAC but the reception is without sleeping
cycles on the gateway, which naturally leads to Nsender(m) = 1.

B. Traffic-based estimators
Using an estimation of the cost for exchanging a frame

between two nodes, Tee is able to predict, at gateway level, the
energy impact of data packet transmissions on all the network
nodes. Then, the gateway uses of one of those two estimators
according to the levels of knowledge on the network available.

1) Noinfo estimator: The simplest estimator, named Noinfo,
only estimates packets impact at the source and the destination
and can be used anywhere. In the scenario presented in Fig. 2
in which a node E sends a frame to the gateway G, Noinfo
only takes out energy from nodes E and G and leaves the
energy of all other nodes unchanged for a given packet.

Let Di be the messages that originates from i and Ai be
the messages that ends at i. We obtain the following estimated
energy:
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Fig. 2: Nodes potentially impacted by the forwarding of a
frame from node E to gateway G.

Êi(t) =
∑

m∈Di(t)

Scost(m) +
∑

m∈Ai(t)

Rcost(m).

This estimator requires no knowledge and under-estimates
the effect of a packet on the network unless all nodes are
in-range of the gateway. For instance, it does not capture
transmissions induced by forwarding actions at intermediary
nodes.

2) Route estimator: In multi-hop topologies, the gateway
will likely be aware of the network active routes by using
network mapping tools or through the routing protocol.

The second estimator we examine, referred to as Route, uses
this information and subtracts from the remaining energy of
each node on the route (dark gray nodes in Fig. 2) the cost of
a reception and an emission of the frame.

Let Fi be the message set forwarded by the node i while
it’s neither the destination nor the source of the message.

Êi(t) =
∑

m∈Di(t)∪Fi(t)

Scost(m) +
∑

m∈Ai(t)∪Fi(t)

Rcost(m)

V. EXPERIMENTAL RESULTS

We evaluated the accuracy of the different estimators de-
scribed above using the COOJA simulator with its Power-
tracker extension, which measures and reports the time spent
by each node in reception and transmission state with 1µs
resolution. All nodes run the latest development branch of
Contiki and use RPL for routing and ContikiMAC over IEEE
802.15.4.

A. Chain topology
Let us consider a simple 7-nodes chain topology, as rep-

resented on Fig. 3a. In this scenario, each node sends to the
root a 10-bytes UDP message every second, which results in
69 bytes frames at the link layer. This rate of traffic is higher
than classical surveillance radio traffic but has been considered
for practical reasons, as it makes simulations shorter because
traffic is generated more quickly. We thus use in our estimators
an average strobing of 3.76 packets, taking this value from our
calibration experiment in Sec. IV. Nodes closer to the root have
to forward traffic coming from downstream nodes in addition
to their own traffic. Simulations run for 200 seconds.

Fig. 3b represents the packet delivery ratio at each node
as a function of its distance to the root. We can notice that

(a) Network topology.
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(e) Protocol repartition evolution.

Fig. 3: Network and traffic characteristics of the chain exper-
iment.

the delivery ratio is not uniform across the network and that
nodes that are not directly connected to the root suffer from
congestion or collisions. This figure gives us an idea of the
proportion of the traffic that the gateway can actually see.

Fig. 3c represents the average number of strobing packets,
i.e. the number of attempts each node needs to send a frame to
its upwards neighbor. This metric quantifies the cost of sending
a single frame over each hop. We can notice here a better
correlation between the distance to the root and this figure.

Fig. 3d represents the distribution of traffic types at each hop
(UDP and routing messages). This measurement is important,
as it shows the amount of control traffic that the gateway
may not measure and shall infer. We can notice that, at this
stage, the traffic is almost identical for the different nodes and
hence could be modeled by a constant rate. However, Fig. 3e
shows the evolution over time. As expected, we can notice that
many routing packets are required at the beginning to build
the RPL tree. Once this phase is over, thanks to Trickle, the
majority of the traffic is due to the application. This confirms
that the chaotic construction (and reparation) of the routing
tree generates a large volume of traffic that is hard to predict.
It however motivates the relevance of our applicative traffic-
based estimators when the network is in stationary state.

Let us now compare estimations and real values. Fig. 4
represents the ratio between the estimated and the real time
spent in transmission and reception states for nodes 3 and 4.

We can see that the Noinfo estimator largely underestimates
the nodes activity. This phenomenon is expected since Noinfo
ignores the cost at intermediary nodes. The costs are only
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(a) Node 3.

50 100 150 200

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
st

im
at

ed
/R

ea
lit

y tx route
tx noinfo

rx route
rx noinfo

(b) Node 4.

Fig. 4: Relative error in the chain scenario.

related to the traffic generated by each node and integrate a
corrective factor for the strobing induced by duty cycles. Route
produces a better estimation by taking also into account the
impact at intermediary nodes, even though it is still below
the real values. The initial under-estimation can be explained
by the bootstrap phase illustrated by Fig. 3d, as routing
packets are invisible to the gateway. The UDP traffic starts
on each node when RPL has found a route to the gateway.
However, the difference remains large even after the routing
tree is established, which means that a sole blind estimation
is insufficient; explicit correction mechanisms are necessary.

B. Explicit dynamic recalibration

We consider periodic recalibrations where each node send
explicitly the time spent in emission and reception to the
gateway, which updates the estimators accordingly. This in-
formation requires a specific packet transmission or can be
piggybacked in routing or data packets. As these messages
seem unavoidable, their frequency should be as low as possi-
ble.

When the gateway receives an explicit recalibration at time
t, it rescales its estimator for the source node, Ê(t) as follows:

Ê(t) = E(tr) +Ri(t) + Si(t) + ε(tr)
(t− tr)
T

,

Fig. 5: Tree topology. Dashed lines represent the radio over-
hearing between nodes pair.
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Fig. 6: Relative error for the tree topology with and without
dynamic recalibration (every 25 seconds).

ε(tr) = α.(E(tr)− Ê(tr)) + (1− α).ε(tr−1) ,
where tr and tr−1 are the times of the two last recalibrations.

Si and Ri are respectively the estimated sending and receiving
costs induced by applicative traffic since the last recalibration
and E(tr) is the real energy level of the node at date tr. ε(tr)
is the estimation error learnt from previous recalibration. It
should integrate all the consumption that our base estimator
misses, such as the background RPL traffic or the amount of
retransmissions due to collisions. It can be calculated using an
exponential moving average, as shown in the second equation.
At time t, this error is taken proportionally to the time from
the last recalibration (occurring every T ). Note that ε(0) = 0.

We evaluated this recalibration process considering the tree-
like scenario represented on Fig. 5. The topology is composed
of 21 client nodes sending packets to the root sending packets
every second. We took a value of α = 0.25 in order to not
overreact too quickly in case of RPL bursts.

As we can see on Fig. 6, the periodic recalibration provides
a much better estimation. Despite that the estimator diverges
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at the beginning, due to network bootstrap as explained in
Sec. V-A, it quickly provides accurate predictions of the en-
ergy depletion. When the recalibration happens, the estimator
integrates the average error from previous recalibrations and
converge quickly to accurate estimation.

Recalibration therefore improves estimation accuracy, but it
has a linear cost with the recalibration interval and should
be as infrequent as possible. Fig. 7 represents the average
ratio achieved by the Route estimator over the 200 seconds
simulation as a function of the recalibration events interval.
As we have a regular traffic pattern, this figure accounts for
the length of the transient period until the estimators converge.
In order to reduce overhead, the pace of recalibrations could
decrease over time, as the network stabilizes.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we introduced Tee, a set of traffic-based
estimators running on the gateway of a wireless sensor network
in order to let it evaluate individual nodes energy consumption
based on the applicative traffic.

We show, through simulations performed with COOJA, that
using information already available at the gateway, such as the
network topology, improves the performance of traffic-based
estimators. However, only looking at the traffic passing through
the gateway is not enough to have an accurate estimation. A
rescaling mechanism is necessary to account for the effect
of duty cycling at the MAC layer, since the sleeping interval
introduces a desynchronization between emitters and receivers,
which results in multiple transmission attempts for each frame.

Even in the case of a constant bit rate traffic, nodes need to
send explicit energy reports, that we called recalibrations, to
the gateway, at least in the network initialization phase. This is
necessary to take into account the routing packets exchanged
to build the initial tree. In case of a static network and a regular
traffic pattern, such recalibrations rapidly become unnecessary.
In presence of nodes mobility, the control traffic due to the
reconstruction of the routing tree will most likely make such
explicit recalibrations necessary throughout the network life.
In presence of an irregular traffic pattern, we believe that the
dynamic can be captured by the gateway, as it is generally the
source or the destination of traffic.

Future work will first consist in validating these results in
a real environment. To this extent, we dispose of large-scale
experimental platforms with different sensors architectures
supported by Contiki, which will permit measuring the real
energy consumed. Besides, we also need to confront both the
estimators and the protocol suite to a real, error-prone, wireless
medium. Then, we plan on studying the effect of network
dynamics by testing irregular traffic patterns and nodes arrivals
before focusing on characterizing the trade-off between in-
network mobility and the recalibration frequency required to
reach a predefined accuracy level. Finally, we will introduce an
improved estimator that leverages on the knowledge of radio
interference between nodes to improve estimation accuracy.
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