Distributed Load Balancing From the Edge in IP Networks

Youcef Magnouche!, Pham Tran Anh Quang!, Jérémie Leguay!, Xu Gong?, Feng Zeng?
Huawei Technologies Ltd., 1Paris Research Center, France., 2Dongguan Research Center, China.

Abstract—To improve bandwidth utilization in IP networks,
flow aggregates are typically split over multiple paths. In this
context, we propose a fully distributed load balancing mechanism
that operates only from the edge. Each source is able to
determine the split ratios based on already available link state
information so as to minimize the maximum link utilization in
the network. Without extra signaling, our solution provides a
feasible load balancing at each iteration and diminishing returns
until convergence to a stable state. Through numerical results
on a wide variety of instances, we show that it converges to
a near-optimal solution in a few iterations. Thanks to packet-
level simulations on an SD-WAN scenario, we also compare its
performance in a dynamic environment over centralized and
legacy load balancing solutions.

I. INTRODUCTION

Traffic engineering (TE) plays a crucial role in optimizing
the use of network bandwidth as it helps to maintain a good
load balancing in the network over time [1]. Consequently,
the Quality of Service (QoS) in terms of end-to-end delay
and packet loss can be enhanced while network resources are
efficiently utilized. The most popular load balancing mecha-
nism, e.g. equal-cost multipath routing (ECMP) [2], uniformly
divides traffic across multiple paths between the origin and the
destination. To further improve load balancing, uneven flow
splitting mechanisms have been proposed (e.g., [3]). In this
case, load balancing weights are used to control the amount
of traffic sent over each path.

In the literature, centralized methods such as Niagara [4] or
IRSR [5] have been proposed to control load balancing weights
S0 as to minimize a linear cost or minimize the Maximum
Link Utilization (MLU). However, these solutions require the
presence of a centralized network controller, which may not
be desirable for scalability, fault-tolerance, or deployment
reasons.

Decentralized load balancing solutions [6], [7], [8], [9], [10]
have been proposed to dynamically adjust routing in case of
congestion or link failure. For instance, CONGA [6], Contra
[8], and HULA [7] can dynamically adjust at ingress nodes
load balancing policies based on path-based measurements
to reduce network congestion. While these approaches are
trying to adapt path selection, they actively involve core nodes
to piggy back measurements inside user traffic and do not
explicitly optimize a global objective function.

Designing an exact distributed algorithm for the load balanc-
ing problem is not obvious by the fact that one source node
lacks information (split ratios, paths, traffic demands) about
the other source nodes. Without an exchange of information
between source nodes, independent decisions may increase the
network MLU and lead to link capacity violation. In [11],
authors apply Lagrangian relaxation to decompose the load

balancing problem for the control of multicast sources and
use the sub-gradient algorithm to solve the Lagrangian dual
problem. However, the algorithm does not guarantee the sat-
isfaction of the link capacity constraints during all iterations.
Indeed, authors use a method given in [12] to construct a
feasible solution only at the end of the sub-gradient iterations.
In [10], the authors present a distributed algorithm to generate
feasible splits of traffic at each iteration so as to minimize a
global convex objective. Each intermediate node decides, for
all traffic aggregates (i.e., each tunnel), the split ratios over
its outgoing links. Therefore, the nodes collaboratively decide
both routing and load balancing. As all nodes are involved
in the decision process, i.e., both edge and core nodes, this
solution may not be practical in some cases due to complexity
issues.

In this paper, we present a distributed load balancing
solution that operates only from the edge, i.e. from access
devices. Each edge device manages a set of Origin-Destination
(OD) tunnels and decides, in collaboration with other edge
devices, target split ratios in order to minimize the network
MLU. This solution is particularly useful in overlay networks
such as SD-WAN networks [13], [14] where several paths,
related to different access technologies or underlay tunnels,
can be used by access routers to load balance traffic. The
main advantages of our solution are threefold: 1) it only
relies on already available link state information and does not
require any additional signaling to coordinate load balancing
decisions, 2) it ensures a feasible solution at each iteration
so that no traffic is lost due to the violation of capacity
constraints, and 3) it improves load balancing with diminishing
returns over iterations until it converges to a stable state where
load balancing cannot be further improved.

In the rest of the paper, we first present in Sec. I our
distributed load balancing solution and we formulate the
overall optimization problem. Then, we introduce in Sec. III
our heuristic algorithm to ensure anytime feasibility and di-
minishing returns to a stable state. Finally, we demonstrate
in Sec. IV through extensively simulations its performance
on a variety of network scenarios. In particular, we show on
static instances with publicly available topologies that, in most
cases, our algorithm converges to the optimal solution found
with a centralized model. Furthermore, through NS-3 [15]
simulations on an SD-WAN network, we show that the MLU is
significantly improved compared to ECMP and the centralized
solution. Thanks to smooth modifications of the split ratios,
we also show that the QoS in terms of end-to-end delay and
packet loss is improved over the centralized version. Finally,
Sec. V concludes the paper.

Control plane

Link states
(load,
capacity) Load Balancing
Agem Target split ratios Link states
(load,
capacity)

Routing (e.g., OSPF) >
B |

Tunnels’ traffic J

Monitoring (data plane) Traffic scheduling

(data plane)

Fig. 1: Device architecture.

II. SYSTEM DESCRIPTION

We consider a distributed architecture where only edge
devices are controlling user traffic.

A. Device Architecture

As illustrated in Fig. 1, edge devices are equipped with load
balancing agents that collectively aim at minimizing the MLU
of the network. Each agent manages a set of OD flows for
which they are the origin, also called tunnels in the rest of the
paper. Tunnels can be split over multiple paths and target split
ratios (or load-balancing weights) are continuously updated
by agents. The set of candidate paths used by an agent for a
given tunnel can be provided by a local or an external path
computation module.

Thanks to a link state protocol (i.e., OSPF or any other
protocol), each agent periodically receives updates about the
network state. In particular, the link states contain link loads
as feedback from past load balancing decisions. Link states
can be related to physical links or overlay links. They may
also include link capacities if they are not given a priori, or
if they evolve over time because of some background traffic.
Agents also receive updates about the traffic demand in each
of the tunnel they handle from the local monitoring.

The computation of target split ratios is performed by every
source device each time new information is received. It takes
as input the set of candidate paths for each tunnel, updated
traffic information for each tunnel, and updated link state
information. Once new target split ratios are decided, they can
be used to take routing decisions every time a new micro-flow
arrives. The decision is made so as to move actual split ratios
towards the targeted ones. In some cases, if advanced data
plane mechanisms such as FlowLets [16] are used, micro-flows
can also be re-routed during their lifetime. As it creates more
opportunities to select paths, it accelerates the convergence of
split ratios towards their target.

Fig. 2 describes the timeline of the proposed mechanism.
Every period of duration 7, agents update their information
about the traffic demand for all the tunnels they manage. At a
higher frequency, link-state updates are periodically received
and agents calculate new target split ratios. The frequency of
traffic demand update is intentionally lower compared to link-
state updates so that the load balancing algorithm can work on
a stable optimization problem and performs several iterations

before updating the problem inputs. In practice, measurements
about the traffic of tunnels and about link loads need to be
averaged over a time window to avoid instabilities. The actual
split ratios are modified every time the size of individual flows
evolves and when new paths are selected at every micro-flow
or FlowLet arrival.

Traffic demand updates

Flow or FlowLet arrivals

To+T To+2T

New link states

Fig. 2: Timeline from the viewpoint of an edge device.

B. Load Balancing Problem

The load balancing problem consists in minimizing the
maximum link utilization defined for a set A of links as

Va
MLU(A) = ?eaf{a}

where V, and C, are the amount of traffic and the capacity
of link a, respectively. Let us denote by LU, = g—z the link
utilization of a € A.

We formally present the compact formulation of the problem
that can be solved in a centralized manner. Let’s consider a
network G = (V, A), where V is the set of nodes, A the set
of arcs and C' : A — R, a function giving the capacity of
each arc. Let K be the set of tunnels, i.e. user tunnels or flow
groups, and d : K — R, be the function that indicates the
traffic demand of each tunnel. Let P* = {pf, ..., p‘kpk‘} be a
set of available paths for tunnel £ € K. We assume that for all
k € K, |P*| > 2. Otherwise, the split of traffic is trivial and
the associated tunnel can be removed from the optimization
problem.

The problem can be formulated using the variables

o f €[0,1] : split ratio on path p € P for tunnel k € K.

e 6 € R, : maximum link utilization of A.

The load-balancing problem is equivalent to the following
linear program:

min 6

Soak=1 Vke K, (1)
pePk

dod > ah<oc, acd, (2
keEK pePk.aep

0<af Vk e K,¥pe Pk, (3)

Constraints (1) guarantee that all traffic is split on the paths
and Constraints (2) permit to compute the MLU.

III. DISTRIBUTED LOAD BALANCING ALGORITHM

In this section, we now propose a heuristic for the dis-
tributed resolution of the load balancing problem. The algo-
rithm is fully-distributed, i.e., only the source node of each
tunnel decides on the split ratios over its outgoing paths
independently from the other source nodes. It also ensures
anytime feasibility, i.e., that a feasible solution is produced at
each iteration.

From the compact formulation introduced in Section II-B,
we show how to adapt this model to obtain small independent
sub-problems that can be solved in a distributed manner. We
prove the convergence of the algorithm and we illustrate its
operation on toy examples.

A. Preliminary Definitions

The heuristic, described in the next subsection, starts from
an existing solution and modifies it to improve (decrease) the
MLU(A) of the network until reaching a stable state, i.e, a
state that cannot be further improved by the edge device. To
formally define the stable state, let Ak C A, for every k € K,
be the set of links composing all paths of P*,i.e. A¥ = {a €
A'| 3 p € P* such that a € p}. A solution is called a stable
state if for each k € K:

« every path p € P* contains a link reaching MLU(A*), or
o there exists a path p € P* containing a link reaching
MLU(A¥), with a split ratio equal to 0.

Claim 1. There must exist an optimal solution of (1)-(3) that
is a stable state.

Consider an existing load balancing solution such that x €
[0,1] represents the split ratio vector and LU 6 R% the asso-

ciated utilization of links. For all k € K, let 7" = mix{LUa}
ac

and 0 = Jlfcneaéc{e’“}. In the following fully-distributed algorithm
for the load balancing problem, the source node of every tunnel
k € K attempts to minimize MLU(A") while guaranteeing that
MLU(A) does not increase whatever the decision of the other
source nodes.

Source node of tunnel k is able to compute the new MLU(Ak)

using TU, TF together with the new split ratios z*. This
information is available locally.
dkfk dkx
MLU(A*) = max{TT, — “
(4 =ma(T0, - Y gy W
pEPk acp pEPk acp

To ensure a fair sharing of the residual capacity under the
constraint that the MLU(A) does not increase, we artificially
divide the residual capacity of links by the total number of
tunnels possibly using each link. Then, the source node of
every tunnel must satisfy the following link capacities

C.(@ — TU,)

_— A
[K|+1 va <

C,LU, +

In this case, MLU(A) of the new solution must be lower than
or equal to 6.

For each tunnel k € K, let ¥ € R, be the maximum link
utilization of A* and let P, be the following linear program

min 6*
S ak—1)
pEPF
LU, + Z %(x};—x)<0k Va € AF, (5)
peEPk acp @
e Cu(6—TT,)
kE_ =k < a a Ak 6
Z (xp xp) = de([K[+1) Va €) (6)
pEPk acp
0<z Vpe P (D)

Constraints (4) guarantee that all traffic of tunnel & is split
over paths of P*. Constraints (5) permit to compute MLU(AF)
and Constraints (6) guarantee that the new MLU(A) < 6.

Let z** and 6** be the optimal solution of P.

Proposition 1. For all k € K, 6*F < 6.

Proof. 1t is easy to see that, solution T* is a feasible solution

of Py. This implies that % is at least equal to 6. O

Proposition 2. Solution x* represents a stable state unless
) —k
there exists k € K such that "% < 0.

Proof. Let us consider the contrary, x is not a stable state and
for all k € K, 0*F = gk. By definition of a stable state, there
must exist a tunnel k£ € K such that
« there exists a path p € PF with TU, < gk < @ for all
a € p, and
e every path containing a link reaching M LU (A¥) has a
non-zero split ratio. Let P # () be the set of these
paths.

It follows that

mlu

By adding ¢ to z, N
in P*, . we obtain a feasible load balancmg solution with

MLU(A*) < 6**. This contradicts the optimality of z*. [

* and substracting | P" to every path

B. Distributed Algorithm

From Propositions 1 and 2, we propose the distributed algo-
rithm detailed in Alg. 1. It uses the two following functions:

1) ReceiveLinkUtilization(): this function returns the link
utilization for all links in the network. In practice, it
can be received from the OSPF protocol that exchanges
link state information between routers.

2) SolveLinearProgram('Py): this function solves the linear
program Py using any linear solver.

Algorithm 1: Distributed heuristic for load balancing
problem

Data: G = (V, A), K, P, d, C and 7.

Result: Split ratio vector z.
1 while 7 is not a stable state do

2 for k € K do
3 LU, < ReceiveLinkUtilization();
—k _
4 0 <+ max{LU,};
. aGAk{ a}
0 < U, };
5 wey it
6 7 + SolveLinear Program(Py,);
7 end
8 end
9 r < T,

Theorem 1. Algorithm 1 converges to a stable state.

Proof. From Proposition 1, the M LU(A) does not increase
during all iterations of Alg.1. Moreover, from Proposition 2, at
each iteration of the algorithm, there exists one tunnel k € K
such that M LU (AF) decreases. This is enough to show the
result. O

C. llustration with toy examples

Figure 3 displays four network configurations that we now
use to illustrate the operations of our algorithm. In cases 1-
3, there are two tunnels, the blue from node 1001 to node
1002 and the purple from node 1003 to node 1002. In case 4,
there is an additional brown tunnel from node 1004 to node
1003. All traffic demands are 100Mb/s. Dashed lines represent
paths. All links adjacent to nodes 1001, 1002, 1003 and 1004
have infinite capacities, and all other links have a capacity of
100Mb/s. The values on paths represent the amount of traffic
in Mb/s.

e case 1 : link (1,3) reaches the MLU(A) = 90%. At
the next iteration of Algorithm 1, source node 1001 will
move 16.66Mb/s from path p to path p’ while source
node 1003 moves 6.66Mb/s from path p to p’. Then,
MULU(A) decreases to 76.66 M b/ s reached by link (2, 3).

e case 2: represents a stable state, since the blue tunnel
has a path with a link reaching the M LU(A) and the
split ratio is equal to 0. Moreover, all paths of the purple
tunnel have at least one link reaching M LU (A).

o case 3 : illustrates a traffic loss since MLU(A) > 1.
At the next iteration of Algorithm 1, source node 1001
moves 60Mb/s from path p to p’. Then MLU(A)
decreases from 190% to 130%.

o case 4 : Since the algorithm is distributed, the source of
every tunnel will move 15Mb/s from path p to p’. Even
if they add traffic together on link (1,3), the M LU(A)
decreases from 90% to 75%.

IV. NUMERICAL RESULTS

The distributed algorithm and the compact model described
in the previous sections have been implemented in C++, using

p il p’ PR N 90
Q- 40 g 'Op N0

60 d . ., 0: "\'1.0 Q"
(1 Y5 S0 1002 T 3 et
R ;1002 | P s FeRtY 1002 |
- 70 H

30 :9.'/ 100

Pl P cased P !‘ case 2

P i PUiL P
- 109, 90

90% .. AN
[+ S 3 Bl 1002 e 5 B 1002
] pf 7

100 \ 10l 2%

23 2

p : case 3 211190 cases

[1003 | 1003 S

Fig. 3: Example of load balancing configurations.

CPLEX as a LP-solver. They were tested on an Intel(R)
Xeon(R) CPU E5-4627 v2 of 3.30GHz with 504GB RAM
and 32 cores, running under Linux 64 bits. A maximum of 32
threads have been used.

In this section, we present evaluation results on 1) static
instances in a simplified network environment and on 2) a
dynamic SD-WAN instance in the NS3 network simulator [15].

A. Evaluation on Static Instances

In this first evaluation, the goal is to evaluate the conver-
gence of the algorithm. We compare its performance against
a centralized solution solving the compact model to optimal.
We use three types of synthetic instances:

1) Publicly available instances: Abilene, BtEurope and
Geant from SNDLIB [17], and Colt_Teleco, GTS_CE,
ITC_Deltaco and Kentucky, US_Carrier from Internet
topology zoo [18].

2) A SD-WAN instance with one headquarter site and three
sites (see Fig. 5)

3) Two large IPRAN instances that are typical from radio
access networks.

Link capacities and the traffic demand of tunnels are
generated randomly. Except for SD-WAN where tunnels are
between sites and the headquarter, sources and destinations
of tunnels are picked at random in all the instances. The
maximum number of paths generated per tunnel is 10. In
practice, fewer paths are used.

For this static evaluation, we start from an initial solution
calculated with a greedy algorithm. All the traffic of each
tunnel is routed over only one path chosen at random. In such a
case link capacity may be initially violated. In the presentation
of results, a link utilization exceeding 1 means that there is a

Instances Al VI [KI] MLUd MLUc MLUg | CPUd CPUc #Iter
Abilene 28 11 11| 0.64 0.64 0.78 0.05 0.00 5
BtEurope 74 24 24| 0.79 0.79 0.81 0.02 0.00 2
Colt_Teleco 354 153 15| 048 044 1.11 0.08 0.00 20
Geant2012 122 40 40| 070 0.70 1.49 0.08 0.00 12
GTS_CE 386 149 14| 022 022 0.57 0.06 0.00 14
ITC_Deltaco322 113 11| 0.35 0.35 0.51 0.04 0.00 8
Kentucky 1790 754 75| 037 037 0.37 0.06 0.01 1
SDWAN 46 15 15| 046 044 1.77 0.06 0.00 13
US_Carrier 378 158 15| 0.84 0.84 0.85 0.02 0.00 3
IPRAN_I 1114 485 500 0.30 030 042 1.69 0.09 77
IPRAN_2 1086 477 500 0.27 027 0.37 1.21 0.10 51

TABLE I: Numerical results comparing the distributed heuris-
tic and the centralized method.

traffic loss. Algorithm 1 stops when a stable state is obtained
(see Sec. III-A).

In Table I, the characteristics for all instances are given and
results are provided with the following column heads:

« MLUd, CPUd and #Iter for the distributed algorithm. It
shows the maximum link utilization of the best solution,
the CPU execution time in seconds when sub-problems
are solved by batches of 32, and the number of iterations
obtained until the algorithms stops.

o MLUc and CPUc for the centralized model. It shows the
maximum link utilization of the optimal solution and the
CPU execution time in seconds, obtained by solving the
compact model.

o MLUg : the maximum link utilization given by the greedy
solution at the initialization.

Bold values indicate the approaches giving the best MLU.
Table I and Fig. 4 display the numerical results associated
with SND-LIB, SD-WAN and IPRAN instances. We notice
that in 81.8% of the instances Alg. 1 finds the optimal solution
after few iterations while the maximum optimality gap for the
remaining instances is 9%. Even if the centralized method is
faster than Alg. 1 on a single machine, the latter necessitates a
few iterations to converge to a stable state. Indeed, the number
of iterations is lower than 8 in 81.8% of the instances while the
maximum is 77 for the remaining instances. In practice, Alg. 1
is distributed on all edge devices and the duration of each
iteration depends on the frequency of link states reception.

® MLU by distributed heuristic ® MLU by centralized method MLU by greedy algorithm

&
& g
\\’ i1

w
S & S & %
>

[& <

1,8
16
14

1,2

08

06
4
0,2 II
. II

%év

o

QY

&
\Q‘* K

4

\v
S
< <

Fig. 4: Comparison of the MLU given by distributed heuristic,
the centralized method and the greedy algorithm.

Internet

Local
network +
machines

Local
network +
machines

Local
network +
machines

Fig. 5: SD-WAN scenario with 1 headquarter and 3 sites con-
nected through broadband Internet and MPLS. Load Balancing
(LB) agents are deployed on access routers with two ports
(Internet, MPLS).

B. Network Simulations with NS3

Beside numerical results for the convergence, we conducted
a number of simulations using NS3 [15] with OpenFlow 1.3
module [19] to evaluate the performance of the algorithms
under dynamic traffic. Fig. 5 describes the simulation scenario.
We consider the SD-WAN scenario, where we have a single
headquarter (HQ) connected to several remote sites, e.g. 3
sites in our simulation. In this scenario, we created 6 tunnels
where 3 are from HQ to sites and 3 are from sites to HQ.
The aggregate traffic pattern of each tunnel is diurnal and is
formed by video flows. The pattern of each video flow and the
total traffic pattern are shown in Fig. 6. Note that we generate
diurnal traffic from video flows by adjusting the inter-arrival
time of video flows over time.

7
w6
s
g5
4
£3
E}
32
F1
0

200 500
Time(s)

w

Throughput (Mbps)
o o
chrNnbwh e

1000
Time (s)

(a) Video flow traffic (b) Total traffic

Fig. 6: One video flow and aggregated traffic for one tunnel.

Link states are measured and broadcasted periodically. The
source of each tunnel, therefore, is able to collect them.
Link states are measured every 100ms and averaged over a
1s window to avoid fluctuations. The source of each tunnel
measures the current traffic and averages it over a 5s window
to also avoid fluctuations. The traffic demands and link states
are the inputs of Alg. 1 to compute the new target split ratios.
In this simulation, we consider that each load balancing agent
updates the traffic demand every 30 s and receives link state
updates every 100ms. When a new micro-flow arrives, it is
assigned to a path to minimize the difference between target
and actual split ratios. The path of this micro-flow is converted
into forwarding rules that are deployed at every switches in
our implementation.

Ry " m pom

= 0.6 ‘
= 0.4]
0.2 Ay,
(o]
(o] 200 400 600 800 1000 1200
Time (s)
—ECMP UCMPC UCMPD
(a) MLU
1
0.8
Zo.6
=)
g) 0.4
L L
o - 1 Nl L
(o] 200 400 600 800 1000 1200
Time (s)
—ECMP UCMPC UCMPD

(b) End-to-end delay

Fig. 7: Evolution of the MLU and the end-to-end delay.

Fig. 7 shows the evolution over time of MLU and end-to-
end delay for all OD flows. Table II provides a summary of
results for ECMP, UCMPC (centralized model), and UCMPD
(our distributed solution) in terms of MLU, end-to-end delay,
and end-to-end packet loss rate with average and 95-percentile
figures. We can observe that ECMP plots the worst perfor-
mance for both performance metrics. Indeed, ECMP splits the
traffic equally on all available paths without considering the
traffic demand and capacity of the paths. Consequently, it has
the highest MLU, which leads to congestion and high end-to-
end delay. For UCMPC, the centralized algorithm, the MLU is
6% lower than ECMP on average. Interestingly, our distributed
solution UCMPD leads to slightly better performance than
UCMPC, with an MLU 10% lower than ECMP, because it
frequently updates split ratios (every 100 ms instead of 30s).
UCMPD is more agile in reacting to the congestion in the
network, but it also generates smooth updates of split ratios
that improve QoS metrics, thanks to the capacity constraints
in program Pj. The average end-to-end delay of UCMPD is
similar to UCMPC and 50% lower than of ECMP. The end-to-
end packet loss of UCMPC and UCMPD are equal (0.002%)
and much lower than ECMP (0.006%).

V. CONCLUSION

We have proposed a fully-distributed load balancing solution
that only operates from the edge using already available link
state information to minimize the MLU. The algorithm con-
verges to a stable state with diminishing returns and generates
a feasible solution at each iteration. We demonstrated through
numerical results and network simulations that in most cases,
it converges to an optimal solution after few iterations. This
distributed solution significantly helps to improve the QoS in
terms of delay and packet losses compared to legacy load
balancing solutions like ECMP.

Further work may include improving the convergence using
the exact number of tunnels using each link and the resolution

MLU

ECMP UCMPC UCMPD
Average 0.53 0.454 0.426
95-percentile 0.96 0.76 0.74

End-to-end delay (ms)

ECMP UCMPC UCMPD
Average 18.99 4.62 4.84
95-percentile 104.63 5.37 5.44

End-to-end packet loss

ECMP UCMPC UCMPD
Average 0.006% 0.002% 0.002%

TABLE II: Average and 95-percentile for MLU, end-to-end
delay and end-to-end packet loss in the SD-WAN scenario.

of a single linear at each source node.

REFERENCES

[1] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications
Surveys Tutorials, vol. 10, no. 1, pp. 36-56, 2008.

[2] D. Thaler and C. Hopps, “RFC 2991: Multipath issues in unicast and

multicast next-hop selection,” 2000.

[3] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted Cost Multipathing for Improved Fairness
in Data Centers,” in Proc. ACM EuroSys, 2014.

[4] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. ACM CoNEXT.

[5] P. Medagliani, J. Leguay, M. Abdullah, M. Leconte, and S. Paris,
“Global optimization for hash-based splitting,” in Proc. IEEE GLOBE-
COM, 2016.

[6] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
ACM SIGCOMM Comput. Commun. Rev., p. 503-514, Aug. 2014.

[71 C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “Mp-hula:
Multipath transport aware load balancing using programmable data
planes,” in Proc. NetCompute, 2018.

[8] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in Proc. USENIX
NSDI, 2020.

[9] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:

Responsive yet stable traffic engineering,” ACM SIGCOMM Comput.

Commun. Rev., vol. 35, no. 4, p. 253-264, Aug. 2005.

N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state optimal

routing,” IEEE/ACM Transactions on Networking, vol. 23, no. 6, pp.

1862-1875, 2015.

[11] J. Zhang, X. Zhang, M. Sun, and C. Yang, “Minimizing the maximum

link utilization in multicast multi-commodity flow networks,” IEEE

Communications Letters, vol. 22, no. 7, pp. 1478-1481, 2018.

H. D. Sherali and G. Choi, “Recovery of primal solutions when using

subgradient optimization methods to solve lagrangian duals of linear

programs,” Operations Research Letters, vol. 19, pp. 105-113, 1996.

[13] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area

network (SD-WAN): Architecture, advances and opportunities,” in Proc.

IEEE ICCCN, 2019.

O. Michel and E. Keller, “Sdn in wide-area networks: A survey,” in

Proc. IEEE SDS, 2017.

G. F. Riley and T. R. Henderson, The ns-3 Network Simulator, 2010.

E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:

Resilient asymmetric load balancing with flowlet switching,” in Proc.

USENIX NSDI, 20117.

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessily, “SNDIib 1.0—

Survivable Network Design Library,” in Proc. INOC, 2007.

S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” Selected Areas in Communications, IEEE Journal

on, vol. 29, no. 9, pp. 1765 —1775, october 2011.

L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “Ofswitchl3:

Enhancing ns-3 with openflow 1.3 support,” in Proceedings of the

Workshop on Ns-3, 2016.

[10]

[12]

[14]

[15]
[16]

(17]

[18]

[19]

