
Distributed Utility Maximization From the Edge in IP Networks

Youcef Magnouche1, Pham Tran Anh Quang1, Jérémie Leguay1, Xu Gong2, Feng Zeng2

Huawei Technologies Ltd., 1Paris Research Center, France, 2 Dongguan Research Center, China.

Abstract— To improve bandwidth sharing in IP networks,
load balancing and rate control are key traffic engineering
ingredients. In this context, we propose a fully distributed load
balancing and rate allocation mechanism that operates only
from the edge. Each access router is able to determine target
rates over multiple paths for different traffic aggregates based
on already available link state information and, some small
and optional, information received from other edge devices. Our
distributed utility maximization solution provides a feasible rate
allocation at each iteration with diminishing returns. Through
numerical results on a variety of instances, we show that it
converges to near optimal solutions after a few iterations.
Thanks to packet-level simulations on an SD-WAN scenario,
we also show that it can well prioritize traffic over centralized
and legacy solutions.

I. INTRODUCTION

Traffic engineering [1] gathers a set of mechanisms to
optimize network performance and traffic delivery. While
routing optimization aims at finding efficient routes, Quality
of Service (QoS) mechanisms and load balancing control
how bandwidth is shared among the different paths. Traffic
engineering plays a crucial role in optimizing the use of
network resources and meeting QoS requirements of network
users. To improve the utilization of IP networks, load bal-
ancing is typically implemented inside switches or routers
using Equal Cost Multi-Path (ECMP) [2], where a hash
is calculated over packet headers and used to select the
outgoing path in a uniform manner, or Weighted Cost Multi
Pathing (WCMP) [3], where load balancing weights are used
to make decisions for each flows. On top of load balancing,
rate control and prioritization can be enforced at the network
layer to properly share bandwidth among traffic classes.

The control of load balancing and rate allocation param-
eters can be realized by a centralized network entity, e.g.,
a Software-Defined Networking (SDN) controller or a Path
Computation Element (PCE) [4]. These centralized control
plane units leverage on a global view of the network to
decide about the most efficient way to steer traffic. Different
objectives can be optimized such as the overall congestion
or the QoS experienced by users. Since the seminal work by
Kelly et al. [5], the Network Utility Maximization (NUM)
framework is commonly used for bandwidth allocation or
rate control. The goal is to maximize the overall “utility,”
where user’s level of satisfaction is measured using a concave
function of the allocated data rate to that user (i.e., the utility
function). For instance, it has been applied for fair bandwidth
sharing over single and multiple paths, and efficiently solved
in a centralized controller with Lagrangian decomposition [6]
or, in the semi-distributed case with multiple domain con-

trollers, using ADMM [7]. However, the presence of a
centralized control entity may not be desirable for scalability,
fault-tolerance, or deployment reasons.

In this paper, we propose a distributed load balancing and
rate control solution that operates only from edge devices
with very little support from core nodes. Our goal is to
maximize the total network utility and push all the processing
at the edge (e.g., on access routers). The challenge is to yield
a minimum network overhead when coordination among
edge nodes is required. Such a solution is particularly useful
for overlay networks in the context of SD-WAN (Software-
Defined Wide Area Networks) [8]. It should also quickly
converge towards the optimal solution, i.e. generate a set
of solutions with diminishing returns over iterations, and it
must ensure anytime feasibility, i.e. that it does not violate
capacity constraints at any iteration.

A wide range of distributed solutions for bandwidth shar-
ing have been proposed [9], [10], [11], [12]. However, they
actively involve intermediate or core nodes with a request
/ answer protocol that allocates bandwidth on core links.
While they aim at maximizing the network utility, most of the
papers use max-min fairness and single path routing. Other
solutions rely on an explicit pricing of link bandwidth by
core nodes [13]. While active participation of core nodes is
still required, these pricing solutions do not guarantee that
the bandwidth allocation is feasible at all iterations. We direct
the reader to Sec. III for more details on related work.

Compared to the state of the art, our distributed solution
for load balancing and rate control operates only from the
edge. Edge nodes decide outgoing rates over multiple paths
for each of the traffic aggregates they manage. Iterative
decisions are taken by access routers to continuously opti-
mize network utility. The main advantages of our solution
are threefold: 1) it relies on already available link state
information (e.g., link loads) and it optionally requires a
small additional signaling between edge nodes only to co-
ordinate decisions, 2) it ensures a feasible solution at each
iteration so that no traffic is lost due to poor load balancing
decisions, and 3) it continuously improves network utility
with diminishing returns over iterations.

Our distributed algorithm for utility maximization is based
on a sub-gradient method that provides anytime feasibility.
It operates at the edge and requires a very low overhead.
Without loss of generality, we demonstrate its application
with a specific utility function that integrates for each traffic
aggregate a preference for outgoing paths and a priority. We
analyze through numerical results on various static instances
the convergence of the algorithm to optimal solutions. We

show that when starting from a bandwidth allocation that
minimizes the MLU, an optimality gap lower than 6% can
be achieved after a few iterations. We also show that a near-
optimal solution (i.e., gap less than 1.7%) is reached after
a sufficient number of iterations. In addition, we perform
NS3 [14] simulations on a realistic SD-WAN scenario and
show that the algorithm is able to well prioritize traffic and
handle paths preferences.

The rest of this paper is structured as follows. The
system architecture and problem formulation are introduced
in Sec. II. Sec. III reviews the state of the art. Sec. IV
presents the Lagrangian relaxation of the problem and the
sub-gradient algorithm to solve it. Sec. V details the de-
composition of the problem and the distributed procedure to
generate feasible solutions at all iterations. Sec. VI shows the
performance evaluation and Sec. VII concludes this paper.

II. SYSTEM DESCRIPTION

As traffic evolves over time, load balancing and rate allo-
cation must be continuously adjusted to better use network
resources and maximize network utility. This section first
presents our distributed architecture where only edge devices
are controlling user traffic. Then, it illustrates a typical SD-
WAN scenario where it can be applied. Finally, it formulates
the optimization problem that the distributed agents need to
solve collaboratively.

A. Distributed Architecture

As illustrated in Fig. 1, edge devices are equipped with
rate allocation agents in order to continuously compute
rate allocations and maximize network utility. Each agent
manages a set of OD flows for which they are the origin, also
called tunnels in the rest of the paper. Tunnels can be split
over multiple paths and rate allocations, on each path, are
continuously updated by agents. The set of candidate paths
used by an agent for a given tunnel can be provided by a local
or an external path computation module. Rate allocations can
be strictly enforced in the data plane or loosely used as load
balancing weights.

Thanks to a link state protocol (i.e., OSPF or any other
protocol), each agent periodically receives updates about the
network state. In particular, the link states contain link loads
as feedback from past load balancing decisions. Link states
can be related to physical links or overlay links. They may
also include link capacities if they are not given a priori, or
if they evolve over time because of some background traffic.
Additionally, agents can receive useful information from
other agents to make decisions. In particular, two scalars
called aggregated utilities can be periodically received from
all the other agents when Polyak step-size is used (see Sec. V
for more details). Finally, agents also receive updates about
the traffic demand in each of the tunnel they handle from the
local monitoring.

The computation of rate allocations is performed by each
source device every time new information is received. It
takes as input the set of candidate paths for each tunnel,
updated traffic information for each tunnel, updated link state

Fig. 1: Device architecture.

information and (optionally) updated aggregated utilities
received from other agents. As output, each agent decides
for the tunnels it manages a target rate on outgoing paths.

To enforce target rate allocations, a traffic scheduling
module ensures that traffic evolves from the actual rates
towards the targeted ones. As mentioned before, rate allo-
cations can be loosely used as load balancing weights to
take routing decisions each time a new micro-flow arrives.
The path selection decision is made so as to move actual
split ratios towards the targeted ones. In some cases, if
advanced data plane mechanisms such as FlowLets [15]
are used, micro-flows can also be re-routed during their
lifetime. As it creates more opportunities to select paths,
it accelerates the convergence of split ratios towards their
target. To ensure proper prioritization of traffic in the data
plane, packets can be marked with the DSCP code that
corresponds to the priority of their tunnel. More advanced
traffic scheduling techniques can be used to exploit the
computed rate allocations.

B. SD-WAN Use Case

Fig. 2 illustrates a typical SD-WAN network with one
headquarter site and three branch sites that are multi-homed
with MPLS and broadband Internet connectivity. Traffic can
go between the headquarter and remote sites, or it can be
between sites themselves. Origin-Destination (OD) tunnels
are used to carry traffic aggregates for the different types
of application classes (e.g., real-time critical, elastic critical,
elastic non-critical).

The network manager can define a desired Maximum Link
Utilization (MLU) for each link in the network based on past
observations. Typically, he or she may wish that the link
utilization stays below 90% to avoid problematic congestion
issues. The manager can also configure tunnel attributes that
can be used as part of the utility function. In the rest of
the paper, we consider for instance that he or she can set for
each tunnel a priority or a preference for each outgoing path.
Typically, users may prefer to use MPLS against broadband
Internet for their mission-critical applications.

Fig. 2: SD-WAN scenario with one headquarter site and three
branch sites. Load Balancing (LB) agents are deployed on
access routers with two ports (Internet, MPLS).

C. Problem Formulation

Let’s consider a network G = (V,A), where V is the set
of nodes and A is the set of links, and a set of Origin-
Destination (OD) tunnels K (commodities) that must be
routed over a set of pre-computed paths P k with k ∈ K.
Given a set of source nodes S ⊂ V , we denote by Ks ⊆ K,
the set of tunnels having the same origin s ∈ S. Let
C : A → R+ be the arc capacity function, d : K → R+

be the traffic demand function, U : k → R be a concave
utility function for each tunnel k.

Given a user defined maximum link utilization MLU ∈
]0, 1[, the rate allocation problem consists, for every tunnel
k ∈ K, in splitting the traffic demand dk over multiple paths
in P k such that arc capacities C̃ = C ×MLU are satisfied
and the total utility function is maximized.

The load balancing and rate allocation problem can be
solved in a centralized manner by solving a Linear Program-
ming (LP) model with the decision variables rkp representing
the allocated rate on path p ∈ P k for tunnel k ∈ K. The
problem can be formulated as follows

max
∑
s∈S

∑
k∈Ks

∑
p∈Pk

Uk(rkp) (1)

∑
p∈Pk

rkp = dk ∀k ∈ Ks,∀s ∈ S, (2)

∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

rkp ≤ C̃a ∀a ∈ A, (3)

0 ≤ rkp ∀k ∈ Ks,∀s ∈ S, ∀p ∈ P k.
(4)

Equalities (2) guarantee that all traffic is allocated and
Constraints (3) guarantee that C̃ capacities are respected.

III. RELATED WORK

In the state of the art, several solutions have been proposed
to solve rate allocation and load balancing problems in a
distributed manner.

Distributed bandwidth reservation or rate allocation pro-
tocols have been proposed in [16], [17]. In these solutions,

a bandwidth allocation request is sent from the source node
and processed greedily by core switches. Intermediate nodes
or core switches are the ones taking rate allocation decisions
using a specific utility function with fairness objective (max-
min in general). Routing can be given (in [16]) or not. Similar
mechanisms were designed for ATM networks to allocate
bandwidth for ABR (Available Bit Rate) traffic [9], [10],
[11], [12]. These solutions involve the active participation of
core nodes which add complexity in the network.

Other solutions use Lagrangian decomposition and rely
on an explicit pricing of link bandwidth by adjacent core
nodes [13]. Based on the traffic they observe, intermedi-
ate nodes update dual variables related to link capacity
constraints based on a gradient iterate and they broadcast
these link prices in the network. Each source solves a
local problem to update its rate allocations. While active
participation of core nodes is still required, these solutions
do not guarantee that the bandwidth allocation is actually
feasible at all iterations. Indeed, primal-dual algorithms are
known to fail at providing feasible solutions at any iteration.

Distributed multi-path routing has also been studied. In
Halo [18] for instance, each core node decides local split
ratios for each flow aggregate. Routing is then decided in a
hop-by-hop fashion to minimize MLU (it can actually mini-
mize any convex function). While guaranteeing feasibility at
every iteration and convergence to the optimal, this solution
actively involves intermediate nodes in the decision-making
process and is thus not suitable for our problem.

Decentralized load balancing techniques [19], [20] have
been proposed to dynamically adjust at ingress nodes load
balancing policies based on path-based measurements about
the network congestion. Our work differs from these contri-
butions by not involving core nodes to piggy back measure-
ments inside user traffic and by aiming at maximizing the
network utility for all aggregates.

To summarize, our method solves the distributed load
balancing and rate allocation problem to maximize network
utility and operates only from the edge in a fully distributed
fashion. It converges with diminishing returns and provides
anytime feasibility.

IV. LAGRANGIAN RELAXATION

Lagrangian relaxation method is a well-known method
that permits to relax difficult constraints and penalize their
violations in the objective function. In general, the resulting
problem is easy to solve [21].

A. Problem Relaxation

We apply the Lagrangian relaxation on the compact formu-
lation in order to relax capacity constraints (3) and penalize
them in the objective function using Lagrangian multipliers
λ ∈ RA+ as follows.

min
λ
f(λ) (5)

0 ≤ λa ∀a ∈ A. (6)

where f(λ) is defined as the following linear program

max
r

∑
s∈S

∑
k∈Ks

∑
p∈Pk

Uk(rkp) +
∑
a∈A

λa(C̃a −
∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

rkp)

(7)∑
p∈Pk

rkp = dk ∀k ∈ Ks,∀s ∈ S, (8)

0 ≤ rkp ∀k ∈ Ks,∀s ∈ S, ∀p ∈ P k. (9)

Problem (5)-(6) is called the Lagrangian dual problem.
One particularity of the Lagrangian relaxation is the fact that
the value of any solution of the Lagrangian dual problem is
a dual bound of the original problem, i.e., (1)-(4). Moreover,
in the case of convex programs, the optimal value of the
Lagrangian dual problem coincides with the optimal value
of the initial problem [21].

B. Sub-gradient Algorithm

The Lagrangian dual problem can be optimally solved
using the sub-gradient algorithm described in Alg. 1.

Algorithm 1: Sub-Gradient algorithm
Result: Optimal solution of Lagrangian dual problem
i = 0; step = 1;
λa(0) = 0 for all a ∈ A;
while not StopCondition() do

r∗ ←Solve optimization problem (7)− (9);
for a ∈ A do

ga = C̃a −
∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

r∗kp ;

λa(i+ 1) = max(0, λa(i) + step× ga);
end
step = UpdateStepSize(); i = i + 1;

end

The StopCondition() function returns "True" if stopping
criteria of the algorithm are met and "False" otherwise.
Ideally the sub-gradient algorithm can be stopped when all
capacity constraints are satisfied. However, in practice this
can rarely happen. Then, several criteria are used in the
literature [22], [23] as the strong duality conditions, the
improvement of the objective value within a given number
of iterations or a threshold on the number of iterations.

The UpdateStepSize() function permits to increase or
decrease the size of the penalty. In the literature, a common
practice is to use step = 1

i , where i represents the iteration
counter. However, in [24], Polyak proposes the following
step-size function that does not depend on a counter

step = α
UB − LB
||g||2

such that, α is a positive scalar, UB is the objective value of
(7)− (9) and LB is the utility of the best found solution of
(1)-(4). This can be updated each time a solution of (7)− (9)
satisfies (3). In our setting, the optimization process never

stops. The main advantage of Polyak’s method is that the
step-size automatically adapts and does not depend on an
iteration counter. Later in the paper we refer to as Iterative
and Polyak for the two step-size functions.

V. DISTRIBUTED ALGORITHM

We now detail how to decompose the Lagrangian dual
problem into |S| subproblems for a distributed algorithm
(i.e., one for each agent).

A. Problem Decomposition

In the program (7) − (9), it is easy to see that each
constraint of (8)-(9) associated with source s ∈ S, contains
only variables associated with tunnels of Ks. Therefore, we
can decompose them into |S| subsets, each associated with
a source. However, objective function (7) needs to be re-
written as follows∑
a∈A

λaC̃a +max
r

∑
s∈S

∑
k∈Ks

∑
p∈Pk

(Uk(rkp)−
∑
a∈p

λar
k
p)

Therefore, the optimization problem (7) − (9) decomposes
into |S| independent sub-problems, one for each source. The
sub-problem for source s ∈ S is then defined as

max
r

∑
k∈Ks

∑
p∈Pk

(Uk(rkp)−
∑
a∈p

λar
k
p) (10)

∑
p∈Pk

rkp = dk ∀k ∈ Ks, (11)

0 ≤ rkp ∀p ∈ P k,∀k ∈ Ks. (12)

If Polyak step-size function is used, every source node s ∈
S must be able to compute UB and LB. Hence, each source
node s ∈ S has to share, at each iteration, two scalars with
the other source nodes, representing the aggregated utilities:

• aggUts1 :
∑
k∈Ks

∑
p∈Pk

(Uk(r∗kp)−
∑
a∈p

λar
∗k
p)

• aggUts2 :
∑
k∈Ks

∑
p∈Pk

Uk(rkp)

where r∗ is the optimal solution of (10)− (12) and r is the
best feasible solution found. Hence, each source node can
compute

• UB =
∑
a∈A λaC̃a +

∑
s∈S aggUt

s
1

• LB =
∑
s∈S aggUt

s
2

The distributed sub-gradient algorithm to solve the La-
grangian dual problem is presented in Alg. 2.

The getLinkUtilization() function returns the link load for
all links in the network. This information can be retrieved
from Link State Advertisement (LSA) in the OSPF protocol
for instance. The getAggregatedUtilities() function is called
only when Polyak step-size is used. It returns two vectors of
aggregated utilities associated with all the source nodes in
S. The StopCondition() and UpdateStepSize() functions are
the same as for Alg. 1.

Algorithm 2: Distributed Sub-Gradient algorithm
Result: Optimal solution of Lagrangian dual problem
i = 0; step = 1;
λa(0) = 0 for all a ∈ A;
while not StopCondition() do

for s ∈ S do
LU← getLinkUtilization();
Solve optimization problem (10)− (12);
for a ∈ A do

ga = C̃a − LUa;
λa(i+ 1) = max(0, λa(i) + step× ga);

end
aggUt1, aggUt2 ← getAggregatedUtilities();
step = UpdateStepSize(); i = i + 1;

end
end

B. Recovering feasible solutions

Even if optimally solving (5)-(6) gives the optimal value
of the original problem, the solution r may not satisfy C
capacities. Indeed, relaxing capacity constraints (3) may lead
to violations. In order to produce solutions satisfying C
capacities at each iteration of Alg. 2, i.e. ensure anytime
feasibility, the source of each tunnel solves an additional
subproblem given by constraints (10) − (12) together with
the following constraints, for all a ∈ A and for all s ∈ S∑

k∈Ks

∑
p∈Pk

a∈p

(rkp − r∗kp) ≤ Ca − LU∗a
|S|

(13)

where r∗ represents the rates at the previous iteration and
LU∗ the associated link utilization. Constraints (13) permit
to, artificially, divide the residual capacity of links by the
total number of sources, possibly using each link. Let r be
the rate obtained by solving (10) − (12) and (13) for every
s ∈ S.

Proposition 1. If r∗ respects C capacities then r as well.

Proof: By summing constraints (13) we obtain∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

(rkp − r∗kp) ≤ Ca − LU∗a ∀a ∈ A.

Since
∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

r∗kp = LU∗a for all a ∈ A, then

∑
s∈S

∑
k∈Ks

∑
p∈Pk

a∈p

rkp ≤ Ca ∀a ∈ A.

And the result follows.

Even if the algorithm guarantees the satisfaction of the capac-
ities C it may violate capacities C̃ (i.e., downscaled capacity
with the user MLU). However, the algorithm will increase
the penalty on links violating the capacity constraints in order
to adapt the rates in the next iterations.

C. Practical Considerations

Fig. 3 shows the execution time line of the algorithm
at an edge device. Periodically, every X seconds in the
figure (e.g., blue arrows), the edge device retrieves from the
local monitoring an update about the traffic demand in each
tunnel (i.e., dk). Based on this, the algorithm starts a new
optimization phase and performs one sub-gradient iteration
every time new link state update is received (e.g., red arrows).
New target rate allocations are calculated every time updates
about link states and aggregated utilities are received. In
practice, a new iteration can be launched periodically. The
computed rates are then used to tune the rate of the actual
flows and/or route new flows and FlowLets when they arrive.

Fig. 3: Execution time line of the algorithm.

To avoid instabilities, measurements about traffic and
link loads can be averaged over a moving time window.
Furthermore, the frequency of traffic demand updates (i.e.,
of new optimization phases) must be sufficiently lower than
the one for algorithm iterations so that the algorithm has
enough time to work on a stable instance of the problem. As
the different agents execute this process in an asynchronous
manner, loose synchronization mechanisms can help nodes
to start their optimization phases all together. For instance,
one may use a modulo function over the sequence number
of the LSA for the link with smallest identifier.

D. Network Overhead

At the beginning of an optimization phase, every source
node optionally receives as link states an update of link
capacities (if not known already). And, at each iteration of
the subgradient algorithm, every source node receives an
update of the utilization of every link in the network (i.e., link
loads). Moreover, if Polyak step-size function is used, every
source node s ∈ S has to share two scalars, representing
the aggregated utilities, with the other source nodes at each
iteration. In the best case, the overhead is extremely low
as only already available link states (e.g., link loads) are
periodically exchanged.

VI. NUMERICAL RESULTS

The distributed algorithm and the compact model have
been implemented in C++, using CPLEX as a LP-solver.
They were tested on an Intel(R) Xeon(R) CPU E5-4627 v2
of 3.30GHz with 504GB RAM, running under Linux 64 bits.

Distributed (Polyak) Distributed (Iterative) Centralized
Instance |A| |V| |K| GAP20 GAP80 GAP200CPU20 CPU80 CPU200 GAP20 GAP80 GAP200CPU20 CPU80 CPU200 GAP CPU
Abilene 28 11 11 16.6 16.6 16.6 0.00 0.00 0.01 17.0 17.6 17.6 0.00 0.00 0.00 17.6 0.00
BtEurope 74 24 24 3.7 3.7 3.7 0.00 0.00 0.00 3.7 3.7 3.7 0.00 0.00 0.01 3.7 0.01
ColtTelecom 354 153 15 43.1 43.1 43.1 0.01 0.01 0.01 56.3 56.4 56.4 0.01 0.01 0.01 56.4 0.02
Geant 122 40 40 10.5 10.5 15.7 0.00 0.00 0.01 14.8 15.8 15.8 0.01 0.01 0.01 15.8 0.03
GTSCE 386 149 14 42.2 42.2 42.2 0.01 0.00 0.01 53.8 56.2 56.2 0.01 0.01 0.01 56.8 0.01
ITCDeltacom 322 113 11 49.3 49.3 49.3 0.00 0.00 0.01 49.3 49.3 49.3 0.01 0.01 0.01 49.3 0.01
Kentucky 1790 754 75 12.7 12.7 12.7 0.00 0.01 0.00 13.2 13.2 13.2 0.00 0.00 0.00 13.2 0.09
SD-WAN 46 15 15 40.2 40.2 40.2 0.00 0.00 0.00 36.5 40.2 40.2 0.00 0.00 0.00 41.9 0.00
US_Carrier 378 158 15 31.6 31.6 31.6 0.01 0.01 0.01 31.8 32.2 32.2 0.01 0.01 0.01 32.2 0.01
IPRAN_1 1114 485 500 55.6 55.6 55.6 0.01 0.01 0.75 57.7 57.9 57.9 0.01 0.01 0.76 58.8 0.00
IPRAN_2 1086 477 500 63.9 63.9 63.9 0.01 0.01 0.76 67.1 67.1 67.1 0.01 0.01 0.76 67.1 0.00

TABLE I: Numerical results comparing the distributed algorithm and the centralized method.

A maximum of 1 thread has been used. In the following,
we present evaluation results on 1) static instances in a
simplified network environment and on 2) a dynamic SD-
WAN instance in the NS3 network simulator [25]. Without
loss of generality, we use for the evaluation a utility function
that combines Priok, the priority of tunnel k, Pref(k, p)
the preference of tunnel k for path p, and rkp the target rate
allocated to tunnel k on path p as follows

Uk(rkp) = Priok × Pref(k, p)× rkp

We compare the performance of the distributed algorithm
against a centralized solution solving the compact model to
optimality. The sub-gradient algorithm stops when the num-
ber of iterations reaches a specified threshold (see below).
Two step-size functions are used: Iterative and Polyak with
alpha = 2 (see sub-section IV-B).

A. Evaluation on Static Instances

In this first evaluation, the goal is to evaluate the conver-
gence of the distributed algorithm. We use three types of
synthetic instances:

1) Public instances: Abilene, BtEurope, Geant from
SNDLIB [26], ColtTelecom, GTSCE, ITCDeltacom,
Kentucky, US_Carrier from Internet topology zoo [27].

2) A SD-WAN instance with one headquarter site and
three sites (see Fig. 2).

3) Two large IPRAN, typical from radio access networks.

Link capacities and the traffic demand of tunnels are
generated randomly. The source and destination of tunnels
are picked at random in all the instances, except for SD-WAN
where tunnels are between sites and the headquarter. Tunnels
are randomly ranked and the tunnel position represents its
priority (priorities start from 1). The maximum number of
paths generated per tunnel is 5. However, in practice, fewer
paths are used. For each tunnel, the paths are randomly
ranked and the path position represents its preference (pref-
erences start from 1).

The initial solution satisfying C capacities is obtained
by solving the load balancing problem that minimizes the
maximum link utilization. Let θ∗ be the maximum link
utilization of this solution. The user target MLU to determine
soft link capacity constraints C̃ is calculated with MLU =
Tanh(θ∗ × 2.0) (see sub-section II-C).

Convergence. In Table I, three algorithms are compared
over all instances: the distributed algorithm with Polyak step-
size, the distributed algorithm with Iterative step-size and the
centralized method. Column heads are defined as follows:
• GAP20, GAP80 and GAP200: improvement percentage

over the initial solution and obtained by the distributed
algorithm after 20, 80 and 200 iterations, i.e.,

GAP =
Currrent_Objective− Initial_Objective

Initial_Objective

• CPU20, CPU80 and CPU200: CPU time of the dis-
tributed algorithm after 20, 80 and 200 iterations. It is
obtained by summing the maximum CPU times of all
source nodes at each iteration.

• CPU, GAP: time and improvement percentage over the
initial solution obtained by the centralized method.

Table I displays the numerical results associated with
all instances. We notice that the distributed algorithm with
Polyak step-size gives a similar improvement after 20 and
80 iterations. Moreover, except for Geant the improvements
over the initial solution are the same after 20, 80 and 200
iterations. Compared to the centralized method (optimal), the
algorithm gives the optimal solution in 18% of the cases
and near-optimal solution (difference lower than 4% between
GAP200 and GAP) in 81.8% of the instances.

The distributed algorithm with Iterative step-size gives
similar improvements after 20, 80, and 200 iterations in
63.6% of the instances. Moreover, the algorithm gives the
optimal solution in 72.7% of the cases. These results show a
fast convergence of the distributed algorithm with both step-
size functions. Indeed, significant improvements of the initial
solutions have been obtained after a few iterations.

While Polyak step-size is more adaptive for continuous
optimization, the distributed algorithm performs better with
Iterative step-size. Indeed, Polyak step-size is sensitive to the
alpha parameter that needs to be tuned for each instance.

The CPU times are relatively small for all algorithms, less
than 0.76 second on all the tests.

Overhead. In the following, we analyze the amount
of traffic received by each agent at each iteration of the
distributed algorithm. Consider, for example, a network of
500 source nodes and 1000 links. Suppose that each scalar
consumes 32 bits and a duration of each iteration of 200ms.
Therefore, if Polyak step-size is used, every source s ∈ S
receives, at each iteration, the following information

�

�

�

�

�

��

��

� ��� ��� ��� ��� ���� ����

��
�
��
��
��
	

�
�

��	
��
�

���� ���
� �
�

(a) VoIP, Video, and Web traffic.

�

�

�

�

�

��

��

��

� ��� ��� ��� ��� ���� ����

��
�
��
��
��
	

�
�

��	
��
�

(b) Total Traffic.

Fig. 4: Traffic of each service and total traffic.

• aggregated utilities: 2 × 32 bits
0.2 s×1e6 bits × 499 nodes =

0.159 Mb/second.
• link loads: 32 bits

0.2 s×1e6 bits×1000 links = 0.16 Mb/second.
However, with Iterative step-size, only link loads are received
by each source at each iteration. This show the low overhead
required by the algorithm with the two step-size functions.

B. NS3 Simulations

Simulation settings. We present results using NS3 [25]
with OpenFlow 1.3 [28] to evaluate algorithms in a dynamic
environment. As the number of iterations may fluctuate
between two traffic demand updates, we only use Polyak
step-size which does not rely on an iteration counter.

The simulation scenario is depicted in Fig. 2. It comprises
a single Headquarter (H) connected to three remote sites,
i.e. S1, S2, S3. There are 6 tunnels where 3 are from H
to S1, S3, and S3 and the other 3 are opposite tunnels
from sites to headquarter. Access routers have dual homing
with Broadband Internet and MPLS, having propagation
delays of 60ms and 1ms respectively. The packet loss rate at
transmission level on Internet is 0.01% and null for MPLS.

We consider that each tunnel prefers MPLS over Internet
(i.e., Pref(k, p) equals 1 or 2, respectively for Internet
and MPLS), and that sites and their associated tunnels have
different priorities (i.e., Priok): low (1), medium (3) and
high (5) as shown in Table IIa. The traffic pattern in each
tunnel is diurnal and formed by 3 types of services: Voice
over IP (VoIP), Video, and Web. Each service has a specific
SLA (Service Level Agreement) requirement that we do not
directly optimize. We use DSCP to differentiate services
in the data plane with a strict priority queuing discipline.
Table IIb summarizes the desired SLA requirements and the
corresponding priority queues for each traffic type.

The traffic pattern for each traffic type and the total
traffic are shown in Fig. 4. We generated micro-flows with
typical patterns of VoIP, Video and Web applications for

Tunnel Identifier 1 2 3 4 5 6
Source - Dest. H-S1 S1-H H-S2 S2-H H-S3 S3-H

Priority (Priok) 5 (high) 3 (medium) 1 (low)

(a) Priority for each tunnel.
Service type VoIP Video Web
SLA requirement (delay) 30ms 75ms 100ms
Priority queue (DSCP code) 0 1 2

(b) Traffic types and corresponding priority queues.

TABLE II: Characteristics of tunnels and traffic in NS3.

�

���

���

���

���

�

���

���

� ��� ��� ��� ��� ���� ����

�
�
��
�
��
�	

�	
��
��

��	��	���� ��	��	���� ��	��	����

(a) ECMP (delay).

�

����

����

����

����

����

����

� ��� ��� ��� 	�� ���� ����

�
�
�
�
�
��
�	

��
�
��

��
����

���������� ���������� ����������

(b) ECMP (loss).

�

���

���

���

���

�

���

���

� ��� ��� ��� ��� ���� ����

�
�
��
�
��
�	

�	
��
��

��	��	���� ��	��	���� ��	��	����

(c) Centralized (delay).

�

�����

����

�����

����

�����

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
��
�	

��
�
��

	
��
���

��
��
��
� ��
��
��
� ��
��
��
�

(d) Centralized (loss).

�

���

���

���

���

�

���

���

� ��� ��� ��� ��� ���� ����

�
�
��
�
��
�	

�	
��
��

��	��	���� ��	��	���� ��	��	����

(e) Distributed (delay).

�

�����

����

�����

����

�����

� ��� ��� ��� ��� ���� ����

�
�
�
�
�
��
�	

��
�
��

	
��
���

��
��
��
� ��
��
��
� ��
��
��
�

(f) Distributed (loss).

Fig. 5: End-to-end delay and packet loss rate for all priority
levels with distributed and centralized algorithms.

a duration of 300s. The inter-arrival time of flows follows
an exponential distribution. We randomly generated diurnal
patterns by adjusting the mean of inter-arrivals of flows. The
idea is to have congestion episodes representing peak hours.

Each node in the network measures the link states and
broadcasts them periodically. The source of each tunnel,
therefore, is able to collect them. Link states are measured
and sent every 200ms, and averaged over a 1s window to
mitigate fluctuations. The source of each tunnel measures
the current traffic and averages it over a 5s moving window.
The traffic demand is an input of algorithms at the beginning
of each optimization phase (i.e., every 30) and the link states
are the inputs of Alg. 2 at each iteration (i.e., every 200ms).
Every time algorithms are called, every 30s or 200ms, new
target split ratios are computed and available to the data
plane. When a new micro-flow arrives, it is assigned to a path
that minimizes the difference between target and actual split
ratios. In our implementation, the selected path is converted
into forwarding rules deployed at every OpenFlow switch.

Simulation results. Fig. 5 shows the evolution of the end-
to-end delay and the packet loss rate at network layer for
ECMP, centralized, distributed solutions. The difference in
end-to-end delay across priorities for ECMP is not remark-
able while it is noticeable for centralized and distributed
algorithms (i.e., higher priority has lower delay). Both cen-
tralized and distributed algorithms prefer MPLS to Internet;
therefore, the higher priority tunnels have more chance to
be transferred over MPLS which has a significantly lower
propagation delay. The evolution of the packet loss rates
follow a similar pattern. They increase when traffic is high
and congestion happens (between 400s and 600s, and after

End-to-end delay (ms)
ECMP Centralized Distributed
Tunnel 1 (priority = 5, high)

Average 46.27 24.96 26.35
95-percentile 97.07 90.52 67.9

Tunnel 3 (priority = 3, medium)
Average 45.98 27.13 27.48
95-percentile 97.1 110.68 76.76

Tunnel 5 (priority = 1, low)
Average 50.39 28.16 45.82
95-percentile 109.85 117.81 127.8
End-to-end packet loss (%)

ECMP Centralized Distributed
Tunnel 1 (priority = 5, high)

Average 0.009 0.004 0.006
Tunnel 3 (priority = 3, medium)

Average 0.012 0.008 0.009
Tunnel 5 (priority = 1, low)

Average 0.01 0.007 0.009

TABLE III: End-to-end delay and packet loss rate.

900s). ECMP has the highest peak loss rate (5%) and there is
no noticeable difference between priorities. Meanwhile, the
high priority (i.e., 5) in centralized and distributed algorithms
has a significantly low packet loss rate.

Table III summarizes results for ECMP, centralized, and
distributed solutions with average and 95th percentile for
end-to-end delay and packet loss rate. Note that the 95th

percentile is 0 for the packet loss and that performance are
similar for opposite tunnels (i.e., 2, 4, 6). The end-to-end
delay of centralized and distributed algorithms are about 50%
lower than the ones of ECMP. The average end-to-end delay
of the distributed algorithm, except the low priority tunnel,
is similar to the one of the centralized algorithm. The packet
loss rates of distributed algorithm are slightly higher than
one of centralized algorithm. These results are explained by
the fact that the distributed algorithm places more traffic on
Internet where the propagation delay is higher.

We also measure the SLA violation rate which is the ratio
of flows violating their SLA requirements to the total number
of flows. Fig 6 shows the SLA violation rate over time for
ECMP, centralized, and distributed solutions. As expected,
ECMP has the highest violation rate while the centralized
algorithm has the lowest. The SLA violation rate increases
when traffic increases and we can observe that the distributed
algorithm needs some time to converge at the beginning.

�

����

����

����

����

���

����

����

� ��� ��� ��� ��� ���� ����

�
�
�
��
��
�	

�
�
�
��
	

�	
��
�
���� �������	��� �	
��	�����

Fig. 6: Ratio of SLA violations (when DSCP is used).

End-to-end delay (ms)
Centralized Distributed
Tunnel 1 (priority = 5, high)

Average 23.54 26.99
95-percentile 89.44 67.41

Tunnel 3 (priority = 3, medium)
Average 23.81 28.28
95-percentile 109.72 72.11

Tunnel 5 (priority = 1, low)
Average 29.5 47.34
95-percentile 113.66 130.6

TABLE IV: End-to-end delay when DSCP is not used.

�

����

����

����

����

���

����

����

� ��� ��� ��� ��� ���� ����

�
�
�
��
��
�	

�
�
�
��
	

�	
��
��

���� �	����������

(a) Centralized algorithm

�

����

����

����

����

���

����

����

� ��� ��� ��� ��� ���� ����

�
�
�
��
��
�	

�
�
�
��
	

�	
��
��

���� �	����������

(b) Distributed algorithm

Fig. 7: Ratio of SLA violations (with DSCP vs. no DSCP).

Indeed, violations are steadily decreasing for the distributed
algorithm until the network becomes congested at 400s.

Fig. 7 demonstrates the effect of prioritization using Diff-
Serv in the data plane. When different DSCP codes are used
for all traffic types, SLA violations are remarkably decreased
even though the average delay is not improved as shown in
Table IV. DSCP puts different services into different priority
queues while every packet are put into the same queue when
DSCP is not used. This result shows that the performance
of algorithms are mainly due to the control plan algorithms
themselves, even though a consistent prioritization of traffic
in the data plane boosts the overall performance.

Discussion. While the distributed and centralized algo-
rithms are closed, the centralized solution performs best.
Many parameters can be tuned to further improve the per-
formance. On the algorithm itself, the alpha parameter in
Polyak step-size can have an influence on the convergence
rate. While from a system perspective, the average window
for link states could either give a noisy feedback if too small,
or give a too slow feedback if too large.

VII. CONCLUSION

We have proposed a fully-distributed load balancing and
rate allocation algorithm that maximizes network utility and
that only operates from the edge using already available
link state information and some lightweight exchange of
aggregated utilities when Polyak step-size is used. The
algorithm converges with diminishing returns and generates a
feasible solution at each iteration. We demonstrated through
numerical results and network simulations that in most cases,
it converges to an optimal solution after a few iterations. The
distributed solution significantly helps to improve the QoS
compared to legacy load balancing solutions like ECMP.

REFERENCES

[1] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of
routing optimization for internet traffic engineering,” IEEE Communi-
cations Surveys Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[2] “Multipath Issues in Unicast and Multicast Next-Hop Selection,” RFC
2991, Nov. 2000.

[3] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “Wcmp: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems, 2014, pp. 1–14.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[5] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for
communication networks: shadow prices, proportional fairness and
stability,” Journal of the OR society, vol. 49, no. 3, 1998.

[6] B. McCormick, F. Kelly, P. Plante, P. Gunning, and P. Ashwood-
Smith, “Real time alpha-fairness based traffic engineering,” in Proc.
of HotSDN, 2014.

[7] Z. Allybokus, K. Avrachenkov, J. Leguay, and L. Maggi, “Multi-path
alpha-fair resource allocation at scale in distributed software-defined
networks,” IEEE Journal on JSAC, vol. 36, no. 12, 2018.

[8] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide
area network (SD-WAN): Architecture, advances and opportunities,”
in Proc. IEEE ICCCN, 2019.

[9] Y. Afek, Y. Mansour, and Z. Ostfeld, “Phantom: a simple and effective
flow control scheme,” Computer Networks, vol. 32, no. 3, 2000.

[10] B. Awerbuch and Y. Shavitt, “Converging to approximated max-min
flow fairness in logarithmic time,” in Proc. IEEE INFOCOM, 1998.

[11] Y. Bartal, M. Farach-Colton, S. Yooseph, and L. Zhang, “Fast, fair and
frugal bandwidth allocation in ATM networks,” Algorithmica, vol. 33,
no. 3, pp. 272–286, 2002.

[12] Y. T. Hou, H.-Y. Tzeng, and S. S. Panwar, “A generalized max-min
rate allocation policy and its distributed implementation using the abr
flow control mechanism,” in Proc. IEEE INFOCOM, 1998.

[13] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[27] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE Journal on JSAC, oct 2011.

[14] G. F. Riley and T. R. Henderson, “The ns3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010.

[15] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “let it flow:
Resilient asymmetric load balancing with flowlet switching.”

[16] L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown, “A distributed
algorithm to calculate max-min fair rates without per-flow state,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, vol. 3, no. 2, pp. 1–42, 2019.

[17] F. Skivée and G. Leduc, “A distributed algorithm for weighted
max-min fairness in mpls networks,” in International Conference on
Telecommunications. Springer, 2004, pp. 644–653.

[18] N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state
optimal routing. networking,” IEEE/ACM Transactions on, PP (99),
pp. 1–1, 2014.

[19] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
ACM SIGCOMM Comput. Commun. Rev., Aug. 2014.

[20] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the ACM Symposium on SDN Research, 2016.

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: theory,
algorithms, and applications. 1993,” Google Scholar Google Scholar
Digital Library Digital Library, 1993.

[22] P. Putz, Subgradient optimization based Lagrangian relaxation and
relax-and-cut approaches for the bounded-diameter minimum span-
ning tree problem. na, 2007.

[23] M. B. Hasan and M. Toha, “An improved subgradiend optimization
technique for solving ips with lagrangean relaxation,” Dhaka Univer-
sity Journal of Science, vol. 61, no. 2, pp. 135–140, 2013.

[24] B. T. Polyak, “Introduction to optimization. optimization software,”
Inc., Publications Division, New York, vol. 1, 1987.

[25] G. F. Riley and T. R. Henderson, The NS3 Network Simulator, 2010.
[26] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib

1.0–Survivable Network Design Library,” in Proc. INOC, 2007.
[28] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “OFSwitch13:

Enhancing NS3 with OpenFlow 1.3 Support,” in NS3 Workshop, 2016.

