
Controlling Flow Reconfigurations in SDN

Stefano Paris, Apostolos Destounis, Lorenzo Maggi, Georgios S. Paschos, and Jérémie Leguay

Mathematical and Algorithmic Sciences Lab

France Research Center - Huawei Technologies Co. Ltd.

Boulogne-Billancourt, France

Email: {name.surname}@huawei.com

Abstract—Software-Defined Network (SDN) controllers include
mechanisms to globally reconfigure the network in order to
respond to a changing environment. While iterative methods are
employed to solve flow optimization problems, demands arrive or
leave the system changing the optimization instance and requiring
further iterations. In this paper, we focus on the general class of
iterative solvers considering an exponential decrease over time in
the optimality gap. Assuming dynamic arrivals and departures of
demands, the computed optimality gap at each iteration Q(t) is
described by an auto-regressive stochastic process. At each time
slot the controller may choose to apply the current iteration to
the network or not. Applying the current iteration improves the
optimality gap but requires flow reconfiguration which hurts QoS
and system stability. To limit the reconfigurations, we propose
two control policies that minimize the flow allocation cost while
respecting a network reconfiguration budget. We validate our
model by experimenting with a realistic network setting and using
standard Linear Programming tools used in the SDN industry.
We show that our policies provide a practical means of keeping
the optimally gap small within a given reconfiguration constraint.

I. INTRODUCTION

Software-Defined Network (SDN) architectures unleash the

potential to compute routing at a powerful central controller

and then reconfigure the network accordingly in real-time [1].

An SDN controller centrally decides traffic engineering (TE)

rules to meet performance requirements such as QoS and

resilience, which mirrors the past TE techniques [2] but with

a new global and online twist. To maintain the best network

flow configuration, the SDN controller has to solve variants

of the classical Multi-Commodity Flow (MCF) problem [3]

in real-time, which may involve millions of variables and

constraints in large networks. As the problem instance itself

evolves over time due to time-varying demands, the SDN

controller solves a sequence of routing problems and needs to

constantly reconsider the flow configuration. Finally, to satisfy

application requirements, the controller needs to solve these

problems under tight timing constraints.

To cope with the above challenges, state of the art one-shot

approaches propose methods to schedule routing configura-

tions in a predictive manner [4]. Alternatively, research ideas

from the community of online algorithms [5] can be leveraged

to yield a static configuration that fares well in the future when

unknown demands have arrived. In this work we depart from

the static approach and we propose a purely dynamic one. New

demands are tentatively treated in a suboptimal way in order

to meet timing requirements. Then the controller continuously

re-computes global routing and reconfigures the network from

time to time in order to maintain low running cost.

In particular, this paper considers a general class of iterative

routing optimization solvers which yield a sharp improvement

of the objective function during the very first iterations and

exhibit diminishing returns, in the sense that the smaller

the optimality gap, the longer it takes to improve it. In our

dynamic setting, while the iterative solver converges to the

solution, new demands arrive and old demands leave the

system, changing the instance of the optimization. These

considerations lead naturally to an autoregressive model for

the optimality gap, whereby the gap decreases exponentially

by the solver and increases whenever the demands change.

There might be a discrepancy between the computed solu-

tion at the SDN controller and the actual flow configuration

in the network. At each time slot the SDN controller has the

option to reconfigure the network flows as per the current

computed solution. However, flow reconfigurations degrade

QoS and introduce inertia into the system, hence we may avoid

them and neglect to apply the most recent computed configu-

ration. On the other hand, using the existing configuration may

quickly become costly for the network since the new flows are

configured with quick suboptimal decisions. In this paper we

study the fundamental problem of online SDN controllers, to

decide when to perform flow reconfigurations.

To provide an answer we formulate a stochastic optimization

problem where we want to minimize the actual network cost

by selecting the reconfiguration instances subject to a budget.

The budget refers to a time-average constraint on the frequency

of network reconfigurations, so that no more than hmax < 1
network reconfigurations occur per iteration of the solver.

Thinking of the reconfiguration as sampling, the problem

refers to sampling an autoregressive process with a given

sampling frequency so that the extra surcharge incurred by

non-sampled instances is minimized.

We first restrict ourselves to a subclass of control policies

that always “sample” after the optimality gap has increased.

This constraint leads to a renewal structure, which in turn

permits the characterization of the best policy of the subclass.

The policy works in two levels: (i) a virtual queue captures the

price of sampling as it evolves over renewal frames, and (ii)

a dynamic programming method is used to find the optimal

“sampling” within a frame subject to the current price. Finally,

we validate our system model on a realistic network scenario

and compare the performance of the optimal renewal policy

to a greedy non-renewal method which minimizes a drift-plus

penalty function at each instance.

II. SYSTEM MODEL

In this section, we present the routing system model that

we consider.

A. System Architecture

We consider an online routing system with two main stages

1) a stage where we accept new demands and 2) a stage where

we re-consider flow configuration over time. The target is to

minimize additive cost which is motivated in the domain of

datacenter interconnection or enterprise networks, where the

goal is leasing the cheapest connections from Internet Service

Providers.

Fast Connection Setup (FCS). When connection requests

arrive at ingress nodes, the controller finds a feasible path sat-

isfying multiple constraints (e.g., capacity, and QoS). For QoS

purposes, the time requirements for finding a solution might be

very strict. Hence at this stage, the goal is not to optimize the

network, but rather to find a quick feasible solution. Example

of FCS methods include (constrained) shortest path algorithms

which run on residual graphs.

Garbage Collection (GC) of network resources. The

sequence of sub-optimal network configurations obtained from

FCS, poses significant concerns on the evolution over time

of the global objective function. Therefore, periodic or event-

based reconfiguration of the overall flow can help reduce the

optimality gap. We call this mechanism Garbage Collection

(GC) of network resources since it mirrors the way a Java

virtual machine collects garbages and reorganizes the memory.

Example of GC methods include algorithms that solve the

minimum cost MCF problem.

Fig. 1 shows an example of an SDN controller which strives

to minimize cost. The FCS uses a shortest path algorithm,

while the GC uses a min-cost MCF solver. The numbers on

links indicate the link costs, while all link capacities are 1Mb/s.

In the example two demands arrive subsequently. First, the red

demand arrives and requires 0.5Mb/s, while the FCS allocates

it to the low cost path. Then the black demand arrives and

requires 1Mb/s. Since the low cost path does not have enough

capacity, the FCS allocates the black demand to the high cost

path. Finally, the controller runs GC and decides to swap the

two demands, saving in this way 33% of the cost.

B. Min-Cost Optimization

In the following, we turn our attention to the GC step and

explain how this mechanism can be implemented.

We model the network infrastructure with an undirected

graph G = (N ,L), where set N represents the set of network

nodes and set L models the links e = {i, j}, connecting

network nodes i, j ∈ N . Each link e ∈ L has a limited

capacity be and a cost ce, which refer to the maximum amount

of flow that can be routed and the price paid per unit of routed

flow, respectively.

Fig. 1: Example of an online SDN routing optimization with two
demands. Edge labels represent link costs. All links have capacity of
1 Mb/s. The cost evolution is computed according to the allocation
performed by FCS and GC.

A unicast demand k ∈ K is identified by a source-

destination pair (sk, dk) ∈ N
2, and the amount of traffic rk

that has to be transmitted from sk to dk. The set K represents

the active demands on this problem instance that need to

be routed through the network. To satisfy the demands in

the cheapest way, the controller needs to solve an evolving

instance of the minimum cost MCF problem which can be

formulated at a given time as the linear program (1)-(3), where

real variables (xp)p∈P and (ye)e∈L represent the path and link

utilization and take values in [0, 1]. In this model, P is the set

of all network paths, while Pk ⊆ P represents the set of all

paths which connects the source sk to the destination dk of a

demand k ∈ K. In contrast, the set Pe ⊆ P contains all paths

that use link e ∈ L.

COPT = min
(xp),(ye)

∑

e∈L

yece (1)

s.t.
∑

p∈Pk

xp = 1 ∀k ∈ K (2)

∑

k∈K

∑

p∈Pe:k∈Pk

xprk ≤ yebe ∀e ∈ L. (3)

The objective function (1) models the overall price paid for

using the network links, the constraints (2) ensure that the

entire demand rk is routed through a set of paths with routing

splits xprk, and the constraints (3) are the link capacity

constraints.

C. Iterative Solver with Diminishing Returns

Due to the immense size of the problem instance (net-

work graph and set of demands), we resort to the Column

Generation (CG) method coupled with the simplex algorithm,

which has been proposed as a key method for solving large

MCF problems [6]. Such an approach is powerful because it

iteratively improves the solution by considering only a small

number of variables at each step. To simplify the analysis,

we assume that the optimality gap is reduced exponentially

fast. Our analysis applies to other iterative techniques with

exponential convergence rate, including the full gradient and

the stochastic gradient methods for strongly convex objective

functions [7]. We leave as future work the analysis of solution

techniques with sublinear and linear convergence rates [8], [9].

At every iteration of our solver we obtain a feasible flow

solution with cost C(t) ≥ COPT (t). Let us denote the

optimality gap with Q(t):

Q(t) , C(t)− COPT (t) ≥ 0.

Q(t) is an indication of the amount of surcharge an operator

needs to pay for not having the network completely optimized

at time t, hence we would like Q(t) to be as small as possible.

Although the iterations monotonically decrease the optimality

gap Q(t), we observe “diminishing returns”, in the sense that

the smaller the gap, the longer it takes to improve it. To model

this situation we assume that the evolution of the optimality

gap can be captured by the following equation:

Q(t+ 1) = (1− ρ)Q(t), (4)

where ρ ∈ (0, 1) is a constant that relates the volume of

the next improvement to current optimality gap values. This

corresponds to an exponential improvement function of the

type (1
1−ρ

)−t, t = 1, 2,

We validate our model (4) using the CG solver in different

traffic conditions in the GEANT network topology [10]. The

traffic matrix is generated by randomly selecting source-

destination pairs and rescaling their demand according to the

capacity of the bottleneck link. Fig. 2 shows the evolution of

the optimality gap as a function of the number of iterations.

Specifically, red and black solid lines represents 50 and 99

percentiles obtained over 500 simulations. The optimality gap

Q(t) obtained in numerical simulations is always lower and

upper bounded by two exponential functions, namely 9−t and

2−t, which are depicted as green and blue dashed lines in the

figure.

Fig. 2: Evolution of the optimality gap Q(t) in the GEANT scenario.
The 50 and 99 percentiles are computed considering 500 simulations.

D. Modeling Event Arrivals

In the above section we defined the MCF instance for a

given set of demands K. Next, we consider the arrival of “new

events” in the system which potentially lead to a different set

of demands K(t). The new events correspond to arrivals of

new demands, or departure of old demands and in both cases

they result in a “jump” in the optimality gap Q(t), due to the

suboptimal network status resulting from the occurred event 1.

To simplify the considerations here, we assume that all events

incur the same “jump” (i.e., the same extra cost), which is

denoted by e. Our work can be easily extended to consider

more elaborate models. More precisely, we assume that new

events (arrivals and departures of demands) occur according

to an i.i.d. stochastic process A(t) with mean E[A(t)] = λ,

and variance Var[A(t)] = σ2
A, both finite.

The controller will perform the t iteration of the GC

procedure by solving the K(t)–instance of the optimization

(1)-(3). The optimality gap evolution can now be rewritten to

include the addition of the cost due to changing demands

Q(t+ 1) = (1− ρ)Q(t) + eA(t). (5)

This is a first order auto-regressive stochastic process with

discrete non-Gaussian disturbance. It is known that Q(t) is

strongly stable as long as ρ > 0. Conclusively, the optimality

gap Q(t) remains finite irrespective of how high the arrival

rate of events is, or how slow the exponential slope of our

solver is. We can derive the stationary mean and variance:

Q = lim
t→∞

E [Q(t)] =
eλ

ρ
,

σ2
Q = lim

t→∞
Var[Q(t)] =

e2σ2
A

ρ(2− ρ)
.

However, to achieve this performance, the SDN controller

must reconfigure the network at each iteration. The objective

of the next sections is to derive control policies that yield

small optimality gap without reconfiguring continuously the

network.

III. CONTROL PROBLEM FORMULATION

Flow reconfigurations take time and cause small distur-

bances that affect the QoS, hence we would like to minimize

them. However, the goal of minimizing flow reconfigurations

conflicts with the goal of minimizing the average error. For

example, always applying the new solver iteration yields the

best possible average optimality gap Q, but incurs at the same

time the maximum number of reconfigurations (one every

iteration). On the other hand, we may decide to periodically

reconfigure once every ten iterations, which limits the recon-

figuration frequency to 10% but results in operational cost

higher than Q, since in many iterations improved solutions

are available but not applied to the network.

We consider a controller which at each slot decides whether

to use the improved solution of the iterative solver or not.

By selecting u(t) = 1 the controller decides to “spend” one

1A newly arriving demand is treated by the FCS procedure. We will assume
that such a path can always be found. This assumption is not restrictive in
practice because (i) systems are often overprovisioned, and (ii) in the case
of a network overload, a congestion controller may reject some demands to
make the system feasible.

Fig. 3: Evolution of the optimality gap obtained using the MCF
solver (red points) and the control policy with renewals (dashed green
curve). The black curve is the interpolation of the points computed by
the MCF solver at each iteration. Solid dots show where the solution
computed by the solver is applied.

reconfiguration to bring the network into a form that agrees

with the current output of the iterative solver. If u(t) = 0 is

selected, then the network is left untouched.2

While the solver’s solution has an optimality gap Q(t)
which evolves according to (5), the actual operational optimal-

ity gap is higher when we do not apply the best solution at each

iteration, since the distance from the optimal point increases

as illustrated in Fig. 3, where the “surcharge cost” between

the solid black line (the output from the solver) and dashed

green line (the cost of the current network configuration) keeps

increasing as long as the u(t) = 0. We denote by S(t) the

surcharge cost at slot t caused by not using the most recent

improved solution. The evolution is given by

S(t) = (S(t− 1) + ρQ(t− 1)) (1− u(t)), (6)

where we note that (i) if u(t) = 1 then S(t) becomes zero,

while (ii) if u(t) = 0 then S(t) increases by a term ρQ(t−1)
which is the new cost improvement computed by the solver

but not applied to the network.

The objective is to find a control policy that selects u(t)
at each slot in order to minimize the average surcharge cost

subject to a constraint on the average number of flow recon-

figurations (i.e., the number of times we select u(t) = 1). We

may formalize a stochastic optimization problem as follows.

Minimum Surcharge subject to Reconfiguration Frequency:

Minimize lim sup
T→∞

1

T

T−1
∑

t=0

E{S(t)} (7)

s.t. lim sup
T→∞

1

T

T−1
∑

t=0

E{u(t)} ≤ hmax. (8)

where 0 < hmax ≤ 1 is the constraint on the frequency of slots

where we reconfigure. There exist potentially other objectives

or constraints with which we would like to generalize problem

2Without loss of generality, we leave for future work other granularities of
reconfiguration like per-device and per-flow.

(7), such as for example to minimize the number of routers that

become reconfigured. In this paper we focus on the solution

of (7) which is fundamental for SDN controllers.

Problem (7) is a stochastic online optimization that admits

a class of policies Π. Here, we are interested in causal

policies, that is policies with no knowledge/prediction about

the time instances of future arrivals. In more detail, at the

beginning of slot t, the controller is given the optimality gap

Q(t) as computed by the solver. Additionally, the controller

knows the past evolution of the system, that is the values

(A(τ), Q(τ)), ∀τ < t. Any new flow arrivals/departures that

occur at slot t are taken into account for computing the (new)

optimal flow allocation from slot t + 1 and onwards. The

system is then Markovian with state vector

S(t) = [Q(t), S(t− 1), Q(t− 1)]

(the last two state variables are needed to find the cost (6) at

each slot) and the problem is a constrained Markov Decision

Process (MDP) with infinite horizon and time-average cost and

constraint, where the system dynamics and the cost at every

slot are given by (5) and (6). It is known [11, Th. 6.2] that we

can restrict to the set of Markov controls (i.e. one that makes

the control decision at slot t based only on S(t) and knowledge

of statistics of the arrivals) without any loss of optimality; this

means that policies that use older information or are allowed

to depend on the time slot index do not lead to a better

performance than those that make decisions based only on

the current state of the system and its statistics. Nevertheless,

since (7) includes the solution of a constrained MDP with

infinite state space, it is impossible to solve efficiently using

standard methods. In the next section we restrict our attention

to a subclass of policies that invoke a renewal structure and

include an efficient solution.

IV. CONTROL POLICY WITH RENEWALS

We say that a Markov process has a renewal structure

if the system visits states where it “statistically restarts”,

cf. [12, Ch. 7]. Such systems are much easier to analyze

since the online problem can be broken down to smaller

control problems within each renewal frame. Unfortunately,

the problem (7) we are interested in does not have such a

renewal structure. Our approach in this section is to use an

artificial constraint to invoke a renewal structure into our

system. We will later show that subject to this constraint,

there is an efficient policy that optimizes (7), thus providing

a complete performance characterization of the system under

this constraint.

Policy Constraint 1 (Reconfigure after Demands Change):

Consider the constrained set of policies Πc ⊂ Π. For any

policy π ∈ Πc the reconfiguration is applied whenever there

was a change in the demands, i.e., at any t

u(t) = 1 if A(t− 2) > 0, ∀t, ∀π ∈ Πc.

The delay of 2 slots in A(t − 2) relates to our notation and

ensures that the controller is forced to reconfigure at the first

iteration after the arrivals have been considered, see the blow-

up box of Figure 3. In the figure, A(tA) represents arrivals

in [tA; tB) that are soon handled by FCS using the network

configuration in state S(tA). These arrivals are handled by

GC at time tA+1 = tB (i.e., their paths are integrated in the

problem (1)-(3) at tA+1) and only at tA+2 the benefit of GC

is available. Intuitively the constraint is justified since the first

step of the solver has the steepest decrease in the optimality

gap and hence by choosing u(t) = 1 in such slots a great extra

cost is avoided.

Note that for Πc to be feasible, it must be P{A(t) > 0} <
hmax. If otherwise, the reconfiguration constraint (8) will be

violated by any policy in Πc.

Under a policy π ∈ Πc the time interval between two

consecutive slots with the property “A(t−2) > 0” constitutes

a renewal frame. Let t0 = 0, denote tn the n−th slot satisfying

A(t− 2) > 0, and denote Tn = tn+1− tn the number of time

slots in the n−th frame (note that Tn is a random variable).

In the remaining of this section we propose RP (Renewal

Policy), a policy that satisfies the Constraint 1 and hence RP ∈
Πc. By exploiting the renewal structure that policies in Πc

induce, we will prove that RP is a feasible policy that achieves

near-optimal value of (7) over all policies in class Πc.

A. Renewal Policy (RP)

A standard way to solve stochastic optimization problems

involves the use of policies that greedily balance the penalty in

a time slot with the instability of virtual queues; see the drift-

plus-penalty algorithm [12]. In fact, this dynamic algorithm

can also be applied to systems with renewals. In this case, the

policy keeps track of the budget spent thus far and puts a price

per unit of budget to be spent in the next renewal frame; in our

system we have a price per reconfiguration. This budgeting

method guarantees long-term feasibility. Within the renewal

frame, an oracle policy is used to decide the control taking into

account the price per reconfiguration. When the uncontrolled

states of the system are i.i.d. renewals, the problem is tackled

in [12], [13]. Here we extend it to our non-i.i.d. framework.

To introduce a “price” into our system we define a virtual

queue U(tn) whose value we track only at the end of each

renewal frame:

U(tn+1) =

[

U(tn)− Tnhmax +

tn+Tn
∑

t=tn+1

u(t)

]+

, (9)

where the term
tn+Tn
∑

t=tn+1
u(t) equals the number of recon-

figurations used in the last renewal frame, while Tnhmax

is the product of the last renewal frame length Tn times

the average constraint on reconfigurations from (8). From

Queueing Theory point of view, the implications here are clear.

Mean rate stability [12, p. 17] of U(tn) guarantees the property

“arrivals ≤ departures”, hence

lim sup
T→∞

1

T

T−1
∑

t=0

E{u(t)} ≤ hmax

which satisfies (8). Hence, any policy that stabilizes U(tn) is

a feasible policy. To track in real-time the stability of U(tn),
we define the quadratic Lyapunov drift as

∆(s, U(tn)) = E
[

U2(tn + Tn)− U2(tn) |S(tn) = s, U(tn)
]

For a given policy, ∆(s, U(tn)) measures how U(tn) drifts

over a renewal frame. Any policy that yields bounded

∆(s, U(tn)) for any (s, U(tn)) can be shown to stabilize

U(tn) in the mean rate sense, hence such a policy is feasible.

Apart from feasibility, we are also interested in minimizing

the cost (7), thus we combine the drift ∆((s, U(tn)) with the

cumulative penalty (7) within a renewal frame:

DPP (s, U(tn)) = ∆(s, U(tn)) + V E

{

tn+Tn
∑

t=tn+1

S(t)

}

, (10)

where V is a constant that weighs the two goals. The metric

(10) is often called Drift-Plus-Penalty (DPP). Minimizing

drift-plus-penalty includes two conflicting goals, (i) to mini-

mize the drift ∆(s, U(tn)) thereby satisfying in the long term

the constraint (8), or (ii) to greedily minimize the penalty in the

next renewal frame. In fact, u(t) = 0 favors (i) and u(t) = 1
favors (ii). A policy that minimizes drift-plus-penalty at each

renewal frame is essentially striking a good balance between

the two in a greedy fashion.

If we perform standard calculations and expand (10) we

obtain an upper bound expression on DPP (s, U(tn)) which

is optimized at every renewal by a policy that solves the

following optimization problem:

J∗(tn;V) = minE

{

tn+Tn
∑

t=tn+1

V S(t) + U(tn)u(t)

}

(11)

This optimization seeks to find an appropriate sequence of

controls u(tn + 1), . . . , u(tn + Tn) within the n–th renewal

frame to balance the expected price of the extra cost V S(t)
with the price of reconfigurations U(tn)u(t).

Next, we propose RP which is designed to minimize (11) at

every renewal frame, subject to Constraint 1. The RP policy

works as follows. Following a slot with an arrival, it always

selects u(t) = 1 and notes the beginning of a renewal frame.

The virtual queue (9) is used to track the evolution of the

price across renewal frames. At the beginning of the n–th

renewal RP observes the value U(tn) and calls a routine

ǫ–OPT(U(tn)) which approximately solves (11). The routine

returns an infinite sequence of controls u(tn+1), u(tn+2),

RP uses this sequence until the n–th renewal is over at which

point it discards the remain subsequence and starts over. The

policy is described in the next page.

B. Performance Analysis of RP

In this subsection we build intuition about why RP is

optimal in class Πc. The technical proof of the result will

be presented in our followup work.

1) Q(t) is an ergodic Markov chain: For the analysis we

will make the following assumption

Renewal Policy (RP)

Parameter Selection. t0 = 0, V = 100, U(t0) = V .
Renewal frame. Check every slot. If at slot t − 2 we had
A(t − 2) > 0, then slot t is the beginning of a renewal
frame. This recursively defines a sequence of time instances
t0, t1, . . . , tn, . . . that indicate the beginning of renewals,
where the slots {tn, . . . , tn+1 − 1} define the n–th renewal
frame. Within n–th renewal the policy performs the following
steps.
Step 1: Constraint 1. Choose u(tn) = 1.
Step 2: Price Update. Update the price

U(tn) =



U(tn−1)− Tn−1hmax +

tn−1+Tn−1
∑

τ=tn−1+1

u(τ)





+

.

Step 3: Solution of (11). Call routine ǫ–OPT(U(tn)) to obtain
an infinite sequence of controls U = {u(tn + 1), u(tn +
2), . . . } that approximately solves

Minimize E

{

tn+Tn
∑

t=tn+1

V S(t) + U(tn)u(t).

}

We describe routine ǫ–OPT(U(tn)) below.

Step 4: Actions within the renewal. For time slots {tn +

1, . . . , tn+1 − 1} choose the controls according to U .

Assumption 2: If Q(t) = qǫ for some small constant 0 <
qǫ << 1, then we can approximate Q(t) = 0.

In practice the assumption implies that tiny optimality gaps

may be disregarded, hence it is mild. Technically, it is used to

prove the following intermediate result:

Lemma 3: The process Q(t) evolves in a countable state

space. In addition, under Assumption 2, Q(t) is irreducible

and aperiodic.

Proof: All proofs of claims are in the technical report.

2) Optimal cost of Πc: Consider the optimization (7) over

all policies belonging to Πc. The problem can still be seen

as a constrained MDP, with state space S̃(t) = [Q(t), S(t −
1), Q(t−1), A(t−2)]. From the general theory of constrained

Markov Decision Processes (see e.g. [11]) we can show the

following:

Lemma 4: The optimal policy π∗ ∈ Πc is one where

the controller is a (possibly randomized) function of only

[Q(t), S(t − 1), Q(t − 1)] if A(t − 2) = 0 and u(t) = 1
if A(t − 2) > 0 (the latter is due to the constraint of class

Πc).

Denote the incurred cost of π∗ with S
∗
, where

S
∗
= lim sup

T→∞

1

T

T−1
∑

t=0

E{Sπ∗(t)}.

Although we cannot directly characterize π∗, we will use its

existence to prove the optimality of RP.

3) Analysis of RP: The setting we have here is slightly

different with respect to optimization over renewal processes

as presented in [12], [13], since Q(tn+1) depends on Q(tn)
(in the references the uncontrolled process is i.i.d. at renewal

periods). In order to resolve this, we use the idea of T−slot

drifts as employed in [12], [14] for Markovian dynamics of the

uncontrolled state processes, extending it over renewal frames

this time.

Specifically, define I(t) = 1I{A(t−2)>0} and the Markov

chain Z(n) = [Q(tn), I(tn)] (note that S(tn) = 0 since

u(tn) = 1 ∀n, therefore S(tn − 1), Q(tn − 1) do not matter).

Then choose any of the states z = [q, 1]. Since we also need an

arrival to happen at states z, we are essentially looking at the

beginning of renewal frames of the initial problem. Starting

from a point in time where Z(n) = [q, 1] and denoting Nq the

return time to that state, we consider a variable drift for these

Nq renewal frames. Assuming a routine that solves (11) with

an ǫ error and standard analysis from Lyapunov optimization

theory [12], we compare the drift-plus-penalty of RP to π∗ to

get

S
RP

≤
ǫ+Bq

V
+ S

∗
. (12)

where

Bq =
E
{

T 2
n

}

(1− hmax)

2
E {Nq}

+
E {Tn} (1 + hmax)

2
E
{

N2
q −Nq

}

.

For every q ∈ Q we prove that the return time has bounded

second moment:

Lemma 5: E
{

N2
q

}

<∞, ∀q ∈ Q.

which asserts that Bq < ∞. Hence (12) shows that the cost

achieved by RP is near-optimal (consider for example large

values of V). Feasibility is shown by using the same drift

analysis to prove that U(tn) is mean rate stable. Formally:

Theorem 6 (RP is near-optimal in Πc): Let J∗(tn;V) be the

optimal value of (11) and U be an ǫ−optimal control policy

for every renewal frame, i.e. a control policy that for every

renewal frame n achieves a cost J(tn;V) ≤ J∗(tn;V) + ǫ,
for a constant ǫ > 0. Then, for RP the following hold:

1) The constraint of eq. (8) is satisfied.

2) S
RP

≤ S
π∗

+ B+ǫ
V

(i.e. the average cost (7) is (O(1/V)
close to the optimal one, achieved by π∗), where B =
min
q∈Q

[Bq] is a finite constant.

C. ǫ-optimality via Dynamic Programming

Above we required a routine that approximately solves (11).

Below we describe this routine. Denote

β = 1− P{A(t) > 0}, (13)

the stochastic control problem (11) with state evolution defined

by (4) and (6) is equivalent to the deterministic control

problem of finding a control sequence u(t) ∈ {0, 1}, t =
tn + 1, tn + 2, tn + 3, ... to solve

Minimize

∞
∑

t=tn+1

βt−tn (V S(t) + U(tn)u(t)) , (14)

where the dynamics of the system are given by (4), (6) (for

t ∈ {tn, ...,∞}). To efficiently solve (14) we first note that

the cost function is bounded. By exploiting this fact, we can

truncate the infinite time window over which the optimal

control is evaluated at time step T , and derive a truncated

sequence which produces a finite discrepancy ǫ (monotonically

decreasing in T) on the optimal cost. In Theorem 7 we state

this formally and provide an expression of T as a function of

a tolerated optimality error ǫ.
Theorem 7: Let ǫ > 0. Let ũ′ be the optimal solution of the

following truncated version of (14):

ũ′ = argmin
u′
k

T
∑

k=1

βk (V Sk + U(tn)u
′
k) (15)

s.t.Qk+1 = (1− ρ)Qk, 1 ≤ k ≤ T − 1

Sk = (1− u′k) (Sk−1 + ρQk−1) , 1 ≤ k ≤ T − 1

S0 = 0, Q0 = Q(tn)

where the truncated time horizon T is computed as

T =

⌈

log

(

ǫ

(1− β) (V Q0 + U(tn))

)

/ log(β)− 1

⌉

.

The, the policy u′ = [ũ′, lT+1, lT+2, . . .], where l is any

infinite binary sequence is ǫ-optimal w.r.t. the original problem

in (14).

The truncated problem is a deterministic control in finite

time horizon and finite state space. Below we propose a routine

that uses standard Dynamic Programming methods to solve the

truncated problem.

ǫ-optimal routine ǫ–OPT(U(tn))

Parameters. Choose discrepancy ǫ, probability of arrivals β,
constant V .
Input. Price U(tn), optimality gap Q(tn).

Output. Use standard Dynamic Programming techniques

(e.g. forward induction [15]) to solve (15), with T selected as

given in Proposition 7. Then, the following control sequence

is obtained for time slots U = {tn + 1, tn + 2, . . . }:

u(t) = ũ′t−tn , tn < t ≤ tn + T and u(t) = 0, ∀t > tn + T .

1) ǫ–OPT has linear complexity: We now turn to the actual

computation of the ǫ-optimal strategy ũ′. In general, any opti-

mal control problem with finite state space can be formulated

as a Dynamic Programming (DP) technique; nevertheless, the

amount of memory required by the solution of the DP problem

may generally grow exponentially along the iteration step axis,

which then makes the DP implementation a daunting task

[15]. Fortunately, our case is tractable, since the state variables

Qk, Qk−1 are completely determined by the time index and

initial condition and each time control u′k = 1 is applied,

Sk = 0. Therefore, looking at the corresponding Trellis tree

in Fig. 4, at each time step k + 1 there are k different paths

that converge into the state Sk+1 = 0 (the paths for which

u′k = 1). Thanks to Bellman optimality principle, we can store

only the path with minimum cost and discard all the remaining

k− 1 suboptimal paths. In other words, 2k different paths are

generated at step k, but only k+1 are then left for the recursion

step at time k + 1.

The dynamic programming algorithm terminates at step k =

T , when the ǫ-optimal control always prescribes ũ′T = 0 (in

fact, it is easy to see that setting ũ′T = 0 would incur a higher

cost and does not alter the future state evolution). The path

with minimum cost among the T surviving ones is selected,

and the ǫ-optimal control ũ′ can be finally read on the labels

associated to each link of the best path.

Fig. 4: Dynamic programming trellis

D. Properties of RP

Using Constraint 1, we converted the original problem

of a constrained MDP in a very large state space to a

stochastic control problem which is amenable to Lyapunov

optimization solutions. In particular, it is possible to solve

the constrained problem optimally by a two level approach:

(i) A virtual queue is used to capture the evolution of price

of reconfiguration (and monitor the long-term feasibility of

the frequency constraint) and (ii) inside the renewal frame

we use deterministic optimal control taking into account the

price. We have shown that the latter is a feasible methodology

since it can be solved in linear time to T , which is lower than

the complexity of one solver iteration. Another advantage of

the proposed methodology is that only the probability that a

flow arrives/departs is needed and not the whole distribution of

A(t). Apart from P (A(t) > 0) which needs to be estimated,

the RP policy is purely adaptive and oblivious to past events or

other system statistics. Finally, we observe that the constraint

is not very harmful since surcharge cost is particularly high

when demands change, and hence it is desirable to reconfigure

at these time instances.

V. GREEDY POLICY (GP)

It is tempting to propose a heuristic approach which uses

the drift-plus-penalty method at every time slot instead of

every renewal frame. The virtual queue that corresponds to

the constraint is then updated at every slot as

U(t+ 1) = [U(t)− hmax]
+
+ u(t) (16)

and we seek a policy that observes U(t),S(t) and tries to min-

imize the right-hand-side of the drift-plus-penalty expression

(expectations are conditional on U(t),S(t) and over possible

randomizations of the policy)

E

{

U2(t+ 1)− U2(t)

2

}

+ V E {S(t)} ≤
h2
max

2
+ (17)

U(t)(E{u(t)}−hmax)+V (S(t− 1) + ρQ(t− 1))E {(1− u(t))}.

This can be achieved by a threshold policy of the form

Greedy Policy (GP)

u(t) =

{

1 if U(t) < V
S(t−1)+ρQ(t−1)

2
0 otherwise.

Although GP minimizes the right hand side of (17), it is not

a provably near-optimal policy for (7) within Π. The reason is

the following: drift-plus-penalty algorithms can be proven to

be near-optimal for cases where the cost that is added at every

time slot depends only on the control taken at that time slot

and state variables that evolve independently of the control

actions [12]. This is not the case in our problem, since the

evolution of the cost to be added at time slot t depends on the

control policy taken in the previous slot, as seen by (6).

On the other hand, GP has numerous advantages. (i) Using

the drift-plus-penalty we may show that it stabilizes U(t) and

hence it is a feasible policy. (ii) Contrary to RP, GP can be

applied for constraints smaller than the probability of arrival

of a flow. (iii) It is oblivious to Q(t) and can be applied

without knowledge of the optimal value of the optimization.

(iv) It does not require any information on the statistics of

how the demands change-e.g. it does not need P (A(t) > 0).
To implement GP we only need to keep track of the virtual

queue U(t), and the costs Q(t), S(t) from the previous slot.

The constant V is chosen high enough to approximate well

the optimal solution; a typical value is V = 1000.

VI. NUMERICAL RESULTS

To evaluate the performance of our control policies on a

realistic online SDN routing optimization system, we have

implemented a scalable algorithm based on column generation

to solve iteratively the linear program (Eq. (1)-(3)). In what

follows, we first describe the experimental methodology and

then illustrate the results that confirm the validity of our

dynamic control approach.

A. Experimental Methodology

Since we are interested in solving large MCF problems, the

SDN solver we implemented works as follows. It first com-

putes a feasible solution using FCS, allocating the demands

that arrive to the system on cheapest paths over the residual

graph. After this initialization phase, the solver proceeds by

considering only a subset of paths and iterates by adding

and removing paths (i.e., xp variables) to a restricted version

of the problem until it converges to the optimal point. At

each iteration, the solver typically uses the dual formulation

of Eq. (1)-(3) to add only those paths that can improve the

objective function.

In order to perform the evaluation under realistic conditions,

we used a real-life dataset captured in 2006 by Uhlig et al. [10]

on GEANT, the high bandwidth pan-European research and

education backbone. The dataset contains a topology of 22
nodes and 36 high capacity 40G links. The link cost has been

rescaled in the range [0; 100]. We generated random traffic

demands according to a Poisson process with inter-arrival

time of 2 s and fixed duration of 20 s. The total simulation

time is 10 min. We perform 50 independent measurements by

generating as many traffic patterns, which are enough to yield

very narrow confidence intervals.

B. Performance Evaluation

Fig. 5(a) illustrates the total surcharge (i.e.,
T
∑

t=0
S(t)) while 5(b) shows the reconfiguration rate

h = lim supT→∞
1
T

T−1
∑

t=0
E{u(t)} used by the control policies

as a function of the bound on the reconfiguration rate

hmax. We compare our control schemes RP and GP against

a Periodic Policy (PP) that consists in reconfiguring the

network periodically with a period equal to 1
hmax

. Note that

for RP we can only show the results for hmax ≥ 0.7, which

is slightly larger that the arrival rate λ in our scenario. Indeed,

by definition RP needs to reconfigure at least as many times

as the number of arrivals/departures.

Fig. 5(a) shows that RP and GP achieve performance

almost identical to continuously reconfiguring the network

(S(t) = 0) even with a reconfiguration rate lower than 100%.

Furthermore, as illustrated in in Fig. 5(b), we can observe that

both RP and GP satisfy the constraint on the reconfiguration

rate, namely h < hmax. However, while RP requires a recon-

figuration rate slightly larger than the arrival rate to obtain such

a result, the GP scheme requires a lower reconfiguration rate,

thus resulting in a more economical control policy. Differently

from RP, GP can select only the best iterations, namely

the iterations with the largest improvement in terms of cost

reduction. In our simulations, we observe that selecting the

very first iterations of the column generation algorithm after

an arrival/departure provides the best performance.

From the figures, it can be further observed that the PP

policy performs poorly when the SDN operator has a low

budget on the reconfiguration rate. Specifically, when the con-

troller operates with a limit on the reconfiguration rate in the

[0.1; 0.4] interval, using a periodic policy incurs in a surcharge

3 times larger than using the GP scheme. Nonetheless, as the

network and the data traffic can sustain a larger number of

reconfigurations, PP provides good performance, since the

time that lasts after selecting a bad iteration and the next

reconfiguration decreases. In other words, even if PP selects

bad iterations, it can quickly recover when the reconfiguration

rate increases.

Fig. 5(c) shows a snapshot of an evolution over time of

the surcharge S(t) for GP (solid line) and PP (dashed line)

among the 50 trials with hmax = 0.1. While PP blindly

selects which iterations to use, leading to bad performance, GP

“waits” until a big increase in the surcharge before applying

the configuration of the solver, thus reducing the surcharge

cost paid by the network operator.

VII. RELATED WORK

SDN enables a global and online routing optimization to

improve link utilization and increase reactivity to failures.

Reconfiguration Frequency

0 0.2 0.4 0.6 0.8 1

S
u

rc
h

a
rg

e

0

500

1000

1500
S

GP
(t) S

PP
(t) S

RP
(t)

(a) Total Surcharge

Reconfig. Freq. (h
max

)

0 0.2 0.4 0.6 0.8 1

R
e

c
o

n
fi

g
.

F
re

q
.

(h
)

0

0.2

0.4

0.6

0.8

1
GP PP RP

(b) Reconfiguration Rate

Iteration

930 940 950 960 970 980 990 10001010

S
u

rc
h

a
rg

e
,

S
(t

)

0

5

10

15

20
GP PP

Periodic: u(t) = 1

Greedy: u(t) = 1

(c) SPP (t) vs SGP (t) with hmax = 0.1

Fig. 5: Performance evaluation of the proposed control policies over GEANT as a function of the bound hmax on the reconfiguration rate.

Google has showed in 2013 that they could achieve nearly

100% of link utilization [16] with their OpenFlow WAN

controller. Two main factors are behind this architectural

evolution: programmable data planes and logically centralized

controller platforms. Several propositions have emerged in

recent years to make data plane elements programmable and

offload the control logic to external units. To name a few:

Forces [17], PCEP [18] and OpenFlow [19].

Recent research on routing problems has been pursued on

two main lines: large problem instances and online versions

of the problem. Solving large routing problems has received

a lot of interest from the traffic engineering community [20].

Several approaches have been proposed using column gen-

eration to solve large problem instances [3]. However, they

have been mostly developed for offline network planning tools

considering the worst case scenario and do not consider their

use in a dynamic routing system.

The oline version of the MCF problem, where the param-

eters are revealed over time, has been studied for throughput

maximization or load minimization, as detailed by Even et

al. [5]. In more general settings, the problem has been formu-

lated as an online packing and covering problem [21], where

the objective function as well as the packing constraints are

not known in advance. While these works show sublinear

competitiveness ratios, they have been mainly designed for

admission control and do not propose any reoptimization of

the flow allocation.

VIII. CONCLUSION AND PERSPECTIVES

Software-Defined Networking is foreseen as a means of

using more efficiently network resources and dynamically

adapting the routing configuration over time. In this context,

this paper addresses an important question about the interplay

between the high degree of configuration flexibility and the

computational limits of the SDN controller logic.

Specifically, we study the evolution over time of the op-

timality gap of a general class of iterative routing optimiza-

tion algorithms. Furthermore, we present two control policies

working on top of the online routing optimization engine to

decide whether to apply or not the current yet not optimal

global network configuration. Numerical results show that our

control schemes can easily track the evolution of the system

using a bounded number of reconfigurations, thus pursuing

the double objective of optimizing the performance and the

system stability.

REFERENCES

[1] Bruno Nunes Astuto, Marc Mendonça, Xuan Nam Nguyen, Katia
Obraczka, and Thierry Turletti. A Survey of Software-Defined Net-
working: Past, Present, and Future of Programmable Networks. IEEE

Communications Surveys and Tutorials, 16(3):1617 – 1634, 2014.
[2] Ning Wang, Kin Ho, George Pavlou, and Michael Howarth. An

overview of routing optimization for internet traffic engineering. IEEE

Communications Surveys & Tutorials, 10(1):36–56, 2008.
[3] Kazutaka Murakami and Hyong S Kim. Optimal capacity and flow

assignment for self-healing atm networks based on line and end-to-end
restoration. IEEE/ACM Trans. on Networking, 6(2):207–221, 1998.

[4] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula,
Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer.
Dynamic scheduling of network updates. ACM SIGCOMM, 2014.

[5] Guy Even and Moti Medina. Online multi-commodity flow with high
demands. Approximation and Online Algorithms, 2013.

[6] Jacques Desrosiers, François Soumis, and Martin Desrochers. Routing
with time windows by column generation. Networks, 14(4):545–565,
1984.

[7] Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic
gradient method with an exponential convergence rate for finite training
sets. Advances in Neural Information Processing Systems, 2012.

[8] Yu Nesterov. Gradient methods for minimizing composite functions.
Mathematical Programming, 140(1):125–161, 2013.

[9] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging

Sciences, 2(1):183–202, 2009.
[10] Steve Uhlig, Bruno Quoitin, Jean Lepropre, and Simon Balon. Providing

public intradomain traffic matrices to the research community. ACM

SIGCOMM Computer Communication Review, 36(1):83–86, 2006.
[11] Eitan Altman. Constrained Markov Decision Processes, volume 7. CRC

Press, 1999.
[12] Michael J. Neely. Stochastic Network Optimization with Application to

Communication and Queueing Systems. Morgan & Claypool, 2010.
[13] Michael J. Neely. Dynamic optimization and learning for renewal

systems. IEEE Trans. on Automatic Control, 58(1):32–46, Jan. 2013.
[14] Longbo Huang and Michael J. Neely. Max-weight achieves the exact

[o(1/v), o(v)] utility-delay tradeoff under markov dynamics. arXiv

preprint arXiv:1008.0200, 2010.
[15] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control,

volume 1. Athena Scientific Belmont, MA, 1995.
[16] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon

Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, et al. B4: Experience with a globally-deployed software
defined WAN. ACM SIGCOMM, 2013.

[17] Avri Doria et al. Forwarding and Control Element Separation (ForCES)
Protocol Specification, RFC 5810, IETF (March 2010).

[18] Avri Doria et al. Path Computation Element (PCE) Communication
Protocol (PCEP), RFC 5440, IETF (March 2009).

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling innovation in campus networks. SIGCOMM CCR,
38(2):69–74, March 2008.

[20] Sugam Agarwal, Murali Kodialam, and TV Lakshman. Traffic engineer-
ing in software defined networks. IEEE INFOCOM, 2013.

[21] Niv Buchbinder and Joseph Naor. The design of competitive online
algorithms via a primal: dual approach. Foundations and Trends R© in

Theoretical Computer Science, 3(2–3):93–263, 2009.

