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This paper introduces relevant statistics for the description of routes in the internet, seen as a graph at the interface
level. Based on the observed properties, we propose and evaluate methods for generating artificial routes suitable for
simulation purposes. The work in this paper is based upon a study of over seven million route traces produced by
CAIDA’s skitter infrastructure.
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1 Introduction
Realistic modeling of routes in the internet is a challenge for network simulation. Until now, one has
had to choose one of the three following approaches to simulate routes: (1) use the shortest path model, (2)
explicitly model the internet hierarchy, and separately simulate inter- and intra-domain routing, or (3) replay
routes that have been recorded with a tool like traceroute. All of these methods have serious drawbacks.
The first method does not reflect reality since routes have not the same properties as shortest paths [Pax97],
mainly because of routing policies [TGS01]. The second method is limited by our ability to explicitly
simulate the internet hierarchy [TGJ � 02, LAWD04]. Finally, the third method is not suitable if routes from
a large number of sources are to be simulated. Today’s route tracing systems employ at most a few hundred
sources. CAIDA’s skitter [HPMc02, CAI] infrastructure, for instance, produces an extensive graph suitable
for simulations, but it based on routes from just thirty sources.

This paper’s principal contribution is a new approach to modeling routes in the internet, one that does not
share the drawbacks just described. We suggest using an actual measured graph of the internet topology,
such as the graph generated by skitter. Between random chosen sources and destinations, we suggest
generating artificial routes with a model chosen to reflect statistical properties of actual routes.

The remainder of this paper is organized as follows. Sec. 2 describes the data set that we have used.
Sec. 3 proposes the set of statistical properties to describe routes in the internet. Sec. 4 proposes the models
we use to simulate routes based on these properties. Sec. 5 evaluates those models, and Sec. 6 concludes
the paper.

2 The data set
This study uses skitter data from July 2nd 2003. The data was collected from 23 servers targeting 594,262
destinations. We obtained the corresponding IP graph by merging the results of the 7,075,189 traceroutes
conducted on that day. This graph captures the small-world, clusterized, and scale-free nature of the internet
already pointed out for instance in numerous publications [JB02, FFF99]. In particular, the average distance
is approximately 12 � 54 hops, and the degree distribution is well fitted by a power law of exponent 1 � 97.

3 Statistical properties of routes
This section presents a set of properties for statistical description of internet routes. These properties moti-
vate the models of Sec. 4. Several properties have already been studied in previous work, and the work here
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serves to evaluate and update them.
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Figure 1: Statistical properties of internet routes.

3.1 Route lengths

It is well known that routes are not shortest paths: they are not optimal in general. Fig. 1(a) shows the
length distributions of the routes in our data set, and of the corresponding shortest paths. It also shows the
distribution of the difference (delta) between the length of a route and the corresponding shortest path. The
mean length of 15 � 57 hops for routes in this data set fits closely Paxson’s observations [Pax97, Pax96] on a
data set from nine years prior. The shortest paths have a mean length of 12 � 55 hops (11 � 4 hops if the graph
is considered to be undirected).

3.2 Hop direction

When a packet travels from one router to another, it may move closer to its destination, but also it may move
farther, or it may move to an interface that is at the same distance from the destination as one it just left.
Likewise, the distance from the source may increase, decrease, or stay constant. We will call these behaviors
the hop direction. Note that in shortest paths hops always increase the distance from the source and decrease
the distance to the destination. Fig. 1(b) shows the portion of forward, backward, and stable hops at each
hop distance for routes of 15 hops (the most numerous ones). Note that, as one would expect, the first and
last few hops are generally forward because there are few alternatives. On the contrary, in the core of the
network a significant proportion of the hops do not go closer to the destination. This type of behavior has
already been described as the product of policy-based routing in the core of the internet [TGS01].

3.3 Degree evolution along a route

Recent work has shown that in many real-world complex networks, most of the short paths between pairs of
nodes tend to pass through the highest degree nodes [KYHJ02, GLM04]. These observations lead us to ask
how the node degree evolves along a route. Fig. 1(c) shows† how node degree evolves for routes of length
15. It reveals that a typical route does not pass through the highest degree nodes, though a certain number
of routes do pass through some very high degree nodes. There is a peak in median out-degree observable
at distance 1. The median falls at distance 2, rises again, and then stays fairly flat out to distance 13, with
a median degree of about 10. This leads us to the following interpretation: the hosts have low degree, they
are connected at their first hop router to relatively high degree nodes which play the role of access points,
and then packets are routed in a core network where the degree does not depend much on the distance from
the source or from the destination.

Furthermore, one may wonder if there is a simple local rule that can be observed for the degree evolution.
In particular, if there is a choice of next hop interface along a route, is there a correlation between the degree
rank of an interface and its probability of being chosen? Fig. 1(d) plots the probability that a packet travels

† In Fig. 1(c), dots indicate the median. Vertical lines run from the min to Q1 and from Q3 to the max. Tick marks indicate the 5th,
10th, 90th and 95th percentiles.
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to an interface’s i-th ranked neighbor, where the neighbors are ranked from highest out-degree to lowest.
This figure highlight such a correlation.

4 Route models
The previous section provides a set of simple statistical tools to capture some properties of routes in the
internet. We now propose two models designed to capture these features.

4.1 Random deviation model
The random deviation model is based upon the idea that a route usually follows a shortest path, but might
occasionally deviate from it. We modeled this using one single parameter, p, the probability at any point of
deviating from the current shortest path to the destination, if such a deviation is possible. We found p � 0 � 2
to work well. A random deviation route from source s to destination d is therefore based upon a shortest
path u from s to d. At each hop, with probability 1 � p, the route continues along u. But with probability p
it will, if possible, deviate off u to another path.

4.2 Node degree model
The basic idea is that a path which goes preferentially towards high degree nodes tends to see most nodes
very rapidly [KYHJ02]. The node degree model is based upon a similar approach, as follows. Two paths
are computed, one starting from the source and the other from the destination. The next node on the path
is always the highest degree neighbor of the current node. The computation terminates when we reach a
situation where a node is the highest degree neighbor of its own highest degree neighbor. One can show
that this is the only kind of loop can occur. Then, one of two cases applies: either the two paths have met
at a node, or they have not. In the first case, the route produced by the model is the discovered path (both
paths are truncated at the meet up node, and are merged). In the second case, we compute a shortest path
between the two loops, and then obtain the route by merging the two paths and this shortest path, removing
any loops. This method has already been proposed [BLP04] as an efficient way to compute short paths in
complex networks.

5 Evaluation
This section compares the performance of the random deviation and node degree models. For each model,
we chose at least 60,000 (source, destination) pairs at random from amongst the nodes of the graph and
generated an artificial route for each of them. We compute the same statistics on these routes as we had
computed for actual routes in Sec. 3. Fig. 2 shows the statistics for each model.

Comparing the route length distributions, we find that both models generate distributions that are sym-
metric, average somewhat higher than the shortest path distribution, and have tails similar to the actual route
length distribution shown in Fig. 1(a). Mean route length is 15 � 15 for the random deviation model and it is
14 � 96 for the node degree model. Lengths of paths generated with the node degree model tail off somewhat
quicker than in reality, but the degree of fidelity is nonetheless remarkable given that the length distributions
are not explicitly part of the model.

Looking at the hop directions for the most frequent route length, we found that the curves for the random
deviation model better match the shapes of the curves for real routes shown in Fig. 1(b). Hops are mostly
forward near the source, but dip to around 80% roughly ten hops out (whereas in reality the portion of
forward hops dips to around 80% at eleven or twelve hops out). This is in marked contrast to hop directions
produced by the node degree model because forward hops dip much sooner and a bit less steadily. But
overall portions of forward, stable, and backward hops closely match reality for both models.

The node degree model shines compared to the random deviation model in capturing the evolution of
the out-degree close to a route’s source. Routes generated with this model show the peak in the out-degree
before settling down to a median value. The peak is reached at distance 2 rather than at the first hop router.

Based upon this comparison to real routes, we can state that the random deviation and node degree models
do a reasonable job of emulation, though each model captures some aspects better than others, and their
strengths are different. Both models clearly out-perform the shortest path model.
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Figure 2: Experiments using the random deviation model (top) and the node degree model (bottom) on the undirected
skitter graph using sources and destinations chosen at random from amongst all the nodes in the graph.

6 Conclusion and future work
The main contribution of this paper has been to propose new alternatives for the simulation of routes in the
internet: the use of simple models that capture non-trivial statistical properties of routes. Future work along
these lines might include the development of models that explicitly incorporate some additional character-
istics, such as the clustering coefficienti, or that captures something of the dynamics of internet routes.
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