Characterizing Inter-contact Patterns in Delay Tolerant Networks

Vania Conan¹, Jérémie Leguay¹, Timur Friedman²

Context

The scenario

- Mobile users carrying always-on devices
- **Direct communication** opportunities between people
- Interactions are driven by social factors

Main challenge

 Understanding contact patterns in DTNs is elemental to the design of effective routing or content distribution schemes.

Mobile users intermittently connected

Data sets

MIT (Reality Mining experiment)

- 97 phones over an academic year (2004-2005)
- Proximity recorded using Bluetooth (every 5 minutes)
- 90 first days of data

iMote

- 41 iMotes over 3 years at Infocom 2005
- Bluetooth contact loggers that people carry in their pockets
- Log proximity (10 meters) every 2 minutes

Dartmouth

- · Not a true DTN data set
- One of the largest Wi-Fi data collection efforts

Methodology

- Looking at pairwise contact and inter-contact times
- Cramer-Smirnov-Von-Mises statistical hypothesis test that rejects the hypothesis with 99% of confidence
- · Visual cross-checking
- **Hypothetic distributions** (Exponential, Pareto, Log-normal)

Results

Heterogeneity of pairwise processes

mean inter-contact times (CCDF)

mean contact times (CCDF)

- DTN models should not consider node pairs homogeneously
- Inter-contact times better characterize interactions than contact times

Fitting results

	Dartmouth	MIT	iMote
Nb. Pairs	20,211	2,174	755
Exponential	42.8 %	56.3 %	7.9 %
Pareto	34.2 %	26.5 %	12.3 %
Log-normal	85.8 %	96.9 %	99.4 %

- Pairwise processes can not be considered in power-law
- We conjecture that most of the inter-contact processes are in log-normal