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Abstract

This contribution deals with actual routes followed by packets in the Internet at the IP level. We first propose a set of
statistical properties to analyse such routes. We then use the results to suggest and evaluate methods for generating arti-
ficial routes suitable for simulation purposes. The proposed approach also leads to insight on various network models. The
present work is based on large data sets provided mainly by CAIDA’s skitter infrastructure.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Realistic modeling of routes in the Internet is a
challenge for network simulation. Until now, one
had to choose one of the three following approaches:
(1) use the shortest path model, (2) explicitly model
the Internet hierarchy, and separately simulate inter-
and intra-domain routing, or (3) replay routes that
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have been recorded with a tool like traceroute

[1]. All of these methods have serious drawbacks.
The first one does not reflect reality: routes do

not in general have the same properties as shortest
paths, as already pointed out for instance by Paxson
[2,3], probably because of routing policies [4,5]
mainly at the autonomous system (AS) level. As
described in detail recently by Spring et al. [4], and
earlier by Tangmunarunkit et al. [6,5], this often
induces path inflation.

The second method is limited by our ability to
explicitly simulate the Internet hierarchy. Much
work has been done to model the Internet topology
(see for instance [7,8]), and much progress has been
made, but today’s topology generators are still inac-
curate in capturing some parameters while they
strive to adhere to others. See for instance the find-
ings in Li et al.’s Sigcomm 2004 paper [9], and the
BRITE case which we study in Section 5.6. Then, even
.
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if one is satisfied with the quality of the topology
model, there is the question of simulating dynamic
inter- and intra-domain routing. A non-negligible
programming effort is required if the choice is made
not to use a simulator, such as ns [10], that has these
algorithms built in. In order to avoid these challeng-
ing modeling issues, one may instead use real-world
measurements and then try to interpret the obtained
data as a collection of interconnected domains. This
issue also is challenging, however, and it is out of
the scope of this paper.

Finally, the third method is not suitable if routes
from a large number of sources are to be simulated.
Today’s route tracing systems employ at most a few
hundred sources. CAIDA’s skitter [11,12] infrastruc-
ture, for instance, produces an extensive graph suit-
able for simulations, but it is based on routes from
just around 30 sources.

Despite its well-known drawbacks, and because
of the lack of more accurate models, the shortest
path model is generally used. Examples from recent
years include Lakhina et al.’s Infocom 2003 paper
[13], Barford et al.’s Sigcomm 2002 paper [8], Riley
et al.’s MASCOTS 2000 paper [14], Guillaume et al.’s
Infocom 2005 paper [15], and Clauset et al.’s STOC

2005 paper [16]. The ns network simulator docu-
mentation itself proposes the simulation of routes
by shortest paths as an alternative to simulating
routing algorithms [10, Chapters. 26, 29].

This paper’s principal contribution is a new
approach to modeling routes in the Internet, one
that does not share the drawbacks just described.
We suggest using an actual measured graph of the
Internet topology, such as the graph generated by
skitter. From that topology, we suggest choosing
sources and destinations as one wishes from the
nodes of the graph. Between these sources and
destinations, we then suggest generating artificial
routes with a model that has been chosen to reflect
the statistical properties of actual routes.

Central to this contribution are two specific mod-
els for artificial route generation: the random devia-
tion model (RDM) and the node degree model (NDM).
As we will see, these models generate routes with rel-
atively inexpensive calculations, and the routes that
they generate better reflect the statistical properties
of actual routes than does the shortest path model.

This paper’s other contribution is to update mea-
surements of some familiar statistical properties of
real routes, notably path length and the hop direc-
tion, and to introduce and measure a new statistical
property: the evolution of node degree along a route.
These properties serve as the standard for evaluating
whether simulated routes resemble real routes. By
introducing this standard, this paper lays the
groundwork for going beyond the work described
here through the introduction of yet better models.

The remainder of this paper is organized as
follows. Section 2 describes the data set that we
have used and the context in which our work lies.
Section 3 proposes the set of statistical properties
we use to describe routes in the Internet. Section 4
proposes the models we use to simulate routes based
on these properties. Section 5 evaluates those mod-
els and the assumptions we made, and Section 6
concludes the paper.

2. The framework

The ideal perspective from which to characterize
routes in the Internet would be from a snapshot of
the routing tables of routers throughout the net-
work. Unfortunately, such a snapshot is impossible
to obtain on the scale of the entire network. In this
section, we describe the alternative that we opted
for, and the hypotheses we made.

2.1. The Internet as a graph

Efforts to map the Internet graph take place at
three main levels. One is the autonomous system
(AS) connectivity graph, which can be constructed
from BGP announcements (captured for instance
by The Oregon Route Views Project [17] from peer-
ing arrangements with roughly 60 network service
providers). The others are the routing graph, where
the nodes are the routers and the links are the phys-
ical connections between them, and the IP graph,
where the nodes are the IP addresses of network
interfaces and the links between them correspond
to logical links (hops in the routing). The IP graph
can be obtained using traceroute and similar
tools from a number of different points in the net-
work. To our knowledge, skitter, which runs
traceroute on a daily basis from on the order
of 30 servers to on the order of a million destina-
tions, is among the most extensive ongoing efforts
at the IP level.

Note that this separation into three levels is not
exhaustive. One may consider the logical links
between routers or the physical ones, for instance.
One may also consider the physical links between
interfaces. It would also be possible to consider
link-layer devices, such as hubs and bridges. The
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three levels view however is sufficient for our
purpose.

Let us insist on the fact that, because of the fully
distributed nature of the Internet, these graphs are
not directly observable. In order to study them,
one has to collect large amounts of data from vari-
ous sources, and then recompose a (partial and pos-
sibly biased) view of the real graph.

Neither level is ideally suited to the task of mod-
eling the behavior of routes in the Internet. While
the AS graph is directly based upon routing informa-
tion, it is too coarse-grained to capture the details of
path inflation. Moreover, a shortest path at the AS

level does not necessarily correspond to a shortest
path at the routing or IP levels. Simulators that do
not explicitly model the AS hierarchy have been
found by Tangmunarunkit et al. [7] to do better at
generating graphs with desirable properties. Since
our goal is to help in network simulations, we will
therefore focus on the IP and routing levels. Similar
work should however be done at the AS level, and
the comparison of the two would certainly be very
interesting.

The main problem when using traceroute is
that what one actually sees is the IP graph, while
the routing graph would be more relevant. One
single node in the routing graph appears as several
separate nodes, one or more for each of its inter-
faces, in the IP graph. Moreover, traceroute cap-
tures logical links, which may miss the presence of
tunneling, in ATM or MPLS subnetworks for instance.
Ideally, then, one would construct the routing graph
using methods to ‘‘disambiguate’’ IP addresses, such
as the alias resolution techniques described by
Pansiot et al. [18], and by Govindan et al. [19] for
Mercator. There are also techniques, such as those
used by Spring et al. [20,21], in Rocketfuel, and by
Teixeira et al. [22], that take advantage of router
and interface naming conventions to infer routing
topology from the IP one. Up to our knowledge,
no study deals with the tunneling problem and other
sophisticated biases.

Most of these disambiguation techniques, as
applied for example in the iffinder tool from CAIDA

[23], do not work by simple inspection of the IP

graph; they require active probing, preferably simul-
taneous with graph discovery. This constraint
makes extensive disambiguated routing graphs
much harder to obtain than IP graphs. At best, some
core network topologies are available in this form
thanks to Rocketfuel. But Rocketfuel is untested
in stub networks. Finally, it is very difficult to judge
the extent to which disambiguation is successful,
and incomplete or incorrect disambiguation could
introduce unknown biases.

To avoid these difficulties, we have restricted our-
selves to the IP graph as obtained from skitter, and
routes in this graph as obtained directly from
traceroute. The resulting caveat is that the
graph may not be properly representative of the
routing level graph. This caveat is however miti-
gated by the fact that the IP graph resembles the
routing graph in one important respect: unless we
encounter tunneling, route lengths are preserved.
That is to say that a route that has a given length
(in hops) in the routing graph has the same length
in the corresponding IP graph. Furthermore, as
Broido et al. note [24], ‘‘interfaces are individual
devices, with their own individual processors, mem-
ory, buses, and failure modes. It is reasonable to
view them as nodes with their own connections.’’.
Finally, we consider this work as a first step towards
the accurate modeling of routes, and therefore pre-
fer to make choices as simple as possible. We will
see in Section 5 that these assumptions have little
impact, if any, on our results.

2.2. The data set

This study uses skitter data from 2 July, 2003.
The data was collected from 23 servers targeting
594,262 destinations, leading to 7,075,189 routes
(not all sources probed all destinations) on that
day. We obtained an IP graph by merging all these
routes. We then removed the following IP addresses,
considered as invalid (see RFC 3330 [25]): addresses
in the private blocks 10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16, link-local addresses in 169.254.0.0/
16, TEST-NET addresses in 192.0.2.0/24, addresses in
the ‘‘this network’’ block 0.0.0.0/8, loopback
addresses in 127.0.0.0/8, 6–4 relay anycast addresses
in 192.88.99.0/24, benchmark testing addresses in
198.18.0.0/15, multicast addresses in 224.0.0.0/4,
and reserved addresses formerly known as the Class
E addresses in 240.0.0.0/4, which includes the LAN

broadcast address, 255.255.255.255. This led to
remove 3.95% of the edges and 3.25% of the nodes.
The resulting graph contains 885,438 nodes and
1,266,671 links.

This graph captures well the small-world, cluster-
ized, and scale-free nature of the Internet already
pointed out in numerous publications, by Jin and
Bestavros [26] and others [27–31]. In particular,
the average distance is approximately 11.4 hops,
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and the degree distribution is well fitted by a power
law of exponent 1.97 (the fraction of nodes of
degree k is distributed as k�1.97). It captures the fact
that, though most nodes have a low degree, there is
a non-negligible number of nodes with very high
degree. The average clustering coefficient of this
graph (i.e. the probability that two randomly chosen
neighbors of any node are linked together, [32]) is
equal to 0.035, which is huge compared to the one
of random graphs of the same number of nodes
and links, equal to 1.30 · 10�6. The fact that this
graph shares properties common to most complex
networks encountered in practice, as described for
instance by Albert and Barabási [32] and Newman
[33], will be useful for our characterisation of Inter-
net routes.

Notice that this graph is necessarily incomplete
and biased due in particular to probing from a lim-
ited number of sources, to route dynamics, to tun-
neling and to erroneous or absent responses to
traceroute probes. Biases of graphs induced by
acquisition through a small number of tracero-
ute monitors have been studied for instance by
Lakhina et al. [13] and by Clauset et al. [16].

Despite these biases, recent studies by Dall’Asta
et al. [34] and Guillaume et al. [15] show that one
may be quite confident of the accuracy, using this
kind of exploration, of distances and degrees, which
are the main properties that we use here. Moreover,
skitter data represents the current state of the art in
its extent and accuracy. We therefore consider this
graph as a good approximate of the IP graph in this
study, and will call it the skitter graph.

3. Statistical properties of routes

This section presents a set of properties for the
statistical description of Internet routes. These
properties motivate the models of Section 4. Several
properties have already been studied in previous
works, and the work here serves to evaluate, update
and complete them.

Before entering in the core of this section, let us
insist on the fact that our aim here is to define sta-
tistics as simple as possible but that succeed in cap-
turing essential properties of Internet routes. We
will see in Section 5 that the statistics presented
below fit these requirements. It must be clear how-
ever that they are very aggregated, and that much
more precise statistics may be used to obtain more
insight on the route properties. Such statistics would
however lead to intricate, hard to evaluate, route
models, which is in contradiction with our purpose.
This is why we will restrict ourselves to these coarse
statistics, which will prove to be sufficient here.

3.1. Route lengths

It is well known that routes are not in general
shortest paths. Fig. 5(left), page 9, shows the distri-
butions of route lengths in our data set, and of the
corresponding shortest paths. It also shows the dis-
tribution of the difference delta between the length
of a route and the corresponding shortest path.

These distributions are compiled as follows. For
each route i obtained by traceroute, we compute
its length ‘i and the length si of a shortest path
between the source of the route and its destination.
We also compute the difference, di = ‘i � si.

The mean length of 15.57 hops for routes in this
data set fits closely Paxson’s observations [3,2] on a
data set that is older by 9 years. The shortest paths
have a mean length of 11.4 hops.

The distributions are well centered on their mean
value: no route has a length more than twice the
average. However, route lengths vary more around
their mean, with a standard deviation r = 3.99, than
do shortest paths, with r = 2.62.

The delta distribution confirms Tangmunarunkit
et al.’s observation [6,5], mentioned at the beginning
of this paper that roughly 80% of routes are not
shortest paths. In this particular data set, 19.34%
of routes are shortest paths. Notice that, since the
data are incomplete, there are undiscovered links,
which implies that 19.34% is an overestimate: at
least 80.66% of the considered routes are indeed
longer than shortest paths in the true IP graph.

Route lengths and shortest path lengths are both
well fitted by gamma distributions. Shortest paths
have an estimated shape parameter of k = 21.18
and an estimated scale parameter of h = 0.53.
Routes have k = 14.56 and h = 1.07.

Tangmunarunkit et al. also observed that 20% of
routes were at least 50% longer than shortest paths.
We find a somewhat larger portion: 33.4%. Again,
this is a lower bound, and therefore the larger value
that we observe may be due to the use of a more
complete graph.

One might wonder if the value of d is correlated
to the length of the shortest path, which would seem
natural. For instance, routes between sources and
destinations that are further apart may have a larger
d. We examine more closely the shortest path
lengths between 9 and 16, which represent more
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than 85% of the cases. In this range, the mean value
of d is best fitted by the line y = 0.13x + 1.46 with
an asymptotic standard error for both parameters
under ±13%, see Fig. 1 (middle). Given this low
slope and this standard error, it may be seen as
almost flat, which contradicts the intuition: the
value of d does not depend significantly on the
actual distance between the considered sources and
destinations. Notice however that the mean hides
considerable variations, which can be observed in
the quantile plots in Fig. 1.

3.2. Hop direction

When a packet travels from one router to
another, it may move forward to its destination,
but it may also move further, or even stay at the
same distance from the destination. Likewise, the
distance from the source may increase, decrease,
or remain constant. We will call these behaviors
the hop direction, considered with respect to either
the destination or the source. If the hops always
increase the distance from the source and decrease
the distance to the destination, the route is a short-
est path. Notice that hop directions in the IP graph
correspond to the ones in the routing graph, since
distances are preserved between the two graphs
(see Section 2.1).

Hop directions with respect to a given source
may be computed for all the routes starting at this
source using breadth-first search. This has a cost lin-
ear in the size of the graph. Likewise, it is possible to
study hop directions with respect to the destinations
0
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Fig. 1. Quantile and average plots for d for various shortest path
lengths. From top to bottom: the plain line represents the
maximal value, the dotted line the 90th percentile (i.e. 90% of the
values are below this line); the plain line (crossing the vertical
bars) corresponds to the median, the dotted line corresponds to
the 10th percentile, and the last plain line, which collapses on the
x-axis, is the minimal value. The vertical bars display the
quartiles: 50% of the values are within these bars (the topmost
corresponding to the 75th percentile, the other to the 25th). The
dots show the average.
using a breadth-first search rooted at each destina-
tion. In our case, we have many destinations but
only a few sources. Therefore, only hop directions
with respect to sources can be observed while main-
taining a reasonable complexity. Hop directions
with respect to the destinations may be studied
using only a part of all the destinations but, since
the number of sources is small, the approximation
would be poor in this case. We will therefore restrict
ourselves to source point of view in the following.

Examining the route traces, we found that 87.3%
of hops go forward, 4.6% go backward, and 8.1%
remain at the same distance from the source (we call
these stable hops). As an example, Fig. 5(right),
page 9, shows the portion of forward, backward,
and stable hops as a function of the hop distance
for routes of 15 hops. We chose this length because
it correspond to the most numerous routes, roughly
140,000. The obtained plot is typical of what we
obtained for any length. This will be true every-
where we will choose to focus on routes of a given
length in the following.

As one would expect, the first and last few hops
are generally forward because there are few alterna-
tives, if any: these parts of the network have a tree-
like structure, induced by the underlying access
networks. On the contrary, in the core of the net-
work a significant proportion of the hops (more than
one third) do not go further from the source. This
type of behavior has already been described in the
literature as a consequence of policy-based routing
in the core of the Internet. As Tangmunarunkit
et al. [6,5] note, such behaviors may be induced by
load balancing, commercial considerations, etc.

3.3. Degree evolution along a route

Recent work has shown that many real-world
complex networks tend to have very heterogeneous
degrees, well fitted by power laws. This is in partic-
ular true for the Internet, as observed by Faloutsos
et al. [27] and others. Moreover, most of the short
paths between pairs of nodes in these networks tend
to pass through the highest degree nodes. Actually,
almost all paths (not only short ones) tend to pass
through these nodes, which make them essential
for network connectivity [35–40]. In the case of
the Internet, this may be due to the fact that users
access the Internet through access nodes that multi-
plex huge numbers of subscribers.

These observations lead us to ask how the node
degree evolves along a route. If routes tend to pass
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through high degree nodes, where do they do so,
and what degree nodes do they encounter? Further-
more, does this tendency to pass through high
degree nodes imply that, when a choice exists
between next hops, the next hop that leads to the
highest degree nodes is generally chosen?

Fig. 2 shows how node degrees evolve along
routes of length 15 (notice the logarithmic vertical
scale for the quantile plot). There is a significant
increase in the degrees at the very beginning of the
plot, as well as a significant decrease at the end. In
between, the plot is quite flat. This leads us to the
following interpretation: the hosts have low degree,
they are connected at their first hop router to rela-
tively high degree nodes which play the role of
access points, and then packets are routed in a core
network where the degree (10 on average) does not
depend much on the distance from the source or
from the destination. Notice that the flatness in
the middle of the plot does not mean that all the
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Fig. 2. Degree evolution along routes of length 15. Left: quantile
plots (the lines indicate, from top to bottom, the maximal value,
the 90th percentile, the median, the 10th percentile and the
minimal value; the vertical bars span the region between the 75th
and the 25th percentiles, thus corresponding to 50% of the
values). Right: the average value.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  2  3  4  5  6  7  8  9  10

pr
op

or
tio

n

rank

degree=4 (candidates: 37800)
degree=5 (candidates: 21419)
degree=6 (candidates: 13633)

degree=7 (candidates: 9526)
degree=8 (candidates: 7289)
degree=9 (candidates: 5736)

degree=10 (candidates: 4616)

Fig. 3. Choice of next hop node as a function of this node’s degree rank
version.
nodes in the core have a similar degree (the degrees
in the core follow a power law). But, once a packet
has entered this core, there is no correlation any
longer between the degree of the node and the dis-
tance from the source or from the destination.

One may wonder if there is a simple local rule
that can be observed for the degree evolution along
a route. In particular, when there is a choice of next
hop along a route, is there a correlation between the
degree rank of the neighbors and their probability
of being chosen? For instance, are highest degree
nodes chosen preferentially over lower degree ones?
Note that such a rule could be perfectly compatible
with the observed flat degree evolution in the middle
of routes.

Fig. 3(left) plots the probability that a packet
goes to a node’s ith ranked neighbor, where the
neighbors are ranked from highest degree to lowest.
We show the plots obtained for degrees 4–10, which
are the cases where both the degrees and the number
of nodes are non-trivial.

There is no apparent overall correlation in this
plot, which seems to invalidate our hypothesis.
However, if one considers only the neighbors of a
node towards which it is susceptible to send a packet
(in other words, we consider the skitter graph direc-
ted according to the ways the collected routes are
traveled), then one obtains the plot on the right of
Fig. 3. One may then observe a bias towards highest
degree nodes, though this bias is rather small.
4. Route models

The previous section provides a set of statistical
tools to capture some non-trivial properties of
 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 1  2  3  4  5  6  7  8  9  10

pr
op

or
tio

n

rank

out-degree=4 (candidates: 13831)
out-degree=5 (candidates: 9630)
out-degree=6 (candidates: 7267)
out-degree=7 (candidates: 5569)
out-degree=8 (candidates: 4417)
out-degree=9 (candidates: 3499)

out-degree=10 (candidates: 2900)

ing. Left: on the (undirected) skitter graph. Right: on the directed



J. Leguay et al. / Computer Networks 51 (2007) 2067–2085 2073
routes in the Internet. The statistics on route lengths
and hop directions are sufficient to demonstrate that
the shortest path model is inadequate for generating
realistic simulated routes on a graph of the Internet.
The statistics on node degree evolution provide
another measure of what realistic routes should
look like. We now propose three simple models
(only two of which we eventually retain) designed
to capture these features.

Our approach is as follows: we design a model as
simple as possible which focuses on one of the prop-
erties of interest, and then we use the other statistics
to evaluate the model (in the next section). This
ensures that the models stay very simple, and this
makes it possible to study the relations between
the observed properties: are they independent or
on the contrary can some of them be seen as conse-
quences of others?
4.1. Path length model

The path length model is the simplest and the
most obvious one conceptually, but it proves to be
unusable in practice. The model aims at producing
routes of the same length as real ones. As discussed
in Section 3.1, a real route length typically exceeds
that of the shortest known path by some small inte-
ger value d P 0 (see Fig. 5(left)).

In order to construct a route from a source s to a
destination d, the path length model first computes
the length ‘ of a shortest path from s to d. Then it
samples a deviation d from a distribution such as
the one shown in Fig. 5(left), and a route is gener-
ated by choosing a path at random from s to d

among the ones which are loop-free and have length
‘ + d. This ensures that the difference between
Fig. 4. Examples for the models. Left: random deviatio
shortest path lengths and actual route lengths will
be captured by the model.

To choose such a path at random implies how-
ever that one must construct all the loop-free paths
of length ‘ + d from s to d. In practice, the compu-
tation required to generate this number of paths
may be prohibitive, since even in simple cases it is
exponential in ‘ + d. For example, in trying to gen-
erate all paths of length 21 between a pair of nodes
in the skitter graph, we enumerated 1,206,525 possi-
ble paths. Therefore, despite its conceptual simplic-
ity, we will not consider this model further. As we
will see, this does not mean that we do not try to
fit this property; we will fit it by using models based
on other parameters.

4.2. Random deviation model (RDM)

The RDM is based upon the idea that a route usu-
ally follows a shortest path, but might occasionally
deviate from it. We modeled this using one single
parameter, p, the probability at any point of deviat-
ing from the current shortest path to the destina-
tion, if such a deviation is possible.

A random deviation route from source s to desti-
nation d is therefore based upon a shortest path u

from s to d. At each hop, with probability 1 � p,
the route continues along u. But with probability p
it will, if possible, deviate off u to another path. A
deviation from current node x to one of its neighbors
y is deemed possible only if there is a shortest path w

from y to d that does not pass through x. Should
there be a deviation, the route continues along w to
d (unless another deviation should occur).

Fig. 4(left) shows an example of how a route can
be generated using the RDM. In this graph, there is a
five hop shortest path from source s to destination
n model (RDM). Right: node degree model (NDM).
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d. The route follows this path for three hops and
then deviates at v. This deviation is possible because
the shortest path from v 0 to d does not contain v.
The resulting route is seven hops long.

We can use Fig. 4(left) to illustrate some details
of the RDM. It shows instances in which no deviation
is possible. For example, there can be no deviation
at the first-hop node of the shortest path from s to
d, since it has no neighbor that is not already on
the shortest path being followed. Also, there can
be no deviation at the second-hop node, even
though there is a neighbor that is not on the shortest
path. The reason for this is that the only shortest
path from this neighbor to d passes through the
node we come from. The figure also shows an
instance where two deviations are possible: at node
v, deviations to v 0 and v00 are both possible. The
choice of which to take (if any) is random.

Finally, notice that large numbers of routes to a
given destination d can be efficiently generated with
the RDM once a shortest path tree rooted at d has
been computed.

4.3. Node degree model (NDM)

Several previous authors [41,36] have tried to use
the heterogeneity of node degrees to compute short
paths in complex networks. The basic idea is that a
path which goes preferentially towards high degree
nodes tends to ‘‘see’’ most nodes very rapidly (a
node is considered to be seen when the path passes
through one of its neighbors).

The NDM is based upon a similar approach, as
follows. For each node, we define its preferred neigh-

bor as its highest degree neighbor; we pick one at
random if it has several such neighbors. Then, two
paths are computed, one starting from the source
and the other from the destination. The next node
on these paths are always the preferred neighbor
of the current nodes. The computation ends when
we reach a situation where a node is the preferred
neighbor of its own preferred neighbor. One can
show that only this kind of loop can occur. Then,
one of two cases applies: either the two paths have
met at a node, or they have not. In the first case,
the route produced by the model is the discovered
path (both paths are truncated at the meet up node,
and are merged). In the second case (which in prac-
tice is very rare), we compute a shortest path
between the two loops, and then obtain the route
by merging the two paths and this shortest path,
removing any loops.
Fig. 4(right) shows an example. There are three
tree-like structures (the shaded areas). The source
s belongs to the leftmost one, which is rooted at
rs, and the destination d to the rightmost one, with
root at rd. Each directed link goes from one node
to its preferred neighbor (the dotted lines are links
which do not satisfy this). When one wants to build
a route from s to d according to the NDM, one first
finds the path from s to rs, and the one from d to
rd. One then has to compute a shortest path from
rs to rd, which has length 5 in this example. The final
route is obtained by merging these paths, and then
removing the loops (which leads to the removal of
two links, in our example). It has length 8, while
the shortest path has length 7.

One may empirically observe that this method
leads to paths very close to shortest ones, which
we will confirm in Section 5. Moreover, the compu-
tation of the tree-like structure where each node
points to its preferred neighbor is very simple and
only has to be processed once. Likewise, the shortest
paths between a small number of looping points are
computed only once.

5. Evaluation

This section is devoted to the evaluation of the
models we have just proposed, and to the discussion
of their possible use. Our basic methodology will be
to compare the properties of the obtained artificial
routes to the ones of the original routes. One there-
fore has to choose a graph on which the routes will
be constructed, and then choose sources and
destinations.

We will first generate routes on the skitter graph
using the same sources and destinations as in the
original data, and then using random sources and
destinations. After this, we will use other maps of
the Internet with random sources and destinations,
and finally we will run our models on the most
widely used graph models of the Internet. All of
these experiments give some information on the
behavior of our models, as well as on the relevance
of the underlying graph.

In each case, we will compute a large number of
artificial routes and study the same properties as the
ones we studied on real routes. Therefore, the eval-
uation of each set of results is done by comparing
the obtained plots to the ones discussed in Section
3, and given in Fig. 5.

Finally, the evaluation of the RDM model depends
on a parameter, namely the deviation probability p.
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The choice of a value for this parameter might be
expressed as a function of the expected average path
length. However, studying this is out of the scope of
this paper; instead, we took the same value for all
the experiments, p = 0.2, which was chosen to
empirically give the best average fits when the RDM

is compared to the original skitter routes on the skit-

ter graph with the same sources and destinations.
Tuning its value to the best fits in the other cases
too would also be relevant, but we observed that
the results do not vary significantly as long as the
value is not too different. We therefore maintained
the same value in order to make the presentation
and the interpretation easier.

5.1. skitter Graph

Figs. 6 and 7 show the results obtained with both
models on the skitter graph, when one takes the very
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Fig. 6. Models on the skitter graph with the same sources and destina
distributions, degree evolution along routes, and hop directions.
same sources and destinations as in the original
data, and when one chooses sources and destina-
tions at random, respectively.

Before entering into the details, let us notice that
the results seem very good: the global shapes of all
the plots fit quite well the original ones for both
models, even when sources and destinations are
taken at random.

The average route lengths are 13.6 with the RDM

and 14.7 with the NDM, when the sources and destina-
tions are the original ones. They are 15.1 and 14.9
when sources and destinations are random. This is
to be compared to the average shortest path length
in this graph, 11.4, and to the average length of real
routes, 15.6. We may conclude that the average route
length is quite well captured, though not exactly.

In all the cases the route length distributions are
symmetric, average somewhat higher than the short-
est path distribution, and have tails similar to the
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actual route length distribution shown in Fig. 5.
Lengths of paths generated with the NDM tail off
somewhat quicker than in reality (approaching zero
closer to length 20 than length 25), but the degree of
fidelity is nonetheless remarkable given that the
length distributions are not explicitly part of the
model. This indicates that this model probably cap-
tures some relevant properties. The RDM generates
more routes that are shortest paths than in reality
(roughly 30% compared to roughly 20%), whereas
the NDM generates somewhat fewer (roughly 12%).

The NDM performs better than the RDM in captur-
ing the evolution of the degree along routes, espe-
cially close to the source. This is particularly true
when using the same sources and destinations as
in the original measurement. The difference is less
significant with random ones. This indicates that
there are more possible choices for routing close
to the source, which is probably a bias due to the
measurement itself (the map is more precise close
to the sources than close to the destinations). The
fact that the RDM performs well on average (random
sources and destinations) indicates that the shortest
path to the destination generally goes to a highest
degree neighbor. If one takes the same sources as
in the original data, however, this is not true any-
more and the NDM performs better.

Now focusing on the hop directions in 15-hop
routes, it appears clearly that the RDM behaves much
better than the NDM. Both capture qualitatively the
properties of real routes, but the behavior of the
RDM is very similar to the original one. Overall
proportions of forward, stable, and backward hops
closely match reality in both cases: 88%, 8% and
4%, and 84%, 9% and 7% for the RDM and for the
NDM when we take the original sources and destina-
tions, and 89%, 7% and 4%, and 82%, 11% and 7%
for the RDM and for the NDM when we take random
sources and destinations. The proportions for the
original routes were 87% forward, 8% stable, and
5% backward.
5.2. Mercator graph

We ran our models on two Internet maps pro-
vided by other researchers. For one of these maps,
both the routing and the IP levels were provided.
We considered this as an occasion to test the robust-
ness of our models to a change from the IP level to the
routing one. Moreover, still for this dataset, the
routes were also provided. Therefore, we computed
the statistics on them. The results are presented and
discussed in this section and the next one.

The first case we will consider is the mercator
graph studied by Govindan et al. [19], which is
freely available on the web [42]. This graph was
obtained in 1999 using traceroute massively
from one source only but with source routing. Some
antialiasing has been done in order to bring it closer
to the routing graph. These data correspond to the
very beginning of the research on large scale Inter-
net topology; it may contain significant bias and
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errors, but it is still one of the very few maps pub-
licly available, and it is widely used.

We ran our models on it and obtained the results
in Fig. 8. Since the real routes used to construct this
map are not available, we could not compare the
artificial routes to them.

The obtained results are in accordance with the
properties of skitter routes concerning path lengths
and hop directions. However, the degree evolution
along routes is significantly different. We believe
that this is due to the fact that, using only one
source (and despite the use of source routing), the
graph has a tree-like structure with high degree
nodes close to the root (i.e., the source of all col-
lected routes). The routes therefore go up this tree,
encountering nodes with higher and higher degree,
and then go further to the destination. The non-triv-
ial behaviors of route lengths and hop directions
would then be a consequence of the links which pre-
vent the map from being exactly a tree.
5.3. Nec graph

Despite its being obtained through massive use of
traceroute, the measurement method is quite
different for this map described by Magoni [43],
which is freely available on the web [44]. It is based
on the use of so-called looking-glasses, which makes
it possible to use several hundreds of sources. How-
ever, to avoid an overload of these sources, the
number of destinations also has been reduced to a
few hundreds. Moreover, many destinations are
routers, whereas in the other maps they generally
are hosts. As we will see, this has important conse-
quences for route properties.

This dataset however has the important advan-
tage of being available both at the routing level
and at the IP one [44]. Moreover, Magoni provided
us with the actual routes he used to construct it.
This gives us the opportunity to study the statistical
properties of these routes, just like we did with the
skitter ones. It also makes it possible to compare
the properties of interest at the IP and routing levels.
Fig. 9 plots the properties of these real routes at
the IP level, and Fig. 10 plots them at the routing
level.

One may be surprised by the fact that the proper-
ties of these real routes differ significantly from the
ones of skitter: the lengths are smaller, the degree
does not grow rapidly at the beginning of the route
and does not decrease rapidly at the end, and, even
more strikingly, many (and even most) of the hops
are not forward at the end of the route. This can
however be explained simply by two complementary
facts. First, the destinations of these routes often are
routers (not hosts), which is equivalent to saying
that these routes are only the beginning of host-to-
host routes (unlike the skitter ones). Moreover, the
neighborhood of the destinations is much better
explored than in the skitter graph because of the
large number of sources. Therefore, it is more dense,
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Fig. 10. Original nec routes at routing level. From left to right: length distributions, degree evolution along routes, and hop directions.
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Fig. 9. Original nec routes at IP level. From left to right: length distributions, degree evolution along routes, and hop directions.
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and this makes the number of forward hops
decrease.

The fact that this topology exists at the routing
level allow us to check an important assumption
we have made at the beginning of the paper: that
the plots at the IP and the routing levels are very
similar. This tends to confirm that our choice to stay
at the IP level is relevant.

In order to push the evaluation of our models
further, let us now study the properties of artificial
routes generated using them, from random sources
and destinations (the use of the same sources
and destinations as in the original data give very
similar results, therefore we do not present them
here). Figs. 11 and 12 show these properties for
the nec graphs at the IP and the routing levels
respectively.

Again, these plots confirm that, as long as one is
concerned with the simple statistics and models we
propose here, there is no significant difference
between the IP and the routing levels. Moreover,
one can see that the models tend to simulate routes
that resemble host-to-host routes, and therefore
produce routes, which are much more similar to
the skitter routes than the original nec routes. This
may be considered as a good point for our models,
which may be applied on other graphs than the skit-

ter one and which are able to use the properties of
the underlying graph to produce realistic routes.
5.4. Random graphs

We begin the evaluation of our route models with
the most simple graph model, the classical random
graphs from Erdös and Rényi [45,46]. Such a graph
is constructed from n disconnected nodes by adding
links between m randomly chosen pairs of nodes.
Here, we took for n and m the same values as in
the original skitter graph, in order to have a random
graph comparable to this original one.

It is well known that the Internet is significantly
different from a random graph, in particular con-
cerning its degree distribution (see for instance
[27]). We consider this model as an interesting case
however because it is the simplest and it is often
used as a building block of more intricate models.

Fig. 13 shows the results obtained with our mod-
els on such a graph (they are representative of all the
experiments we ran on such graphs). The sources
and destinations are chosen at random.

Both the degrees and the shortest path lengths in
a random graph are very homogeneous [46,47]: all
the nodes have a degree close to the average value,
and all the pairs of nodes are at a distance close
to the average distance. This is confirmed by the
plot of the shortest path length distribution. More-
over, with each model, the degree along a route is
very stable due to the low variability of degrees in
the graph: the first and last nodes have the average
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Fig. 11. Models on the nec graph at IP level with random sources and destinations. From left to right: length distributions, degree
evolution along routes, and hop directions.
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Fig. 12. Models on the nec graph at routing level with random sources and destinations. From left to right: length distributions, degree
evolution along routes, and hop directions.
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degree since they are chosen at random, and all the
nodes in between are chosen with a probability pro-
portional to their degree, which explains why their
degree is larger than the average degree but quite
stable.

The RDM produces routes with very rare devia-
tions, since most of the time no deviation at all is
possible because of the low average degree of nodes
(no deviation at all is possible if the degree of a node
is lower than 3, which is often the case as one can
check on the plot of the degree along the routes).
Therefore the routes produced by this model are
mostly shortest paths, which explains the statistics.

The NDM produces routes with properties closer
to the ones of real routes: the length distribution
is different from shortest paths, and not all the hops
are forward. One can have quite a precise idea of the
structure of the produced routes by noticing that,
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Fig. 13. Models on a purely random graph with random sources and destinations. From left to right: length distributions, degree
evolution along routes, and hop directions.
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since all the degrees are close to the mean value, the
route rapidly reaches the place where it becomes a
shortest path. Therefore, a route produced by this
model is nothing but very few hops towards higher
degree nodes, then a shortest path, and again a few
hops to degrees in decreasing order to the destina-
tion. This explains the fact that the length distribu-
tion of these routes is close to the one of shortest
paths, it describes precisely the degree evolution
along routes, and finally it explains the observed
hop directions.

In both case, the produced routes are quite differ-
ent from real ones. Since the underlying graph has
properties qualitatively different from the ones of
the IP graph, this cannot be seen as surprising.

5.5. Scale-free graphs

We now examine how the models behave on scale-
free graphs, i.e. graphs with a power law degree dis-
tribution as obtained using the Albert and Barabási
model [48,32]. Such a graph is constructed by adding
nodes one by one until we have the wanted number of
nodes, each new node being linked at random to k

pre-existing nodes with a probability proportional
to their degree. The value of k is chosen in order to
induce the wanted number of links at the end of the
construction (it is half the average degree).

Tangmunarunkit et al. found [7] that power law
based generators create topologies that better match
the Internet’s topology than do other common sorts
of graphs, such as those produced by explicitly hier-
archical topology generators. Despite the simplicity
of this model, it captures important features of the
Internet topology, and the models we proposed
may be relevant on it. Moreover, it is very often
used to model the Internet [34,37] and as a building
block for more accurate models (see below).

Again, we chose the parameters to fit the number
of nodes and links of the original skitter graph
(k = 1.4), in order to obtain a comparable graph.
We chose sources and destinations at random, and
obtained the results plotted in Fig. 14. They are rep-
resentative of all the experiments we ran on such
graphs.

First notice that scale-free graphs have a very low
average shortest path length in general [49–51], here
7.7, as can be seen in the length distributions. Our
models produce longer routes, but they remain quite
short. This leads us to consider statistics on routes
of length 8 or 10 depending on the model, which
are the most numerous.

Both models clearly fail in capturing the degree
evolution along routes in such a graph. The highest
degree nodes are always reachable, as can be seen on
the plot of the degree evolution along routes from
the NDM. This induces a regular increase in the
degrees along such routes until a very high degree
node, and then a decrease until it reaches the desti-
nation. Notice also that a random deviation tends to
go towards high degree nodes (they have more links
and thus a randomly chosen link has a high proba-
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Fig. 14. Models on a scale-free graph with random sources and destinations. From left to right: length distributions, degree evolution
along routes, and hop directions.
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bility to be connected to such a node), which
explains the degree evolution along routes from
the RDM.

Finally, let us observe that the RDM captures sur-
prisingly well (compared to the other statistics and
to the other model) the hop directions. It might be
seen as a consequence of several facts. First, during
the construction of the parts of the route close to its
extremities (the source and the destination), one has
very few choices for the next hop due to the low
degree of nodes in this part of the graph. On the
contrary, when constructing the parts of the route
far from its extremities, one has many choices.
The fact that the NDM performs poorly indicates that
choosing the highest degree neighbor at this point is
inconsistent with the observed properties; random
choices perform better.

5.6. Brite graphs

BRITE [52,53] is one of the most widely used mod-
els in network simulation, in particular in Internet
simulation. We therefore used it to generate a vari-
ety of graphs supposed to be good approximations
of the skitter graph (in terms of size and degree dis-
tribution at least), and ran our models on them.

Two cases should be considered:

• a flat topology, which is simply a scale-free graph
as described above. However, since BRITE needs
an integer value for the number k of links added
at each step (the original definition of the model
did not specify what to do when k is non-integer),
we had the choice between k = 1 and k = 2. In
the first case, one obtains a tree, in which our
models produce nothing but shortest paths. We
therefore obtain trivial statistics (length distribu-
tions are the same, degree evolutions grow to a
maximum and then decrease, and there are only
forward hops). We therefore took k = 2 and then
obtained results very similar to the ones
described above for k = 1.4. Therefore, we do
not detail experiments on flat topologies here.

• a hierarchical topology with nodes distributed in
autonomous systems. BRITE first generates the as
topology with the scale-free model already
described, and then the topology inside each AS

is generated using this model again. The obtained
degree distribution follows a truncated power
law, meaning that the degree are heterogeneous
but there is no node with very high degree. We
generated such a topology with n = 900,000
nodes distributed in 9000 autonomous systems
(100 routers per AS). At the AS level we chose
k = 10 and inside each AS k = 1. This leads to
an average degree of approximately 2.2. One
may also use the purely random model at one
level or the other, or both. We present here the
parameters, which gave the better results, plotted
in Fig. 15.
The performances obtained in these experiments
are very poor, and there is little hope that other
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Fig. 15. Models on a hierarchical BRITE graph with random sources and destinations. From left to right: length distributions, degree
evolution along routes, and hop directions.
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parameters would give significantly better results.
Indeed, the fact that k = 1 inside each AS causes
these graphs to be trees. Therefore, most routes
actually are shortest paths, which explains the
statistics. Larger values of k should be consid-
ered, but BRITE forces them to be integers, and
k = 2 gives an average degree significantly too
large for Internet modeling. Moreover, one can
clearly see on the plot of the degree evolution
that the two-level structure induces quasi-peri-
odic variations in the node degrees, which does
not fit the properties met in practice.

6. Conclusion and discussion

The first contribution of this paper is to provide a
framework for describing routes in the Internet, and
to use it to describe routes in one of the largest and
most complete data sets currently available.

The characteristics we have used to describe
routes are: their lengths, and the differences between
those lengths and the lengths of corresponding
shortest paths; the direction of hops along a route;
and the evolution of the degree of nodes along a
route. We have chosen these characteristics based
upon graph theoretic knowledge of the typical prop-
erties of real-world complex networks graphs, of
which the Internet is an example. Let us notice that
these characteristics are very general and may be
used (and extended) with benefit in other complex
network studies: until now, no statistical tool had
been proposed to describe large sets of paths in such
networks.

Other graph theoretic characteristics may also be
studied in the manner we have done here. The evo-
lution of the node clustering coefficient along a
route would be a natural candidate, for instance.
One may also study the link clustering coefficient:
ccðu; vÞ ¼ jNðuÞ\NðvÞj

jNðuÞ[NðvÞj where (u,v) is a link in the graph.
Other interesting perspectives are to consider the

routes as directed (from sources to destinations), the
links as weighted (by the measured delay), and to
take into account the dynamics of the Internet and
its routes. Paxson [2,3] and, more recently, Amini
et al. [54] have characterized the asymmetry of
routes in the Internet. Likewise, we have focused
on the topological characteristics of Internet routes.
Could we tie this in to the considerable body of
knowledge concerning the delay characteristics of
routes? Savage et al. [55] and Spring et al. [4], for
instance, have characterized round-trip time (RTT)
inflation. These works need to be continued, and
describing these important characteristics in a way
similar to what we have done here for static
unweighted undirected routes would certainly make
sense.

The other main contribution of this paper is to
propose simple models which make it possible
(and easy) to generate large amounts of artificial
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routes similar to real ones (in the sense of the statis-
tical properties we have observed). These models
may be used in particular for simulation.

We have shown both that these models capture
non-trivial features (the obtained routes are not
shortest paths) and that they fit real-world data
well. This last point however depends on the under-
lying graph and its properties. If we consider the ori-
ginal graph, then the results are in very good
accordance with the real-world data. If we take
other Internet maps, then the results remain very
good. If we turn to graph models, however, the
results are very poor. This indicates that the degree
of fidelity of our models relies on some properties,
which are not captured by these graph models, thus
confirming that there is still much to be done for the
accurate modeling of Internet topology.

It would also make sense to model the fact that
routes are directed, dynamic and weighted. The
NDM is static and undirected by nature: it always
produces the same route from a given node to
another (except if there is a choice between several
shortest paths in the middle). The RDM, on the con-
trary, already contains dynamics and a notion of
direction. The route obtained may vary from one
instance to the next. However, much remains to be
done to model these characteristics.

We have also shown that the properties of the
graph used to model the Internet have a crucial
impact on the performance of our models. We
explained most of the influence of the graphs on
the models, which leads us to conclude that any
model would perform poorly because of the fact
that graph models are still not accurate enough to
actually contain routes with the properties we cap-
tured. This is an important point which supports
the following points:

• first, it would make sense to conduct experiments
on more intricate models, such as those using Li
et al.’s first-principles approach [9], in order to
determine if they are, finally, accurate enough,
or rather confirm our conclusion that current
models still miss some important statistical
properties;

• second, the most relevant models of the Internet
topology seem to be the real-world maps
obtained by actual measurement. Simulation
should therefore be run on such graphs, but also
on models which have the advantage of being
well understood, which in turn makes it possible
to interpret the observed phenomena.
Finally, this study has restricted itself to the IP

graph (though we have made a comparison with
the routing graph in the case of the nec graph). As
we mention in the Introduction, measurements of
the AS graph are also available, and it is well known
that much of path inflation can be explained by
decisions taken at the inter autonomous system
level. Undertaking the same kinds of analysis and
modeling as we have done, but at the AS level, would
certainly be interesting. Moreover, relating the
results at one level to the other would significantly
improve our understanding of Internet routes, and
of the Internet in general.
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