
DISCO: Distributed Multi-domain SDN Controllers

Kévin Phemius, Mathieu Bouet and Jérémie Leguay
Thales Communications & Security

4 avenue des Louvresses, 92230 Gennevilliers, France
{kevin.phemius, mathieu.bouet, jeremie.leguay}@thalesgroup.com

Abstract—Software-Defined Networking (SDN) is now envi-
sioned for Wide Area Networks (WAN) and constrained overlay
networks. Such networks require a resilient, scalable and easily
extensible SDN control plane. In this paper, we propose DISCO,
an extensible DIstributed SDN COntrol plane able to cope with
the distributed and heterogeneous nature of modern overlay
networks. A DISCO controller manages its own network domain
and communicates with other controllers to provide end-to-end
network services. This east-west communication is based on a
lightweight and highly manageable control channel. We imple-
mented DISCO on top of the Floodlight OpenFlow controller and
the AMQP protocol and we evaluated it through an inter-domain
topology disruption use case.

I. INTRODUCTION

The SDN paradigm has emerged over the past few years
through several initiatives and standards from the need to
overcome the primary limitations of today’s networks. It is
based on three main principles: separation of software and
physical layers, centralized control of information and network
programmability. SDN is now envisioned for multi-datacenter
environments [1] and WANs.
The leading SDN protocol in the industry is the OpenFlow pro-
tocol. The majority of current SDN architectures, OpenFlow-
based or vendor-specific, relies on a single or master/slave
controllers, that is a physical centralization. Adapted for dat-
acenters, they are not suitable for multi-technology and wide
networks. In addition, the centralized SDN controller repre-
sents a Single Point Of Failure (SPOF), which makes SDN
architectures highly vulnerable to disruptions and attacks [2].
Recently, proposals have been made to distribute the SDN
control plane (Sec. II). These approaches avoid having a SPOF
and enable to scale up sharing load among several controllers.
However, mainly designed for datacenters, they generate huge
amount of data to synchronize controllers (eg. distributed
database).
In this paper, we propose DISCO, a DIstributed SDN COntrol
plane for WAN and overlay networks. It relies on a per domain
organization, where each controller is in charge of an SDN
domain, and provides a lightweight and highly manageable
inter-controller channel. This channel enables agents to share
aggregated network-wide information and hence support end-
to-end network services. We demonstrate how DISCO dynam-
ically adapts to heterogeneous network topologies while being
resilient enough to survive to disruptions and attacks. Contrary
to state of the art distributed SDN control planes, DISCO well
discriminates heterogeneous inter-domain links such as high-
capacity MPLS tunnels and SATCOM interconnections with
poor bandwidth and latency. We implemented DISCO on top
of the Floodlight [3] OpenFlow controller and the AMQP [4]

protocol and evaluated its functionalities on an emulated SDN.
The rest of this paper is organized as follows. First, Sec. II ana-
lyzes related work. Then, Sec. III presents DISCO architecture.
Our implementation is explained in Sec. IV and the evaluation
in Sec. V. Finally, Sec. VI concludes this paper.

II. RELATED WORK

Several attempts have been done to distribute SDN con-
trollers. HyperFlow [5] and Onix [6] propose to distribute
the control plane while maintaining a logical centralization
using a distributed file system and a distributed hash table
respectively. These approaches, despite their ability to dis-
tribute the SDN control plane, impose a strong requirement:
a consistent network-wide view in all the controllers. On the
contrary, Kandoo [7] proposes a hierarchical distribution of the
controllers based on two layers of controllers: (i) the bottom
layer, a group of controllers with no interconnection, and no
knowledge of the network-wide state, and (ii) the top layer,
a logically centralized controller that maintains the network-
wide state. Recently, Google has presented their experience
with B4 [1], a global SDN deployment interconnecting their
datacenters with a centralized Traffic Engineering service and
clusters of controllers in each data center.
In addition, [8] analyzes the trade-off between centralized and
distributed control states in SDN, while [9] proposes a method
to optimally place a single controller in an SDN network.
DISCO differs from state of the art solutions as it provides a
distributed control plane for WAN and constrained networks
based on a message-oriented communication bus. State of
the art distributed control planes are not adaptable to het-
erogeneous and constrained (bandwidth, latency, ...) network
deployments. Most of them impose a consistent network-wide
state in all controllers and thus generate large control traffic.

III. DISCO ARCHITECTURE

A DISCO controller (Fig. 1) is composed of two parts:
an intra-domain part, which gathers the main functionalities
of the controller, and an inter-domain part, which manages
the communication with other DISCO controllers (reservation,
topology state modifications, monitoring, ...). In addition to this
east-west interface, a controller has at least one southbound
SDN interface used to push policies to the network elements
and retrieve their status and a northbound interface to receive
management policies (e.g., service and user priorities) and
report network service status.

A. Intra-domain functionalities

The intra-domain modules enable to monitor the network
and manage flow prioritization so that the controller can978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

Fig. 1. DISCO Controller Architecture.

compute the paths of priority flows based on the state of
the different network parameters. The modules also enable to
dynamically react to network issues (broken link, high latency,
bandwidth cap exceeded, ...) by redirecting and/or stopping
traffic according to the criticality of the flows. This work
extends our previous work [10] on a centralized architecture,
that is intra-domain context. The central component is the
Extended Database in which each controller stores all the intra-
domain and inter-domain knowledge on network topology,
monitoring and ongoing flows. All the modules and agents
either enrich or use this information.

B. Inter-domain functionalities

A DISCO controller communicates with neighbor domain
controllers to exchange aggregated network-wide information.
They are composed of two key elements: (i) a Messenger
module which discovers neighboring controllers and maintain a
distributed publish/subscribe communication channel, and (ii)
different agents that use this channel to exchange network-
wide information with other controllers.

1) Messenger: This module provides a control channel be-
tween neighboring domains. It should support group and direct
communications to exchange status information (link state,
host presence) and request actions (e.g., reservations) from
other controllers. The usual communication patterns should
be supported: step-by-step diffusion (e.g.,distance vectors),
network-wide flooding (e.g., link states), uncased queries (e.g.,
reservation requests), and publish/subscribe messages (e.g.,
route updates).
To meet these requirements, we have chosen the Advanced
Message Queuing Protocol (AMQP) [4] as a base for the
implementation of Messenger. AMQP is an open standard
and a thin application layer protocol for message-oriented
middleware. It offers built-in features for message orientation,
queuing with priority, routing (including point-to-point and
publish-and-subscribe), reliable delivery and security. Due to
the convergence of network and IT systems such as cloud man-
agement, AMQP is an interesting solution being lightweight,
highly controllable and software-oriented.
Each DISCO controller has both an AMQP server in order to
publish information and an AMQP client to retrieve informa-
tion from other controllers. This way, each controller manages
its topics and its subscriptions. Messenger thus provides an

open communication bus on top of which any agents can be
plugged dynamically.

2) Agents: To support network-wide functionalities, we
have defined and implemented four main agents. The Con-
nectivity agent is in charge of sharing peering link details
with all the other domains. This agent works in an event-
driven mode as it sends information only if a new domain
is discovered or a peering link changed. This information is
extracted and filled up from and into the Extended Database
of each controller, like any other information received by
agents. The Monitoring agent periodically sends information
on available bandwidth and latency between all the pairs
of peering points to inform about the capability to support
transit traffic in the domain. The Reachability agent advertizes
on an event basis the presence of hosts in domains so that
they become reachable. The Reservation agent takes care,
like RSVP, of inter-domain flow setup, teardown and update
request including application capability requirement such as
QoS, bandwidth, latency, etc.
Each agent publishes and consumes messages on a required
subset of topics that they manage through Messenger to ensure
the consistency in the system. The exchanged information con-
cerns reachability (a list of reachable hosts in agent’s domain),
connectivity (a list of peering domains), and monitoring (the
status, latency and bandwidth of peering links). This way,
each domain controller is able to build a view of the inter-
domain network and have capabilities to perform routing, path
reservation and manage SLAs.

IV. DISCO IMPLEMENTATION

We have implemented DISCO on top of Floodlight [3], an
open source OpenFlow controller. The green hatched modules
on Fig. 1 have been directly taken from Floodlight’s Java
source code. We have developed in Java the other software
modules, except the two SDN protocol drivers in yellow that
are currently empty, to manage intra-domain and inter-domain.

A. Messenger implementation

Messenger is implemented like any other Floodlight ap-
plication. It subscribes to receive Packet IN messages from
the Core module, writes its own Packet OUT messages, calls
and stores information in the extended database. It currently
relies on a RabbitMQ driver using AMQP in federation mode.
Messenger offers a publish/subscribe communication channel
for inter-domain exchanges between agents. Messenger uses
two special topics for its basic operations. First, a topic named
ID.*.* is created, ID being the identifier of the controller. This
topic allows other controllers to directly send messages to it.
This is used, for instance, for bandwidth reservation requests.
Second, a topic named general.*.* enables to communicate
with all the other controllers in the federation. For example,
it is used when a controller wants to leave a federation.
This deletes the logical link between itself and the other
controller and warns the agents to stop sending messages to
this particular peer controller.
Messenger uses drivers to communicate with different imple-
mentations of AMQP. Each AMQP driver must support the
following set of functions:
1) subscribe (topic) and unsubscribe topic (topic): add and
delete a topic from the topic list that the node is interested to

Fig. 2. Multi-domain SDN Topology.

receive.
2) pair (neighbor controller ID) and unpair (neighbor controller
ID): create and delete a inter-domain control channel with a
neighbor controller.
3) send (topic, message): send a message on a specific topic.
Messenger also uses Keep-Alive messages every 500ms to test
the presence of neighboring controllers.

B. Agents implementation

Agents use Messenger to exchange information with
neighboring domains. We have implemented four agents:
Monitoring, Reachability, Connectivity and Reservation (see
Sec. III-B). They all publish on specific topics. For exam-
ple, the monitoring agent of the controller whose identi-
fier is ID advertizes every 2 seconds on the topic monitor-
ing.ID.bandwidth.2s the remaining bandwidth that it can offer
to transit traffic . The Reservation agent implements a RSVP-
like reservation protocol to provision end-to-end resources.
Such agents thus exchange reservation requests and responses
with flow descriptors. Messages can be directly sent to the next
domain controller on a path with the ID.*.*. topic.
Messenger and its dependencies (agents, drivers, ...) were writ-
ten with just over 2400 lines of Java code. The intra-domain
modules written beforehand to extend Floodlight amount to
almost 12,000 lines of code.

V. EVALUATION

A. Testbed and setup

Fig. 2 presents the network topology considered in the
performance evaluation. Each network domain A, B and C is
managed by a local DISCO controller, which coordinates with
its neighbor DISCO controllers. This setup is representative
from a typical enterprise network where several sites (edge

Fig. 3. Experimental setup.

networks or datacenters) are interconnected with different
WANs. The hosts connected to the network domains can be
either user terminals or virtual machines (VM).
The testbed is enclosed in a private cloud as shown in Fig. 3.
The network is emulated using Mininet [11], a tool used to
create rich topologies and instantiate Open vSwitch switches
and virtual hosts. The different link latencies and bandwidths
are enforced using Linux’s tc command. This setup allows us
a fine control on the network.

B. Evaluation: Adaptive information exchange

In this scenario, we show how the exchanges in the
control plane can self-adapt to the network conditions. In
order to reduce the network footprint of control information
exchanged between domains, agents adopt a twofold strategy:
(1) they identify alternative routes to offload traffic from
weak outgoing interconnections (e.g., low-bandwidth satellite
connection, congested link), and (2) they reduce the frequency
of control messages for these links if they do not find an
alternative route. Each Monitoring agent usually sends in-
formation every 2s. This period increases to 10s for weak
interconnections. The Connectivity and Reachability agents
also send their information using alternative routes whenever
possible. However, contrary to the Monitoring agents, they
only exchange messages in a reactive manner, that is when
an event occurs.
Upon bootstrap and discovery, the three controllers reach the
situation described on top of Fig. 4. In this scenario, the
link between the domains A and C is congested. Its latency
equals ≥ 50ms. B is thus relaying control information for
A and C in order to offload the congested link. In case the
inter-domain link between B and C fails, Monitoring agents
reconfigure themselves to the situation presented at the bottom
of Fig. 4 where monitoring traffic is passed through the weak
link A→ C, but at a lower frequency.
Fig. 5 presents the evaluation we have conducted to show
how the DISCO control plane adapts to the nominal situation
and when the inter-domain link between B and C fails. This

Fig. 4. Adaptable information exchange: (top) Congested situation: DISCO
controllers use high capacity inter-domain links to exchange information;
(bottom) Inter-domain link disruption: DISCO controllers adapt the content
and the frequency of their information exchanges.

(a) A → B (b) A → C (c) B → C

(d) B → A (e) C → A (f) C → B

Fig. 5. Adaptive information exchange on the different links. Packets come from the different agents and AMQP itself. At t = 9s, the bootstrap and discovery
phases end. At t = 33s, the link B ↔ C is cut off.

figure presents the link utilization in both directions right
after the controllers discover each other and start exchanging
AMQP messages. Each bar represents the TCP payload size
of received packets per category1. This experimental scenario
can be split up into three phases:
1) Network discovery till t = 9s where controllers exchange
their knowledge about hosts and the inter-domain network
topology. AMQP is particularly active during this phase be-
cause the brokers have to create the federations and subscribe
to the different topics. In this phase the monitoring has already
started but is not yet adapted to weak links.
2) Monitoring adaptation from t = 9s to t = 33s where
agents have discovered a weak link and adapt their behavior
accordingly. We observe on Fig. V-B and Fig. V-B that
monitoring is shot down after t = 10s as the link C ↔ A
is weak (congested), while monitoring traffic increases on
Fig. V-B and Fig. V-B.
3) Failure recovery starting right after we cut the link between
B and C at t = 33s. Information is transmitted over the link
between A and C, but with an adapted frequency as shown in
Fig. V-B and Fig. V-B. Monitoring traffic sent over B → A
decreases as information about B ↔ C is no longer necessary.
We additionally tested what would happen if a controller
fails entirely. Messenger has a built-in feature whereupon if
a controller fails ‘gracefully’, it can warn its neighbors so
that they can prepare for the failure. Otherwise, the Keep-
alive system will warn a controller if its neighbor is no
longer reachable. In that case, the logical control plane links
are severed, no messages are carried any more toward this
controller and other failure mitigation processes occur (e.g.,
if the fallen domain was used to exchange messages between
two domain, they will reconnect by other path if available).

1Controllers currently exchange JSON messages for ease of development
and integration. Compression is planned in future releases.

VI. CONCLUSION

We have proposed DISCO, a DIstributed SDN COntrol
plane for WAN and constrained overlay networks. It relies on a
per domain organization, where each controller is in charge of
an SDN domain, and provides a lightweight and highly man-
ageable inter-controller channel. We demonstrated how DISCO
dynamically adapts to heterogeneous network topologies while
being resilient enough to survive to disruptions. More details
can be found in [12]. Our future works include the extension
of DISCO with additional resilient and recovery mechanisms
so that a controller can take the control of switches from a
neighbor domain on the fly in case of failure.

REFERENCES

[1] S. Jain and al., “B4: Experience with a Globally-Deployed Software
Defined WAN,” in ACM SIGCOMM, 2013.

[2] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in HotSDN, 2013.

[3] “Floodlight OpenFlow Controller.” [Online]. Available:
http://floodlight.openflowhub.org/

[4] “AMQP.” [Online]. Available: http://www.amqp.org
[5] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane

for openflow,” in INM/WREN, 2010.
[6] T. Koponen et al., “Onix: a distributed control platform for large-scale

production networks,” in OSDI, 2010.
[7] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and

scalable offloading of control applications,” in HotSDN, 2012.
[8] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,

“Logically centralized?: state distribution trade-offs in software defined
networks,” in HotSDN, 2012.

[9] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in SIGCOMM Comput. Commun. Rev. 42, 2012.

[10] K. Phemius and M. Bouet, “Implementing OpenFlow-based resilient
network services,” in IEEE CLOUDNET, 2012.

[11] “Mininet.” [Online]. Available: http://mininet.org
[12] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-

domain SDN Controllers,” CoRR, vol. arxiv.org/abs/1308.6138, 2013.

