
DISCO : Distributed SDN Controllers in a
Multi-domain Environment

Kévin Phemius, Mathieu Bouet and Jérémie Leguay
Thales Communications & Security

4 avenue des Louvresses, 92230 Gennevilliers, France
{kevin.phemius, mathieu.bouet, jeremie.leguay}@thalesgroup.com

Abstract—Software-Defined Networking (SDN) is now envi-
sioned for Wide Area Networks (WAN) and deployed constrained
networks. Such networks require a resilient, scalable and easily
extensible SDN control plane. In this paper, we propose DISCO, a
DIstributed SDN COntrol plane able to cope with the distributed
and heterogeneous nature of modern overlay networks and
deployed networks. A DISCO controller manages its own network
domain, communicates with other DISCO controllers to provide
end-to-end network services and share aggregated network-
wide information. This east-west communication is based on a
lightweight and highly manageable control channel which can
self-adapt to network conditions.

I. INTRODUCTION

In this paper we propose DISCO [1], an open DIstributed
SDN COntrol plane for multi-domain SDN networks. It relies
on a per domain organization, where each DISCO controller
is in charge of an SDN domain, and provides a unique
lightweight and highly manageable control channel used by
agents that can be dynamically plugged into the different
domain controllers composed of an intra-domain part and
an inter-domain part (Sec. II). We demonstrate how DISCO
dynamically adapts to heterogeneous network topologies while
providing classic functionalities such as end-point migration
and being resilient enough to survive disruptions and attacks
(Sec. III). Contrary to state of the art distributed SDN control
planes which posses Distributed Databases that are costly in
energy and mostly in a cloud environment, DISCO focuses
on WAN constraints and discriminates heterogeneous inter-
domain links such as high-capacity MPLS tunnels and SAT-
COM interconnections with poor bandwidth and latency. We
implemented DISCO on top of the Floodlight [3] OpenFlow
controller and the AMQP [2] protocol.

II. ARCHITECTURE AND IMPLEMENTATION

DISCO is a distributed multi-domain SDN control plane
which enables the delivery of end-to-end network services.
A DISCO controller is in charge of a network domain and
communicates with neighbor domains to exchange aggregated
network-wide information for end-to-end flow management
purposes.
The architecture, detailed in this paper [1], is composed
of two parts: an intra-domain part which gathers the main
functionalities of the controller and an inter-domain part to
manage the communication with other DISCO controllers
(reservation, topology state modifications, disruptions, . . . ).

Fig. 1. Experimental setup (top) and controllers’ GUIs (bottom).

It is composed of two key elements: (i) a Messenger module
which discovers neighboring controllers and maintains a dis-
tributed publish/subscribe communication channel, and (ii) dif-
ferent agents that use this channel to exchange network-wide
information with intra-domain modules. Messenger provides
an open communication bus on top of which any agent can be
plugged dynamically. It can subscribe to topics published by
other agents and start publishing on any topic. Each agent
publishes and consumes messages on a required subset of
topics that they manage to ensure the consistency in the
system.

III. DEMONSTRATION

A. Platform Setup

The network topology considered in the evaluation is com-
posed of interconnected SDN domains. Each network domain
A, B and C is managed by a local DISCO controller, which
coordinates with its neighbor DISCO controllers. This setup is
representative from a typical enterprise network where several
sites (edge networks or datacenters) are interconnected with
different WANs. The hosts connected to the network domains
can be either user terminals or Virtual Machines (VM).



Fig. 2. Adaptive Information Exchange in DISCO.

The testbed was enclosed in a private cloud but can be
transposed in a small server or a personnel computer (see
Fig. 1 (top)). The network is emulated using Mininet [4], a tool
used to create rich topologies and instantiate Open vSwitch [5]
switches and virtual hosts. Mininet is hosted on a dedicated
VM while the controllers are hosted on separate VMs. The
different links latencies and bandwidths are enforced using
Linux’s tc command. This setup allows a fine control over
the network. We can see the results on the setup in Fig. 1
(bottom).

B. Adaptive Information Exchange Use Case

This scenario shows how the message exchanges can self-
adapt to the network conditions. In order to reduce the network
footprint of control information exchanged between domains,
agents adopt a twofold strategy: (i) they identify alternative
routes to offload traffic from weak outgoing interconnections
(e.g., low-bandwidth satellite connection, congested link), and
(ii) they reduce the frequency of control messages for these
links if they do not find an alternative route. Each Monitor-
ing agent usually sends information every 2s. This period
increases to 10s for weak interconnections. The Connectivity
and Reachability agents also send their information using
alternative routes whenever possible. However, contrary to the
Monitoring agents, they only exchange messages in a reactive
manner, that is when an event occurs.
Upon bootstrap and discovery, the three controllers reach the
situation described on top of Fig. 2. In this scenario, the
link between the domains A and C is congested. Its latency
equals ≥ 50ms. B is thus relaying control information for
A and C in order to offload the congested link. In case the
inter-domain link between B and C fails, Monitoring agents
reconfigure themselves to the situation presented at the bottom
of Fig. 2 where monitoring traffic is passed through the weak
link A→ C, but at a lower frequency.

C. Intra-domain and Inter-domain Link failure Use Case

This scenario emphases on what happens whenever a link
failure occurs, both inside a domain and in a peering link.
Thanks to its algorithm, a link failure inside a domain does
not necessarily impact the system, even if a flow was using
that link. The DISCO controller dynamically recomputes a

path for that flow (whenever possible) and does not share that
information with its neighbors.
In contrast, if an inter-domain link is affected by a failure,
the DISCO controller will (i) recompute a new route for
affected flows and (ii) immediately send a message about the
disruption. In consequence a remote controller will not count
on this peering link when computing flow routes.
For now, the flow are forwarded in Best Effort with the shortest
path route. The algorithm can be improved to include more
metrics like link’s latency or region restrictions.

D. Host Migration Use Case
Our final scenario presents how the distributed control plane

deals with end-points migration. This migration can be due
to the fact that an administrator moves a VM from a site
to another or because a mobile host hops from a wireless
Access Point to another. At the beginning, a UDP flow is
established between two end points. At some point of the run,
the destination host moves from the domain C to B. We will
see that the traffic is dynamically redirected to the new position
of the destination host with minimal losses.
During the transition, the following happens :

• The destination host is disconnected from the domain C
• C’s DISCO controller sends a Host Removed message
• If a controller (like A) detects that a flow was going to

the removed host, it will stop that flow until it has new
knowledge about its position

• The destination host is reconnected to B
• B’s controller sends a Host Added message
• A’s controller resumes the flow with a route to the new

destination’s position
Any flow running to an unknown destination will automati-
cally be blocked by the controller to prevent resource waste.
Conversely it will immediately start again when the destination
is available. This strong connection between a host and its
position mimics LISP.

IV. CONCLUSION

In this paper we have presented how DISCO, while being
able to work on a single domain, can dynamically adapt to
heterogeneous multi-domain network topologies to assure end-
point migration and link failure mitigation. DISCO is easily
extendable and can integrate more capabilities while keeping
the underlying mechanism simple and open.

REFERENCES

[1] K. Phemius, M. Bouet and J. Leguay, “DISCO: Distributed Multi-domain
SDN Controllers”, in IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2014.

[2] “AMQP.” [Online]. Available: http://www.amqp.org
[3] “Floodlight OpenFlow Controller.” [Online]. Available:

http://floodlight.openflowhub.org/
[4] “Mininet.” [Online]. Available: http://mininet.org
[5] “Open vSwitch.” [Online]. Available: http://openvswitch.org/
[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner,“OpenFlow: enabling innovation in
campus networks”,SIGCOMM Comput. Commun. Rev. vol 38, 2008


