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Abstract—The increasing ubiquity and diversity in the re-
sources and functionalities of the devices of the Internet of things
claims the need for (1) a device-independent abstraction layer
to expose (and consume) device capabilities as services on the
network and the need for (2) mechanisms to customize the
behaviour of the devices to fulfill new or additional operations in
collaboration with one another. To this end, this paper presents
the extension of the WSN-SOA [1] stack to support efficiently
the dynamic deployment of service-oriented collaborative tasks
in networks of tiny sensor motes such as MicaZ.

I. INTRODUCTION

The increasing ubiquity of network-connected devices in

our everyday environments (e.g., at home, at work, in the

city) is driving an evolution in interaction patterns, from tradi-

tional human-computer to machine-to-machine scenarios. For

instance, remote monitoring and control solutions, previously

limited to industrial systems such as SCADA, are currently

available in the market as home automation solutions for the

automatic control of lights, shutters or heating.

The advent of the Internet of Things

In the same way, in the years to come we will witness the

growth of consumer electronics based on wireless technologies

such as RFID (Radio-Frequency Identification) and WSN

(Wireless Sensor Networks). WSN are currently mostly de-

voted to the measurement of simple environmental parameters

such as temperature or humidity. However, nodes are increas-

ingly affordable and miniaturised, and power consumption

optimisations are expected to make batteries last several years.

These advances will make such sensors ready to be inte-

grated in everyday objects such as furniture or clothes. Smart

spaces will not only involve the system sensing patterns in the

environment, but also the user interacting through objects that

were previously inanimated, using them as input or output

peripherals and linking their behaviors, thus realizing the

dream of an Internet of Things world.

Service composition and tasking

The increasing diversity in the resources and functionalities

of the devices of the Internet of Things raises the need for a

device-independent abstraction layer exposing the functional-

ity of each sensor and actuator as a service on the network.

In a previous work [1], we presented the WSN-SOA stack,

a lightweight service-oriented stack for WSN. With such an

approach, ubiquitous applications involving from the simplest

temperature sensor to highly optimized cloud computing web

services can be easily created through service composition and

orchestration. In addition, subscription mechanisms in WSN-

SOA avoid the need for polling thus saving on batteries, the

scarcest resource in wireless sensors.

Although such an approach is sufficient for a wide range

of ubiquitous applications, autonomous cooperation between

wireless sensor nodes is limited by the inability to modify

the behavior of the devices in order for them to fulfill new

or additional operations (e.g. event detection, object tracking,

actuator command and control, data aggregation). In this paper,

we will first review the existing solutions for the dynamic

deployment of processing tasks in WSN. Then, we introduce

an extension of WSN-SOA for the dynamic deployment of

services and collaborative tasks. This approach benefits both

from the modularity of WSN-SOA and the flexibility of the

Tenet [2] tasking framework to reconfigure a WSN to execute

a specific collaborative process.

II. RELATED WORK

A number of propositions exist in the literature for the

dynamic deployment of processing tasks in wireless sensor

networks. This section reviews the existing solutions in bib-

liography that enable either to reprogram or to send code to

a node or group of sensor nodes. We evaluate these solutions

against the three following criteria:

• Global overhead: Sending code to a sensor or a group

of sensors consumes bandwidth for the request phase

and consumes memory and processing power for the

execution phase.

• Required programming effort: Depending on the pro-

gramming model, the abstraction level and the amount of

supported functions, reprograming a sensor network can

be more or less difficult.

• Task complexity: The complexity of the tasks that each

framework allows to deploy on the sensor nodes might

be different.

Fig. 1 shows a qualitative comparison of the different

existing approaches with regards to the previous criteria. An

ideal solution would have the maximum score for each axis.

Over-the-air flashing

The Deluge [3] software allows to reprogram sensors by

flashing their ROM memory over-the-air. As the entire node

program must be transmitted to nodes, it consumes a lot

of resources (battery, bandwidth). It potentially requires a

significant programming effort as it does not provide any

programming support but potentially offers the possibility to



Figure 1. Evaluation of existing solutions.

deploy tasks of a great complexity. Note also that all the tasks

running on nodes are being restarted without restoring their

state when nodes are reprogrammed.

Virtual machines

Agilla [4] is a virtual machine-based middleware which

allows the use of mobile agents. Mobile agents are defined

in the form of programs, with a complex syntax similar to

the assembly, interpreted on the sensors. Maté [5] takes a

similar approach, being a byte code interpreter for TinyOS. In

both solutions assembly programs can be deployed remotely

by using a mobile agent injector for the first one and a

code capsule for the second one. These approaches reduce

the global overhead and the programming effort but the task

complexity is limited by the available instructions (opcodes)

in the nodes and by the fact that no communication support

is offered for collaboration between sensor nodes.

Action chains

The Tenet [2] software aims at distributing processing on

sensor nodes in the form of tasks. Each task consist in a

chain of tasklets which are called sequentially. Tenet reduces

communication costs with respect to virtual machine-based

solution by relying on pre-deployed unitary complex opera-

tions. Tenet supports tasking with a very simple programming

language but is limited by the number of tasklets available at

nodes and does not offer any support for collaboration between

sensor nodes.

Service orientation

Servilla [6] is a service-oriented middleware running across

heterogeneous wireless sensor nodes (e.g., TelosB and Imote2)

on top of which one can execute scripts. Servilla relies on

Agilla but provides an easier C-style scripting language and

service-oriented features such as dynamic service discovery

and invocation. Thanks to its service-oriented approach and

its programming language, Servilla enables to deploy more

complex tasks in terms of functionality and sensor nodes

collaboration while keeping a global overhead similar to

virtual machine-based solutions.

Macroprogramming

Whereas previous approaches focused on the modification

of the local behavior of nodes, a different class of solution

focuses on the global behavior of a distributed sensor network

as a whole, also referred as macroprogramming. In this class,

Cougar [7] and TinyDB [8] abstract a sensor network as a

database. They provide easy SQL-like interfaces for extracting

the data of interest from sensor nodes. These solutions offer a

very easy way of tasking a sensor network while consuming a

fairly little global overhead. However, they are limited to data

collection operations.

III. SERVICE-ORIENTED TASKING

From the survey presented in Sec. II, we found that all

the solutions face a general trade-off between programming

simplicity, tasks complexity and overhead reduction. However,

we argue that without adding overhead or programming com-

plexity, Servilla and Tenet would benefit from the support of

a rich SOA middleware to easily support the reconfiguration

of complex collaboration processes between sensors.

The WSN-SOA stack [1] is a good candidate as it features

service discovery and invocation, eventing operations and ser-

vice hosting. The WSN-SOA protocol stack has been introduced

in previous work as part of a multi-tier service-oriented archi-

tecture for heterogeneous WSN. This architecture seamlessly

integrates devices with resources ranging from those of a PDA

to extremely constrained sensors such as Crossbow’s MICAz.

Figure 2. Example of a service-oriented task deployment.

By combining the advantages of WSN-SOA for distributed

applications and tasking mechanisms such as Servilla and

Tenet, distributed processing tasks can be deployed on nodes to

make them cooperate autonomously. We propose that the tasks

consist in simple scripts able to invoke local or remote ser-

vices, subscribe to local or remote events, expose dynamically

new services to offer new data or processes, and manipulate

data using a library of pre-programmed functions.

Fig. 2 illustrates how service oriented tasks can be deployed.

In this example, a task deployed on node C uses a local



positioning service and the information exposed as a service

by another task deployed on node B which fuses data from

magnetometer services running on nodes A and B.

IV. WSN-SOA: SOA FOR LOW CAPACITY NODES

As targeted devices are not able to process XML messages,

we proposed in a previous work WSN-SOA [1], which consists

in a simple protocol and software stack that reproduces the

architectural concepts and information exchanges of SOA

implementations for the plug-and-play networking of devices,

such as UPnP [9] or DPWS [10]. The main goal is to make

sensor nodes able to host services, announce them in the

network, discover others’ services, invoke their operations and

subscribe to events.

This section presents the WSN-SOA protocol as well as its

implementation on the open-source operating system TinyOS

2.1 [11], [12]. We developed the WSN-SOA for the Crossbow

MICAz sensors equipped with the MTS310 sensor board

attached to their serial port which offers a variety of sensing

modalities such as light, pressure, acceleration, temperature

and acoustic. This hardware combination provides also two

symbolic actuators such as a sounder and a set of 3 leds.

MICAz nodes have very limited capacity in memory and

processing power as they only embed an Atmel ATmega128L

microcontroller with 4KB of RAM and have 128KB of pro-

grammable flash ROM.

A. Message format

The messages exchanged within the WSN-SOA follow the

message format depicted in Fig. 3. WSN-SOA messages are

embedded in multi-hop messages that we have defined to

enable multi-hop communications between sensors. The src

and dst fields indicate respectively the address of source and

destination nodes. The type field is used to characterize the

kind of messages that are embedded in packets (i.e., WSN-

SOA messages in our case). WSN-SOA message headers

contain the following fields:

• SrcServID: This identifier allows to address the service

which initiates the information exchange on the source

node.

• DestServID: This field identifies the service on the

destination node.

• OperationID:Within a service, several operations can be

implemented. They could either correspond to a function

which can be invoked or to an event source to which

one can subscribe. This field then identifies the operation

within the destination service.

• MEP: The Message Exchange Pattern field defines the

semantics of message exchanges: request, response, sub-

scription, unsubscription, notification, acknowledgment.

To exemplify their use, for an invocation procedure, the

source service sends a message with the MEP request

and receives a response message from the destination

service with the MEP response. The MEPs subscription,

unsubscription, notification and acknowledgment are used

in eventing procedures. Acknowledgments can be sent

Figure 3. WSN-SOA message format in TinyOS.

back to the source service to confirm the reception

of subscriptions, unsubscriptions and requests without

response.

• Payload: This field contains the data exchanged between

services. These data can be of any kind but their size

needs to be smaller than the WSN-SOA message payload

size. Fragmentation can easily be introduced, although we

observed that in most cases the exchanged data is very

small (e.g., an integer).

B. Software architecture

Fig. 4 presents the WSN-SOA software architecture as

implemented in TinyOS. The WSN-SOA protocol and service

stack rests upon:

• Routing module: This module operates a multi-hop rout-

ing protocol. In our context, network topology is com-

pletely decentralized and message exchanges can occur

between any possible pair of nodes, so the protocol we

implemented is unicast and very similar to DSDV [13].

• Forwarder module: This module forwards incoming and

outgoing messages according to the routes established by

the routing module. It processes messages according to a

FIFO queuing management mecanism.

WSN-SOA messages enter the WSN-SOA dispatcher which

is in charge to receive all the messages (local and remote) and

to send them to the right component or service, according

to the message type (the MEP) and the serviceID. The core

middleware component contains the following modules:

• Broker engine: This key module is in charge of discov-

ering services in the network on the behalf of local tasks

or services using broadcast requests. Services can express

their needs to the broker engine, which then performs the

discovery in a transparent fashion. This makes services

lighter and easier to implement.

• Notifier: This module handles all the subscription and

unsubscription requests and updates the Subscription

database accordingly. This database contains the service

ID and the mote address of the subscribers, as well as

the local service ID and operation ID of the event they

subscribed to. Whenever a notification is issued by a local

service, the Notifier notifies all the subscribers of this

event by sending dedicated notification messages.

The WSN-SOA stack has been implemented in TinyOS with

an extensive use of modules. Indeed, every service is a TinyOS



Figure 4. WSN-SOA software architecture in TinyOS.

module which is linked to the WSN-SOA core machinery.

Two kinds of built-in services have been defined: management

services and sensor/actuator services.

The management services contain vital services such as:

• WSN-SOA Manager: This service manages the life

cycles of permanent services by allowing to activate

or deactivate them, for instance to gain energy if not

used. It also performs supervision activities on the core

middleware components and offers operations to retrieve

or delete subscriptions in the Notifier.

• Energy Manager: It enables to tune the operation of

energy-consuming protocols and services (e.g., sleep

interval of the MAC protocol, duty cycle of sen-

sor/actuator), according to energy profiles such as Best

Performance or Best Autonomy. Such profiles are meant

to offer various compromises with regards to the trade-off

between the reactivity, functionalities, and the lifetime of

the network.

• Network Manager: This service performs supervision

of network protocols. For now, it offers local topology

information (i.e., neighboring nodes) through invocation

or periodic eventing operations.

The sensor/actuator services offer operational services. As

an illustration, we have implemented in TinyOS the follow-

ing services: Light sensor, Magnetometer, Batteries, LEDs,

Sounder and Accelerometer. For instance, the accelerometer

sensing service exposes operations (i.e. interfaces) to the rest

of the network related to the accelerometer. It offers the

possibility: (1) to get the latest values of the accelerations over

the x and y axis, (2) to be notified periodically of these values

and (3) to be notified of these values whenever a significant

change between two consecutive measurements occurs.

V. SERVICE-ORIENTED TASKING IN WSN-SOA

This section presents the original Tenet system and shows

how we integrated it in WSN-SOA.

A. Tenet basic principles

Tenet allows to easily define a task and to send it to remote

sensors. A task consists in a character string which defines

an oriented chain of actions, called tasklets, that the sensor

nodes execute sequentially. About a hundred tasklets have been

already defined in Tenet and adding new ones is easy.

The following task can for instance be defined:

repeat(’500’) -> count(1,’0’,’1’) -> set_leds(1)

This task orders the sensors to display every 500 millisec-

onds on the LEDs the last 3 bits of an incremented counter.

The count tasklet initializes the variable 1 to 0 and increments

it by 1 each time the tasklet is executed. The set leds tasklet

displays in binary on the LEDs the value of the variable 1.

The Tenet software consists of (1) a code for sensor nodes

which aims at receiving, installing and executing the tasks, and

(2) a code for the gateway node (e.g., a laptop) which parses

the tasks and sends the matching short tasks descriptors to

the sensors node. The results of tasks can be transmitted (if

required) to the gateway node.



Figure 5. Software integration of Tenet in WSN-SOA.

B. Tenet integration in WSN-SOA

Fig. 5 presents the revised WSN-SOA software architecture

including Tenet. A dedicated WSN-SOA service has been created

in order to manage the Tenet layer, called Tenet Manager.

This service is able to install or uninstall a task on-demand or

to get its status (i.e., installed, running, waiting, uninstalled).

This service is invoked by the gateway node to send the tasks.

Since the task messages can be usually bigger than the length

of a WSN-SOA message, fragmentation is implemented inside

the service using a simple buffer. The gateway node invokes

the Tenet Manager of the target node as much as it needs to

transmit the entire task. It allows to send a task to a specific

mote which was impossible with the original Tenet software.

C. Service-oriented tasklets

The specific tasklets have been specified and implemented

to enable service-oriented tasking.

• Invoke(DestAdd, SrcServID, DestServID, OpID, Attr)

This tasklet performs an invocation to a local or remote

service by sending a WSN-SOA request message to the

service DestServID. It then waits for a response message

and put the response data (e.g., temperature) in the Tenet

variable Attr. It takes the following parameters:
– DestAdd: destination node address.

– SrcServID: ID of the source service.

– DestServID: ID of the invoked service.

– OpID: ID of the invoked operation.

– Attr: data structure with the invocation payload.

• WaitNotify(DestAdd, SrcServID, DestServID, OpID,

Attr) This tasklet performs the subscription to a particular

event and then waits for a notification. This tasklet blocks

the whole execution of the task and waits for a WSN-SOA

notification message.

• Notify(SrcServID, OpID, Attr) This tasklet notifies

subscribers in the network of a particular event (e.g,

temperature is higher than a fixed threshold). This event

is identified by the couple SrcServID-OpID and contains

in the payload the value of Attr. This tasklet sends a WSN-

SOA notification Message to the Notifier.

• Expose(ServID, Attr) This tasklet is used to expose the

result of a complex task realized by a mote (e.g, average

temperature from neighboring nodes). This tasklet pushes

the data to the Data Exposed database. The data contained

in Attr is then offered through invocation by other service

using the service ID ServID with the help of the Tenet

Shared Data Accessor. The latter receives the WSN-SOA

request messages, and sends data back.

To support the previous service-oriented tasklets, the fol-

lowing modules have been added to Tenet:

• Shared Data Accessor: this module exposes the data

that tasklets can store in the Data Exposed database to

the rest of nodes using a simple invocation. Each of these

values has a corresponding service ID which can be used

by other services to invoke a standard get operations to

access this data. These virtual services can be discovered

dynamically by other services as their availability are

registered in the WSN-SOA active resources database.

• Incoming Messages Handler: Since the system is able

to deal with multiple instantiations of the same tasklet,

a manager to link a response or notification message

to a specific tasklet instantiation is required. Each time

a tasklet needs to be joined by such messages, this

modules forwards the message to the appropriate handler

functions. The dispatcher discriminate messages destined

for Tenet using the simple rule that destination service IP

is higher than 50.



Furthermore, we have added pairs of do/while tasklets to

create more complex tasks and a GotoIf(Attr, Cond, Value,

Inc) tasklet to support condition-based tasks. This GotoIf

tasklet verifies a condition on the variable Attr and make the

Tenet scheduler jumps if satisfied to a specific tasklet in the

overall executed task. It takes the following parameters:
• Attr: value to be used to make the decision.

• Cond: the operator to be used (e.g.: ≤, ≥ or =).

• Value: The value to compare with Attr.

• Inc: The relative address in the active task of the next tasklet to execute.

VI. SCENARIO

To highlight the added -value of the service-oriented tasking

extensions to WSN-SOA that we proposed in this paper, we

present a simple scenarios in which sensors wait for a seismic

vibration in order to activate a siren. Fig. 6 graphically shows

the interactions between nodes.

Figure 6. Case study.

To achieve this global task, the following tasks are deployed.

On Sensor 1: This sensor embeds an accelerometer service

which is polled by the local task. Periodically, values are sent

to mote 2 for remote processing. This solution is of course

not optimal but illustrates the possibility of our solution. This

translates in the following Tenet task:

repeat(‘1000’)->invoke(‘1’,‘52’,‘3’,‘1’,1)

->notify(‘55’,‘1’,1)

Every 1000 milliseconds, sensor 1 invokes the operation 1

(i.e. getValue) of the local service 3 (i.e. the accelerometer

service). It then publishes a notification to operation 1 in

service 55 (the notifier will then send it to subscribers)

On Sensor 2: This sensor compares the value against a

threshold and sends a notification to sensor 3 if necessary.

This translates in the following Tenet task:

repeat(‘0’)-> waitNotify(‘1’,‘51’,‘55’,‘1’,1)

->gotoIf(1,‘1’,‘2’,‘threshold’,‘2’)

->notify(‘65’,‘1’,1)

Whenever sensor 2 receives an event, it checks if the value

is under the threshold (e.g., 2) and sends an alert to mote 3.

On Sensor 3: Whenever this sensor receives alerts from

sensor 2, it turns on a local siren. This translates in the

following Tenet task:

repeat(‘0’)->waitNotify(‘2’,‘61’,‘65’,‘1’,1)

->invoke(‘3’,‘52’,‘1’,‘1’,1)

Sensor 3 subscribes to the first operation of the service 55 on

the mote 2 and waits for a notification. As soon as it receives a

notification it executes the next tasklet which activates a small

siren by invocation.

VII. CONCLUSION

After having reviewed state-of-the-art solutions for the

dynamic deployment of tasks in WSN, this paper has laid the

basis for the extension of the WSN-SOA stack to support the

dynamic deployment of service-oriented tasks. The combina-

tion of these powerful mechanisms will enable the seamless

creation of cooperative behaviours in WSN, thus paving the

road for a whole new set of applications in the customization

of Internet-of-Things environments.

Ongoing works focus on applying a Model-Driven Archi-

tecture approach to create a complete toolchain, dramatically

enhancing the added value of the presented solution through

(1) the easy definition of tasks using a graphical modeller,

(2) the prior-to-deployment validation of the coherence of

collaborative tasks and (3) the runtime enforcement of pre-

designed workflows to discovered capabilities.
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