
Service Oriented Architecture for Heterogeneous
and Dynamic Sensor Networks

Jérémie Leguay, Mario Lopez-Ramos, Kathlyn Jean-Marie,Vania Conan
Thales Communications

160 Bd de Valmy - BP82
92704 Colombes Cedex, France

Email: {firstname.name}@fr.thalesgroup.com

Abstract—The purpose of this demo is to foster a multi-
level service oriented architecture for sensor networks that
fully supports network dynamicity, auto-configuration, service
discovery, and interoperability with legacy infrastructures. We
consider a surveillance scenario in which the detection of an
intruder, conducted within the range of a network of sensors,
automatically triggers tracking activities.

I. I NTRODUCTION

The increasing complexity and heterogeneity of nowadays
information systems have called for Service Oriented Archi-
tecture (SOA). Major benefits of such approach are modularity,
flexibility, loose-coupling and interoperability. These infor-
mation systems are increasingly connected to various kinds
of sensors and actuators networks [1] having characteristics
in processing power, battery, communication capability and
availability that span over very wide ranges.

The main contribution of this demo is then the proposition
and implementation of a multi-level SOA-based architecture
for heterogeneous sensor networks. This architecture has two
main goals. The first one is to extend SOA capabilities to
devices with low capacities in processing power, battery,
communication capabilities and availability. The second is
to ease the deployment of network entities at all levels by
providing auto-configuration mechanisms both at the network
and service levels.

II. SERVICE ORIENTED ARCHITECTURE

The service-oriented architecture we propose classifies
nodes in three different classes depending mainly on their
available resources and network connectivity:

• Full capacity nodes: These entities have high availability
and do not have processing power or battery issues.
They could be critical always-online servers or client
applications.

• Limited capacity nodes: These devices can be limited in
terms of storage, battery, processing power or communi-
cating capabilities but can still perform complex tasks and
host operating systems such as Windows CE or Linux.

• Low capacity nodes: Such devices have extremely low
capacity. They have few kilobytes of RAM, are equipped
of a MicroControler and often use low power wireless
interfaces such as IEEE802.15.4.

On the full capacity nodes, information is exchanged using
common Web Services stacks (e.g., Axis). On the limited ca-
pacity nodes, we propose to use DPWS [2], which is perfectly
adapted to dynamic and constrained devices and compliant
to Web Services standards. At the lowest level, since to our
knowledge no SOA-compliant service stacks were available,
we propose to use a SOA-based solution (see Sec. III). The
interoperability between Web Services stacks and the sensor
network is ensured by a specific gateway (see Sec. IV).

III. SOA FOR LOW CAPACITY NODES

As targeted devices in the category oflow capacity devices
are not able to process XML messages, we propose a tiny
SOA stack which consists in a simple protocol and software
architecture reproducing the architectural concepts and infor-
mation exchanges of regular SOA implementation. The main
goal is to make sensors very limited in capacity able to host
services, discover the services of the others, announce their
services, invoke services and subscribe to events.

We implemented a tiny SOA stack under TinyOS on Cross-
bow MICAz sensors having a MTS310 sensor board attached
to their serial port which offers a variety of sensing modalities
such as light, pressure, acceleration, temperature and acoustic.
This hardware combination offers also twosymbolic actuators
such as a sounder and a set of3 leds. MICAz nodes have
very limited capacity in memory and processing power as they
embed an Atmel ATmega128L microcontroller with 4KB of
RAM and have 128KB of programmable flash.

IV. B RIDGE

This section presents the software stack we propose to run
on nodes that bridge between full-capacity nodes and low
capacity nodes in our service oriented architecture. Its main
functions are:

• To enable a tiny SOA to DPWS service translation. This
is done through hosted service-specific proxies which
can be automatically generated from TinyOS module
headers. This fine-grained operations enable, for instance,
to trigger an actuator in a specific node. This provides a
feedback mechanism to the network which is able to react
to events and thus enhance sensing capabilities.

• To provide a high-level interface which hides the com-
plexity of the underlying network. In a context in which



hundreds or thousands of these nodes can be deployed, a
one-to-one SOA message translation offers poor control
possibilities. By providing meaningful interfaces, the net-
work can be seen as a singlemacro-sensor. The chosen
data dissemination mechanism is publish-subscribe.

All these modules have been conceived asbundles within
the Open Services Gateway initiative (OSGi) framework
in Java. This gateway has been implemented to run on
Crossbow’s Stargate sensor network gateways. This device is
equipped with an Intel PXA255 Processor running at 400MHz
and has 64MB of SDRAM. It embeds a PCMCIA Wi-Fi card,
a Compact Flash memory card, an ethernet port and a2 serial
ports, one of which hosts a MICAz mote to provide Zigbee
connectivity.

Despite the fact that the bridge can offer one-to-one service
translation, we propose to use a more efficient and relevant
way of communication based on a publish/subscribe mecha-
nism: data dissemination is performed through a virtualpipe
divided in different channels, each identified by a unique
topic. When a new sensor is available, its event sources are
announced as topics on the pipe; when consumers subscribe to
an existing topic, nodes are requested to publish information
on it as soon as it is available.

V. PROOF-OF-CONCEPT

A. Demonstration setup

We considered a surveillance scenario in which sensors
forming an ad hoc network have been deployed to detect
intrusions via seismic vibrations. These sensors communicate
using an Wi-Fi ad hoc network through the Crossbow Stargate
gateway with an Axis 213 PTZ camera and a laptop running
a Command and Control application.

Fig. 1. Surveillance scenario.

Fig. 1 presents graphically the scenario that we considered
and the sequence of events that take place when an intrusion
is detected. Once routing has converged and nodes are able to
exchange information, the SOA-based service stacks (both at
the DPWS level and at the mote level) advertise their hosted
services and topics which are then known to the rest of the
network. The control unit then requests subscriptions to the
topic providing tilt events from the accelerometer serviceof

the motes. Whenever a mote detects a significant change in
acceleration, a notification is sent through the bridge to the
control unit and the camera, which react accordingly.

B. Command and Control unit

More specifically, the Command and Control unit that we
have developed allows to manage all the sensors and actuators
within the scenario. The application allows (1) to locate the
different entities on a map and to see the network connectivity
between them (see Fig. 2), (2) to plot graphs showing the
evolution of measurements (acceleration, light, etc.) over time
and to push an available event into the publish/subscribe pipe,
(3) to watch the video streamed from the camera and set the
preset positions corresponding to every monitored zone, and
(4) to subscribe to topics available in the publish/subscribe
pipe.

Fig. 2. Command and Control unit GUI.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a multi-level service oriented
architecture for sensor networks. This architecture bridges the
gap between devices having very different capacities and fully
handle network dynamicity by providing auto-configuration
features at both network and service level.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,”IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[2] “Devices Profile for Web Services (DPWS) specifications,” http://
schemas.xmlsoap.org/ws/2006/02/devprof/.


