
Cost-based placement of virtualized Deep Packet
Inspection functions in SDN

Mathieu Bouet, Jérémie Leguay and Vania Conan
Thales Communications & Security

4 rue des Louvresses, 92230 Gennevilliers, France
{mathieu.bouet, jeremie.leguay, vania.conan}@thalesgroup.com

Abstract—In today’s IT systems, cyber security requires
fine-grained, flexible, adaptable and cost optimized monitoring
mechanisms. The emergence of new networking technologies, like
Network Function Virtualization (NFV) and Software Defined
Networking (SDN), opens up new venues for large scale adoption
of these cyber security tools. In particular, Deep Packet Inspection
(DPI) engines can be virtualized and dynamically deployed as
pieces of software on commodity hardware. Deploying such
software DPI engines is costly in terms of license fees and power
consumption. Designing cost effective DPI engine deployment
strategies that meet the cybersecurity operational constraints
is thus mandatory for the adoption of this approach. For this
purpose, we propose a method, based on genetic algorithms, that
optimizes the cost of DPI engine deployment, minimizing their
number, the global network load and the number of unanalyzed
flows. We conduct several experiments with different types of
traffic and different cost structures. The results show that the
method is able to reach a trade-off between the number of DPI
engines and network load. Furthermore, the global cost can be
reduced up to 58% when relaxing the constraint on the used link
capacity, that is the provisioning rate.

I. INTRODUCTION

In present IT systems breaches take months to be discov-
ered and days to weeks to be contained. Situational awareness
is thus necessary for an effective cyber defense. In today’s
world, organizations must assume that their networks and
systems will be compromised. Among all the functionalities
required to accelerate breach detection and mitigation, fine-
grained realtime monitoring of flows and users activity is
inevitable [1]. The emergence of new IT architectures, such as
cloud computing, stresses the need for more flexible, adaptable
and cost-optimized cybersecurity tools. This paper studies a
cost efficient Deep Packet Inspection (DPI) service that can
be dynamically deployed as a piece of software on commodity
hardware.
Network Functions Virtualization (NFV) is a network tech-
nology trend that, adopting the virtualization principles of
cloud computing, pushes for the softwarization of network.
This approach, supported by services providers [2], consists
in delivering network functions as software that can run as
virtualized instances and that can be deployed at required
locations in the network, without the need to install specific
equipment for each new service. It is applicable for any
network function, such as Deep Packet Inspection, firewalling,
caching, ciphers, load balancers, in both mobile and fixed
networks. Virtualizing network functions enables to rapidly

This work is partially supported by French FUI RAVIR project.

scale up (or down) services, that currently necessitate mul-
tiple dedicated hardware appliances, as it only requires the
installation of virtual appliances on existing server equipment.
Furthermore, NFV completes the Software-Defined Network-
ing (SDN) technology where network becomes programmable
and run on commodity hardware. Virtual appliances might be
configured using SDN capabilities to automate the deployment
and the configuration of the network with fine-grained flow
policies.
DPI consists in filtering network packets to examine the data
part (and possibly also the header) of a packet flow, searching
for protocol non-compliance, viruses, spam, intrusions, or any
defined criteria. DPI enables to decide whether a packet may
pass or not. In case suspicious behaviors or attack mitigation,
the decision could be made to route the packet to a different
destination or to report it to a security tool. This network
function, as many other, is more and more virtualized, that
is, embedded in software libraries that can be deployed and
used on demand on multicore commodity hardware.
In this paper, we propose a method that enables to optimize
the deployment of such DPI engines, especially in SDN
environments where flows can be manipulated atomically. It
minimizes the number of deployed DPI engines, the induced
network load and the number of non-analyzed flows taking into
consideration operational constraints such as the maximum
used bandwidth per link for provisioning policy and costs of
engines, used bandwidth and SLA violations. Reducing the
number of deployed DPI engines induces redirecting more
flows towards them, thus increasing both global network load
and link utilization. The method we propose is based on
genetic algorithms, which have been shown to have good prop-
erties for this type of problems [3]. We conducted experiments
with different types of traffic to evaluate the convergence time
and the trade-off between the number of DPI engines and the
network load with various costs.
Our cost-based method provides the number and the locations
of the DPI engines to be deployed. It can be used at design time
to lower costs and reduce capital expenditures by utilizing the
appropriate number of software solutions rather than adding
offload hardware. It can also be used at runtime to adapt
dynamically deep packet inspection capabilities.
The rest of the paper is organized as follows. First, Section II
presents related work. Then, Section III details the method
we propose, while experimentation results are analyzed in
Section IV. Finally, Section V concludes this paper.



II. RELATED WORK

In recent years, the concept of network virtualization,
considered as the way to evolve towards new network archi-
tectures, has attracted significant attention [4]. It consists in
clearly separating the management of the network into two
domains: infrastructure management for physical resources and
service management for virtual network on top of the physical
infrastructure. This concept has in particular resulted into the
concept of Software-Defined Networking (SDN) [5], where the
separation of the control plane from the data plane through
open API like OpenFlow [6] enables to control both physical
and virtual network equipment [7]. Besides, the OpenFlow pro-
tocol provides a mean to atomically manage flows, aggregate
filter, block or redirect them on a vendor-agnostic basis.
Very recently, a new concept has emerged: Network Functions
Virtualization (NFV) [2]. This initiative from the biggest
service providers is highly complementary to SDN. It aims
to shorten service deployment lifecycle by leveraging standard
IT virtualization technology to consolidate many network
equipment types onto industry standard high volume servers,
switches and storage, which could be located in Datacenters,
Network Nodes and in the end user premises. The virtual-
ization of the network appliances concerns firewalls, caches,
ciphers, load balancers, intrusion detection systems etc. Several
recent works address the performances and the support of
network equipment [8] and Deep Packet Inspection [9] on
commodity hardware.
Network and network functions virtualization are also pushed
by the convergence of computation, storage and networks
in cloud computing. A lot of recent work in the literature
only concerns the placement of Virtual Machines without an
integrated view of computation, storage and networks. Several
techniques to optimize their placement with respect to server
load balancing or energy saving have been proposed [10], [11].
To the best of our knowledge, this paper presents the first
method that addresses the integrated optimization of virtual-
ized network functions deployment (DPI engines in our case).
Contrary to the problem of placing virtual machines, that
are communication end-points, we consider the placement of
functions inside the network with end-points that cannot be
arbitrarily moved. This placement induces flow redirections
inside the considered network and thus increases the global
network load.

III. OPTIMIZING THE PLACEMENT OF VIRTUALIZED DPI
ENGINES IN SDN

This section presents the method we propose, describing
its formalization an then detailing its implementation with a
genetic algorithm.

A. Problem description

The problem we address in this paper can be stated as
follows: for a given network infrastructure and a given traffic
matrix find a DPI engine deployment that minimizes the
overall cost of the deployment. This cost is the result of a joint
optimization that minimizes i) the number of DPI engines, ii)
the overall network load induced by flow redirections through
the DPI engines, and iii) different operational constraints.
These constraints concern financial costs such as the cost
associated to a deployed DPI engine (e.g. license price, CPU

Fig. 1. The objective of minimizing the number of DPI engines is orthogonal
to the objective of minimizing the network load.

utilization, energy consumption...), the cost associated of net-
work resources (e.g. network total cost of ownership, capacity
of the network to absorb new traffic), and the cost of penalties
due to the incapacity to analyze a flow. The constraints also
include management limits such as maximum number of
engines to be deployed, the maximum used bandwidth per link
(to be able to absorb peaks) and the maximum unallocated
flows.
The two main objectives, that are minimizing the number of
DPI engines and minimizing the network load, are in fact
orthogonal. Indeed, all the flows have to go through at least one
DPI engine to be analyzed. When the number of DPI engines
is small, the paths tend to be elongated. Therefore, minimizing
the number of engines increases the additional used bandwidth.
On the contrary, minimizing the used bandwidth increases the
number of DPI engines to be deployed. Fig. 1 illustrates the
orthogonality of the objectives. The optimal number of DPI
engines, that is 1, induces the redirection of the black flow
and thus the increase of network usage. On the contrary, the
optimal network load, that corresponds to the shortest path,
requires the deployment of at least 2 DPI engines, one on
each shortest path.

B. Problem formalization

We formalize the problem described above as follows. We
define the representation of a solution. For a topology of
n nodes, x is an array of n bits/booleans ([0, 1, 0, 0, ...])
representing the presence of a DPI engine in node i by a 1
and its absence by 0. The solution that corresponds to the
deployment on Fig. 1 is: [0, 0, 0, 0, 1, 0, 0], as there is only
1 DPI engine in node E.
The fitness function F (x), that is the global cost function to
minimize, is composed of three cost functions for the three
objectives to minimize: i) the number of used DPI engines
(Eq. 2), ii) the global network load (Eq. 3), and iii) the number
of flows that cannot be analyzed (Eq. 4):

F (x) = fDPI(x) + fbw(x) + funalloc.(x) (1)

The function fDPI(x) represents the cost to deploy n(x) DPI
engines which have a unitary cost (license, energy...) ωDPI



TABLE I. SYMBOL DESCRIPTIONS.

Symbols Descriptions
x A set of DPI engines linked to the network nodes
F (x) Fitness function
fDPI(x) DPI cost function
fbw(x) Additional bandwidth cost function
funalloc.(x) Unallocated flow cost function
ωDPI DPI weight/cost
n(x) Quantity of used DPI engines
N Threshold for the number of used DPI engines
ωbw Additional used bandwidth weight/cost
bw(x) Additional used bandwidth
bwi Used bandwidth on link i
BW Threshold for the used bandwidth per link, in percentage
ωunalloc. Unallocated flow weight/cost
u(x) Quantity of flows unallocated to any DPI engine
U Threshold for the number of unallocated flows

with the constraint to have maximum N engines:

fDPI(x) =

{
ωDPI ∗ n(x) if n(x) ≤ N

∞ if n(x) � N.

with n(x) =
i<n∑
i=0

xi.

(2)

The function fbw(x) represents the cost to increase the global
network load of bw(x) units of bandwidth, with a cost ωbw

per unit of bandwidth (e.g. network total cost of ownership). It
includes a strong constraint with the threshold BW that defines
the maximum percentage of used bandwidth bwi on each link
i of the network. This threshold enables network managers to
choose the over-provisioning rate and network capacity to be
able to absorb traffic variations or new demands:

fbw(x) = ωbw ∗ bw(x) with bwi ≤ BW (3)

bw(x) is the difference between the total bandwidth used
with DPI engines (that generate redirections and thus path
elongations) and the total bandwidth used when there is no
DPI engine.
Finally, the cost function funalloc.(x) represents the sum of the
penalties ωunalloc. for the u(x) flows that cannot be analyzed
with the constraint to have maximum U flows that are not
allocated to a DPI engine:

funalloc.(x) =

{
ωunalloc. ∗ u(x) if u(x) ≤ U

∞ if u(x) � U.
(4)

By default, the threshold U is equal to 0, that is all the flows
must be analyzed.

C. Problem solving

The problem described in the above sections belongs to the
family of the uncapacitated facility location problems (UFLP).
They involve locating an undetermined number of facilities to
minimize the sum of the (annualized) fixed setup costs and
the variable costs of serving the market demand from these
facilities. ULFPs are known to be NP-hard for general graphs.
However, it has been shown by [3] that approaches based on
genetic algorithms (GA) scale up better than approaches based
on linear programming for solving UFLPs. We thus use a GA
approach and adapt it to the specificities of our multi-objective
networking problem.
The GA is a search procedure based on the principle of
evolutionary algorithms. It combines the exploitation of past

Fig. 2. Genetic Algorithm diagram.

results with the exploration of the new areas of the search
space by using the survival-of-the-fittest technique coupled
with a structured yet randomized information exchange. Fig. 2
presents the GA diagram.
1) Initial Population: the Initial population is a random set of

potential solutions to the problem. The population is also called
a chromosome and its elements are called genes according to
the terminology from genetic engineering. In our case, we use
the binary genes defined before to represent the deployment of
DPI engines in different nodes of the network. On the initial
population and the next generation, selection, crossover, and
mutation genetic operators are iteratively applied in the GA.
2) Selection: The selection operation selects good results
among the chromosomes by using the fitness function F (x).
The calculation of the fitness value of a gene x is detailed in
Sec. III-D. The fitness function is used to rank the quality of
the chromosomes. A chromosome with a smaller value has a
higher probability of contributing to one or more offspring in
the next generation.
3) Crossover: A crossover consists in swapping part of the
information between a pair of chromosomes to obtain a new
chromosome. We use a simple crossover. First members of
the newly reproduced chromosomes in the reproducing pool
are bred at random with a probability pcrossover. Second, each
pair of chromosomes undergoes crossing over by inclusively
swapping the k first elements of the first chromosomes, k being
randomly chosen between 1 and the length of the chromo-
somes, with the k first elements of the second chromosomes.
Two new chromosomes are thus obtained.
4) Mutation: A mutation consists in slightly randomly altering
to get a new chromosome. The mutation operator is used to
introduce a new genetic material. A chromosome is mutated



Fig. 3. Determine the fitness value.

with a probability pmutation. We introduce a mutation operator
specific to our problem. It mutates 1 elements in 0 elements
with a probability p1 and 0 elements in 1 elements with
a probability p0 ≤ p1. Hence, it tends to increases the
convergence of the algorithm reducing the number of DPI
engines (1 elements) yet exploring new areas when mutating
0 elements in 1 elements.
In each new generation, a set of chromosomes is created
by using information from the previous ones. The evolution
stops after a specified number of iterations. The chromosome
with the smallest fitness value is selected as the solution
of the multi-objectives DPI engine allocation problem. The
algorithm, more specifically the module in charge of evaluating
the fitness values, also provides the forwarding rules to push
to the network equipment.

D. Fitness value calculation

In the GA, the fitness value of each chromosome is
evaluated at every evolution iteration for ranking. The fitness
value of a chromosome indicates its quality with respect to the
multiple objectives. The smaller the fitness value, the better the
quality of the chromosome.
The calculation of the fitness value of a chromosome x in-

volves several steps (Fig. 3). x is an array of n bits representing
the presence of a DPI engine in node i by 1 and its absence
by 0, n being the number of network nodes able to host a DPI
engine. Based on the deployment of DPI engines represented
by x, the first step consists in allocating all the flows to a DPI
engine. The inputs of the computation are: the traffic matrix,
the network topology and the constraint on the maximum used
bandwidth on each link (BW ). This operation results in a
set of paths that go from a source node to the corresponding
destination node through a DPI engine, taking into account the
bandwidth capacities of the links. The second step corresponds
to the calculation of the cost function fDPI(x). If x contains
less than N DPI engines, then it is equal to the cost ωDPI

of a DPI engine multiplied by the number of DPI engines,
else it is infinite, which eliminates the solution. The third step

TABLE II. EVALUATION PARAMETERS.

Parameters Values
DPI weight ωDPI varies
Threshold for the number of used DPI engines N = ∞
Additional used bandwidth weight ωbw = 10
Threshold for the additional used bandwidth BW varies
Unallocated flow weight ωunalloc. = 1000
Threshold for the number of unallocated flows U = 0
Probability of 1 elements mutation p1 = 1/3
Probability of 0 elements mutation p0 = 1/10
Initial population size 100
Number of evolutions 100

consists in evaluating the cost function fbw(x) which is equal
to the cost ωbw of a unit of used link capacity multiplied by the
overall network load bw(x) expressed in units of bandwidth.
The constraint BW on the maximum used bandwidth per link
has been taken into account during the first step. Then, the
forth step corresponds to the evaluation of the penalty cost
function funalloc.(x). The number of flows that have not been
allocated to any DPI engine is retrieved from the set of paths
from the first step. The penalty cost ωunalloc. is multiplied by
this quantity if it is lower than the threshold U , otherwise the
penalty value is infinite to eliminate the solution. Finally, the
fifth step concerns the evaluation of the fitness value of the
solution x by summing the three cost functions.

IV. SIMULATIONS AND VALIDATION

In order to evaluate the performance and the behavior of
our placement algorithm, we have implemented the multi-
objective GA and run simulations on two types of traffic. This
section presents the simulation set-up and the experimental
results.

A. Simulation set-up

We used the JGAP framework [12], which is a Genetic
Algorithms and Genetic Programming component provided as
a Java framework. It provides basic genetic mechanisms that
can be easily used to apply evolutionary principles to prob-
lem solutions. We implemented the component in charge of
computing the different cost functions based on a given traffic
matrix, a network topology and operation constraints (Fig. 3).
We also instantiated and adapted the framework to support
binary genes to represent DPI engine deployments and binary
mutation (see Sec. III-D). Finally, we implemented a greedy
algorithm to perform the allocation of the flow to a deployed
DPI engine. This greedy algorithm is a fair approximation for
this NP-hard problem when the traffic is largely lower than
the global network capacity [13]. For each flow, it considers
one by one the different deployed DPI engines. For each of
them, it evaluates the shortest path between the source and the
destination that goes through the considered DPI engine using
the Constrained Shortest Path First (CSPF) algorithm [14] to
take into account the available capacity on the links. The
shortest path is selected for the flow: the corresponding DPI
engine is assigned to the flow and the capacity on the links of
the path are updated in order to consider the bandwidth used
by the flow. This operation is done iteratively for each flow
of the traffic matrix. The result enables to evaluate the fitness
values as described in Sec. III-D.

In order to evaluate the performance and the behavior of
our placement algorithm, we vary two parameters that can be



(a) Fitness values. (b) Quantity of DPI engines. (c) Additional network load.

Fig. 4. Dense mice traffic.

(a) Fitness values. (b) Quantity of DPI engines. (c) Additional network load.

Fig. 5. Heterogeneous random traffic.

considered as operation constraints: i) the cost ωDPI of a DPI
engine (for instance the license price) and ii) the maximum
used bandwidth BW on each link of the network (for network
operators to define their over-provisioning rate). The rest of the
parameters are presented in Tab. II. In the following section,
the results for a given configuration correspond to the average
of 25 experiments.
Finally, we use a network topology that comprises 14 nodes.
Their connectivity degree is equal to 4 and their links have
a capacity of 10 units of bandwidth. Such a topology rep-
resents an overlay network, interconnected Virtual Machines
supporting a service or part of an Information System. These
14 nodes are also source and destination of traffic. We consider
two types of traffic matrices to evaluate the behavior of the
optimization algorithm:

• Dense mice traffic: 13 degree graph with bidirectional
link capacities equal to 0.5 units of bandwidth. It
represents 182 flows.

• Heterogeneous random traffic: 3 degree graph with
bidirectional link capacities randomly distributed be-
tween 0.5 and 4.5 units of bandwidth. It represents 42
flows.

The first traffic matrix emulates numerous small flows between
the peers (e.g. VoIP or chat communications) while the second

one emulates heterogeneous flows with a moderate global
demand (e.g. classic office traffic).

B. Simulation results

This section presents and analyzes the results obtained
through several experiments.
For the considered parameters, the execution of the algorithm
lasts in average 18 seconds and converges around 10.1 iter-
ations. Increasing the initial population size would speed up
the convergence, but in the meantime increase the execution
duration. The size of the network and the number of flows are
also dimensioning parameters.
Fig. 4 presents results for DPI engine allocation for three
different DPI costs ωDPI , 50, 100 and 200 respectively, with
the dense mice traffic matrix. Fig. IV-A shows the fitness
value F (x), that can be considered as the total cost of the
deployment, for different bandwidth constraints on the links.
The fitness value decreases while the constraint is relaxed.
For example, allowing a maximum link capacity of 90%
reduces the total cost by 19.2% compared to a threshold of
40% when the DPI cost equals 200. The fitness value is
the combination of the DPI cost function fDPI(x), the used
bandwidth cost function fbw(x) and the unallocated flow cost
function funalloc.(x). The number of flow unallocation is not
presented in a figure. Indeed, it is equal to zero for all the



considered DPI costs and used bandwidth constraints. For this
set of simulations, the threshold U for unallocated flows is
equal to 0 (Tab. II). Therefore, any DPI engine deployment that
has at least one flow allocation violation has an infinite fitness
value and is thus rejected from the set of solutions. Fig. IV-A
and Fig. IV-A show the number of used DPI engines, that is the
value of the DPI cost function divided by the DPI cost, and the
total additional used bandwidth respectively. We can observe
that the number of used DPI engines decreases while the used
bandwidth increases with the relaxation of the constraint on
the used capacity of the links. This phenomenon is amplified
for high DPI costs ωDPI . For example, for ωDPI = 200, the
number of the DPI engines changes from 5.24 to 3.04 when
the bandwidth constraint BW goes from 40% to 100%. It
corresponds to a reduction of 42%. On the other hand, the
additional used bandwidth increases. Indeed, when there is
few DPI engines, the length of the paths tends to increase. An
initial path that is situated far from any deployed DPI engine in
the network may be largely deviated and hence will consume
much more bandwidth. Our algorithm enables to find out a
DPI engine deployment that satisfies the trade-off between the
minimum number of engines and the minimum network load
for a considered set of costs and thresholds. For this traffic, the
trade-off remains almost the same for the different bandwidth
constraints when the cost of a DPI engine is low (ωDPI = 50).
Our method enables to equally distribute the micro-flows, the
DPI cost function remaining low despite the number of used
engines.
Fig. 5 presents the results obtained with the heterogeneous
random traffic matrix. The bandwidth constraint BW on
each link starts at 50%. Below this threshold, the results are
not exploitable. Indeed, the biggest flow corresponds to a
bandwidth of 4.5 units of bandwidth, while the link capacity is
set to 10 units. Therefore, a threshold below 45% generates at
least one unallocated flow and thus an infinite fitness value.
As for the previous traffic matrix, the fitness value, which
represents the total cost of the deployment, decreases while the
constraints on the used link capacity is relaxed (Fig. IV-A). It
is reduced by 41.1%, 44.3% and 58.0% between a threshold
of 50% and 100% for a DPI cost ωDPI equals to 200, 100
and 50 respectively. The heterogeneity of the flow bandwidths
induces the following phenomenon. While the number of the
DPI engines decreases with the relaxation of the bandwidth
constraints BW (Fig. IV-A), the additional used bandwidth
decreases for almost all the cases. This is due to the fact that
some of the flows have a large bandwidth, up to 4.5 units, with
respect to the allowed link capacity BW . Therefore, relaxing
the constraint enables to reduce the number of DPI engines, but
also to reduce the network load by allowing several flows to
share links. For such a type of traffic, our algorithm minimizes
both the number of used DPI engines and the network load.

V. CONCLUSION

In today’s IT systems, cyber security requires situational
awareness that has to be fine-grained, flexible, adaptable and
cost optimized. The emergence of new networking technology
trends, like NFV and SDN, provide new ways to build cyber
security tools. DPI engines can be virtualized and deployed on
commodity hardware as a piece of software. In this paper, we
have proposed a cost-based method that enables to find out a
DPI engine deployment that satisfies the trade-off between the

minimum number of engines and the minimum network load
for a considered set of costs engine, bandwidth, violations)
and operational constraints (provisioning rate). Our method is
based on genetic algorithm. Its outputs are both the locations
of the engines to be deployed and the routing tables for flows
to be analyzed by them. We conducted several experiments
with different types of traffic (dense mice and random traffic)
and different DPI engine costs to evaluate its performances.
The results have shown that the method provides a trade-
off between the number of engines and the network load
to minimize the global cost of the deployment. Moreover
relaxing the constraint on the used capacity per link, that is,
the provisioning rate, enables to drastically reduce the global
cost of deployment, up to 58%.
Future works along these lines include the consideration of
delay constraints on the flows since redirections and flow
analysis may increase it. We also plan to enrich our model to
integrate a more accurate performance model of DPI probes
with regards to the rules that they execute. Finally, we intend
to study dynamic systems where the deployment of additional
DPI engines are incremental based on an existing setup.

REFERENCES

[1] NIST et al., NIST Special Publication 800-53 Revision 4 Recommended
Security Controls for Federal Information Systems and Organizations,
Feb. 2013.

[2] M. Chiosi et al., “Network Functions Virtualization - An Introduction,
Benefits, Enablers, Challenges and Call for Action,” ETSI NFV, Oct.
2012.

[3] M. Maric, “An efficient genetic algorithm for solving the multi-level
uncapacitated facility location problem,” Computing and Informatics,
pp. 183–201, 2010.

[4] D. Mcdysan, “Software Defined Networking opportunities for trans-
port,” IEEE Communications Magazine, vol. 51, no. 3, pp. 28–31, 2013.

[5] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in Software-Defined Networks,” IEEE Internet Computing, vol. 17,
no. 2, pp. 20–27, 2013.

[6] K. Phemius and M. Bouet, “Implementing OpenFlow-based resilient
network services,” in IEEE 1st International Conference on Cloud
Networking (CLOUDNET), 2012.

[7] R. Sherwood, G. Gibb, K.-k. Yap, G. Appenzeller, M. Casado, N. Mck-
eown, and G. Parulkar, “FlowVisor : A network virtualization layer
FlowVisor: A network virtualization layer,” OpenFlow Switch, p. 15,
2009.

[8] G. Lu, R. Miao, Y. Xiong, and C. Guo, “Using CPU as a traffic co-
processing unit in commodity switches,” in Proceedings of the first
workshop on Hot topics in software defined networks (HotSDN). ACM,
2012, pp. 31–36.

[9] F. Gringoli, A. Este, and L. Salgarelli, “MTCLASS: Traffic clas-
sification on high-speed links with commodity hardware,” in IEEE
International Conference on Communications (ICC), 2012, pp. 1177–
1182.

[10] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, “A stable network-aware VM placement for cloud systems,”
in IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2012.

[11] J. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement
and routing for data center traffic engineering,” in INFOCOM, 2012
Proceedings IEEE, 2012.

[12] K. Meffert et al., “JGAP - Java Genetic Algorithms and Genetic
Programming Package.” [Online]. Available: http://jgap.sf.net

[13] W. Xiao, B.-H. Soong, C. Law, and Y.-L. Guan, “Evaluation of heuristic
path selection algorithms for multi-constrained QoS routing,” in IEEE
International Conference on Networking, Sensing and Control, 2004.



[14] C. Gen-Huey and H. Yung-Chen, “Algorithms for the constrained quick-
est path problem and the enumeration of quickest paths,” Computers &
operations research, vol. 21, no. 2, pp. 113–118, 1994.


