
 1

XIAN Automated Management and Nano-Protocol to
Design Cross-Layer Metrics for Ad hoc Networking

Hervé Aïache, Vania Conan, Laure Lebrun, Jérémie Leguay,
Stéphane Rousseau, Damien Thoumin

Thales Communications**

160, boulevard de Valmy, BP82
92704 Colombes Cedex, France

{firstname.name}@fr.thalesgroup.com

Abstract. In the highly dynamic and unpredictable environment of MANETs,
cross-layer design is receiving growing interest but lacks experimental valida-
tion tools. This paper presents XIAN (Cross-layer Interface for wireless Ad hoc
Networks), a generic framework for experimenting cross-layer designs in Linux
testbeds with 802.11 wireless cards using the MadWifi driver. XIAN can be used
as a service by other layers or system components to access MAC/PHY con-
figuration and performance information. It provides experimenters with an open
framework to create automatically complex metrics from both local and
neighbour node measurements. The defined and implemented software architec-
ture introduces the XIAN Nano-protocol and its automated management. We
exemplify their benefits through the implementation of the well-known ETX
(Expected Transmission count) metric and we provide results from real experi-
mentations.

1 Introduction

In Mobile Ad hoc Networks (MANETs [1]), nodes can be mobile and share one or
more wireless channels without centralized control. In such dynamic and unpredictable
distributed environments, traditional networking principles, such as the layer isolation of
the OSI (Open Systems Interconnection) model, are challenged. Recent research studies
have explored more flexible approaches to networking, called Cross-Layer approaches,
that revisit the classical IP stack design. The central idea of cross layering consists in
allowing a more flexible exchange of status or control information between the different
components of the communication system. With a better knowledge of available resources
from different layers of the ad hoc network stack, the system is expected to be more reac-
tive to the wireless environment and responsive to quality requirements of applicative-
oriented elements.

When compared to the usual OSI reference model, existing cross-layer solutions span a
wide spectrum of options: some advocate global exchange of information between com-
ponents (e.g. Conti et al. [2]), others prefer to limit them to adjacent layers (e.g. Kawadia
et al. [3]), depending on how they impact or differ from this reference model. In any case,

** This work has been partially supported by the European IST FP6 CHORIST project and the

French RNRT Airnet project.

 2

cross-layering calls for software architectures and implementations that support a more
flexible sharing of information and status reports between the processes and functional
modules of the communication system. Experimenting with cross layer design for
MANETs remains difficult, most ad hoc testbeds making use of 802.11 cards which lack
appropriate API support.

This paper builds upon our earlier work [4] to define XIAN (Cross-layer Interface for
wireless Ad hoc Networks) which consists in a framework that facilitates cross-layer inte-
grations and experimentations by easing the access to information from MAC/PHY layers.
The ultimate goal of XIAN is to encourage and facilitate cross-layer studies and experi-
mentations over MANET testbeds. It has been implemented and is available in open
source [7] for Linux over the MadWifi 802.11 driver [5]. This paper presents a major
extension to the earlier basic framework by supporting the implementation of complex
cross-layer metrics that can combine both local information and measurements obtained
from the node’s neighbours by the XIAN Nano-protocol. We exemplify its use with the
implementation of the ETX (Expected Transmission Count) metric proposed by De Couto
et al. [6] and we provide experimental demonstration of potential benefits.

The remainder of the paper is structured as follows. Section 2 presents the XIAN ap-
proach and software architecture. Section 3 describes the XIAN programming interfaces
and examples of accessible metrics. Section 4 and Section 5 present the use and experi-
mental benefits of the proposed XIAN extension for the implementation of ETX. Section
6 concludes the paper, discussing directions for future work.

2 XIAN: Cross-layer Interface for wireless Ad hoc Networks

This section introduces the overall XIAN framework. We first present the Linux based
software architecture. Then we show how to integrate new complex metrics to extend and
customize the framework. Finally we describe the XIAN Nano-protocol, integrated at the
MAC layer, that automatically handles metric exchanges between neighbour nodes.

2.1 XIAN basic components for cross-layer exchanges

MAC/PHY state information, such as number of transmission retries or number of
transmitted frames with CTS enabled, is available at driver level and a large part of this
information may be of interest to higher layers. To support flexible cross-layer access to
this information XIAN implements a software architecture composed of three main com-
ponents:

• The Kernel Space XIAN Interface (KSI) is dedicated to kernel space components
(e.g. TCP or UDP implementations) and implemented as a Linux kernel module. It
interacts directly with the MadWifi driver to retrieve its internal states or statistics
or with the XIAN components involved in the definition of complex metrics (see
section 2.2).

• The User Space XIAN Interface (USI) mimics the KSI but at user space level.
This API is implemented as an ordinary C library in order to facilitate its integra-
tion with user space programs (e.g. routing daemons or applications).

• The XIAN Information Transport Module (ITM) allows to pass information and
statistics from the kernel space to the user space, by connecting the two previous

 3

XIAN APIs. This module is implemented in this version of XIAN as a special
character device.

In addition, a complementary component, called the XIAN User Space Extended In-
terface (or USEI), provides simple means for experimenters to perform additional process-
ing of raw measurements, such as averaging, metric combination or notification of signifi-
cant changes. Figure 1 illustrates how the components interact and how internal
driver/MAC states or metrics are provided to other Linux system components.

Figure 1. XIAN Framework software architecture.

From the developer’s point of view, the two XIAN APIs (i.e. KSI and USI) are identi-
cal. The information exchanged through the ITM and accessible via the USI and the KSI
are of two kinds: (1) basic metrics extracted from specific structures/states maintained by
the MadWifi driver, and (2) new metrics integrated to the framework thanks to the soft-
ware components described in the following section.

 4

2.2 Extension to integrate and manage complex cross-layer metrics

XIAN offers mechanisms implementing bidirectional exchanges of metrics among
neighbouring nodes (such as those classically needed by [6, 9, 10, 11]). This makes possi-
ble the creation and the integration within the XIAN framework of metrics that require
information from neighbouring nodes (e.g. the number of packets that have been received
by a neighbour). Implementing a new metric involves the definition of the metric calcula-
tion formula, i.e., it defines how to combine readings from several individual PHY/MAC
layer metric values to obtain a new compound one. Obtaining the individual values in-
volves configuring the XIAN framework, by setting which metrics to read from the node’s
neighbours and at which frequency. The implementation of this major extension to XIAN
is available in the new release on the official project web site [7].

As shown Figure 1, four software components, all implemented as Linux kernel mod-
ules, support the integration of such complex metrics within the XIAN framework:

• The XIAN Metric Manager (XMM), in charge of the registration and un-
registration of the new cross-layer metrics instantiated as XIAN Cross-layer Met-
ric modules (XCMs – An XCM mainly implements the metric calculation formula
and configures the protocol exchanges involved in the calculation of the metric in
terms of type of information and frequency – see section 3.2).

• The XIAN Nano-Protocol handler (XNP), which handles the XIAN Nano-
protocol messages containing the values of the metrics exchanged between
neighbouring nodes. The XNP is implemented between the MadWifi driver and the
Linux kernel implementation of the IP layer. Its role is to extract the XIAN Nano-
protocol messages from in-coming 802.11 frames and to create and send out-going
XIAN Nano-protocol messages to the desired neighbours.

• The XIAN Metrics Repository (XMR), which is responsible of recording the cal-
culated values of the new cross-layer metrics introduced within the XIAN frame-
work. Once recorded by the XMR, the metric values become accessible (via the
KSI or the USI – see section 2.1) to other operating system components, along
with all MadWifi driver information reported by default by XIAN.

• The XIAN Neighbouring Manager (XNM), which detects neighbour nodes and
triggers updates necessary to automate XIAN Nano-protocol message exchanges.

To enable the exchanges of metrics between neighbouring nodes, we propose a simple
MAC layer-oriented protocol, called the XIAN Nano-protocol. It is described in the fol-
lowing section.

2.3 The XIAN Nano-protocol

The XIAN Nano-protocol is responsible of exchanging the XIAN Nano-protocol messages.
Figure 2 gives an example of such a message. It contains a XIAN Nano-protocol Metrics
Reports made up of (1) a header, which mainly indicates information about the report
object itself and (2) a payload, which can embed several XIAN Nano-protocol Metric
Objects that provides metric values and associated meta information. Note that XIAN
Nano-protocol messages are encapsulated into unicast or broadcast 802.11 data frames.

 5

The XIAN Nano-protocol Metrics Report is composed of the following fields:
• Version indicates the used version of the XIAN Nano-Protocol.
• Sequence is the identifier of the XIAN Nano-protocol Metrics Report.
• Length indicates the number of XIAN Nano-protocol Metric Objects contained

in the XIAN Nano-protocol Metrics Reports.
• Payload contains a set of XIAN Nano-protocol Metric Objects.

Figure 2. Metrics Report format of the XIAN Nano-protocol.

A XIAN Nano-protocol Metric Object is composed of the following fields:

• Type indicates the identifier associated to a metric.
• Id identifies a reference to the associated XCM (see section 3.2).
• Encoding_type indicates how the metric value is encoded (e.g. integer or

float).
• Mac_addr indicates the MAC address to which the metric value belongs to.
• Value contains the effective numerical value of the metric.

Moreover, in order to optimize the number of messages sent to a given neighbour node,
note that the XIAN Nano-Protocol handler (XNP) is able to aggregate several XIAN
Cross-Layer Metrics Object of different types in a single XIAN Metrics Report.

3 XIAN programming interfaces

The previous section described the main building blocks of the XIAN architecture. This
section details the programming interfaces offered by XIAN to implement view to access,
refine, design and integrate MAC-oriented cross-layer metrics.

3.1 Accessing MAC-oriented basic metrics

XIAN eases the access to a large set of basic metrics offered by the MadWifi driver.
The most important ones can be divided into two groups:

• Global metrics, similar to counters, this kind of metrics provides global statuses
on the use of the 802.11 network interface. The reported information can be: the
number of received frames dropped or with wrong BSSID, the number of transmit-
ted frames with CTS or with RTS enabled, the relative signal strength indicator
(RSSI) of the last ACK received, the number of failed receptions (due to queue
overrun, bad CRC, PHY errors or decryption problems).

 6

• Per link metrics, which stores per-neighbour information. For instance, this kind
of metric reports the number of received/transmitted data frames or bytes, the rela-
tive signal strength indicator (RSSI) or the number of transmission retries.

Depending on the type of reported metric (aggregated or per-neighbour/link), the proto-
type of the function (for a given metric named metric_name) is defined as follows:

• For a global metric:

 u_int32_t /* returned metric */
 get_metric_name(char * dev_name, /* Interface name */
 unsigned int * code_err); /* Error code */

• For a per-neighbour/link metric:

 u_int32_t /* returned m etric value */
 get_node_metric_name(
 u_int8_t * macadd, /* Neighbour node’s MAC address */
 char * dev_name, /* Interface name */
 unsigned int * code_err); /* Error code */

About 180 such basic metrics are supported in XIAN, obtained from converting the
corresponding readings of the local MadWifi driver. 40 of these measurements are given
on a per-neighbour basis, the remaining ones being global values for the node.

3.2 Design and integration of new complex metrics

New cross-layer metrics are implemented in XIAN as XIAN Cross-layer Metric modules
(XCMs). XCMs are usual Linux kernel modules which use specific APIs mainly defined
by the XIAN Metric Manager (XMM). To define both the metric calculation formula and
the protocol configuration, the XMM proposes the following interface to register a new
XCM within the framework:

void
register_id (unsigned int id, /* Conf. identifier */
 unsigned int metric, /* New metric id. */
 char dev[IFNAMESIZ+1], /* Net. interface */
 char mac[IEEE80211_MAC_ADDR_LEN+1], /* Report dest. MAC */
 unsigned int freq, /* Reports frequency */
 void * pf) /* Processing func. */

Once called, the XMM introduces the new metric identified within XIAN under the
reference metric . The XMM will automatically send a report about this cross-layer
metric (through XIAN Nano-protocol Metrics Reports) on the network interface identified
as dev by the Linux kernel each freq milliseconds. Moreover, when a XIAN Nano-
protocol Metric Object of type metric is received, the XMM calls the associated proc-
essing function pf to compute the new value of the metric (typically implementing the
metric calculation formula). Note that the field id allows to uniquely identify an XCM to
allow reuse of the same cross-layer metric for different processing or configurations.

Note that with such a design, experimenters do not have to take care about the XIAN
Nano-protocol exchanges, but just have to configure its behaviour, meaning: the fre-
quency of the metrics reports (i.e. the parameter called freq), what are the nodes in-
volved in the calculation of the metric (i.e. the parameter mac) and the formula to calcu-
late the metric (i.e. the processing function pf).

 7

In addition to the function register_id() , the XMM proposes another comple-
mentary interface which allows to un-register an XCM:

 void unregister_id(unsigned int id, /* Con f. Identifier */
 unsigned int metric) /* Met ric Id. */

This function un-register the metric identified within XIAN by its reference metric
and its associated XCM (or configuration) identifier id .

Therefore, as mentioned, a typical XCM implementation looks like to a classical Linux
kernel module with specific calls to the functions register_id() and unregis-
ter_id() . In this way, a typical XCM would implement the following functions:

• An initialisation function, as for Linux kernel modules implementation, which is
necessary to load the XCM into the Linux kernel and to register the new metric
(or several) within the XIAN framework thanks to the XMM’s function called
register_id() .

• A processing function, which is specific to XIAN and enables the reception of
XIAN Nano-protocol Metric Objects in view to extract the metrics values and to
apply the associated formula before updating the metric values through the XMR,
the metrics repository of the XIAN framework.

• A cleanup function, as for Linux kernel modules implementation, which is im-
portant to unload properly the XCM from the Linux kernel and to un-register the
given cross-layer metric (or several) from XIAN thanks to the XMM’s function
called unregister_id() .

Since the processing function performs operations on the metrics exchanged through
the XIAN Nano-protocol messages, it follows a specific prototype:

 void processing_function(unsigned char *saddr, /* Source MAC */
 struct metric_msg *metric) /* Metric object */

Thanks to this function, once the XCM is inserted inside the Linux kernel and regis-
tered within the XIAN framework, the XMM is able to pass the received XIAN Cross-
Layer Metric Object in metric to the right XCM. Moreover, note that the XMM pro-
vides an additional information to the given XCM: the MAC address of the source node
(indicated by the variable saddr), which sent the received XIAN Cross-Layer Metric
Object (i.e. contained in metric).

3.3 XIAN User Space Extended Interface

Several metrics may have to be further combined or refined in order to be meaningful
or at least more useful for specific system components. For example, the number of trans-
mitted MAC frames (in bytes) would not be an interesting metric if no time-correlation is
introduced to reflect how this metric evolves during the life-time of the wireless commu-
nication system. In other cases, the average value of a given metric is more meaningful
than an instantaneous measurement. Therefore, XIAN complements the interfaces intro-
duced in Section 3.1 and 3.2 with another API, available in user-space, called the User
Space XIAN Extended Interface (USEI), which provides:

• Measurement functions, which compute metrics resulting from the combination
of several elementary metrics taken directly via the USI or from the refinement of
an elementary metric (e.g. average values).

 8

• Operation functions, which implement the corresponding mathematical operator
required by the new defined calculated metrics (e.g. min or max functions).

• Relevance functions, which implement the corresponding comparator indicating if
a significant difference occurs between two calculated values (typically between
the previous and the new ones).

The USEI has been implemented as a usual C library to facilitate its use and integration
with user space processes. Based on the description of the XIAN architecture and pro-
gramming interfaces, the following section exemplifies their use with the implementation
of the ETX (Expected Transmission Count [6]) metric as a XIAN Cross-layer Metric
module (XCM) available as an example of complex metric in the new release of XIAN.

4 Implementation of a complex metric within XIAN

Several cross-layer metrics have been proposed in the literature. De Couto et al. [6,8]
have proposed the Expected Transmission count (ETX) which measures the bidirectional
packet loss ratio of link. Awerbuch et al. [9] have introduced the Medium Time Metric
(MTM) that selects high throughput paths. Déziel et al. [10] have defined the available
bandwidth. Iannone et al. [11] have combined the packet success rate, the interference
level, and the physical bit rate.

In this section, we specifically illustrate how the new set of XIAN functionalities pre-
sented in this paper enable experimenters to easily implement the ETX metric. First, we
recall the definition of this metric. Then, we show how to implement this metric within the
XIAN framework.

4.1 The Expected Transmission count (ETX)

The Expected Transmission count (ETX) calculates the expected total number of
packet transmissions (including retransmissions) required to successfully deliver a packet
to the ultimate destination. ETX predicts the number of transmissions required using per-
link measurements of packet loss ratios in both directions of wireless links.

The ETX value for a route is the sum of the link metrics. ETX is a combination of two
measurements: (1) the forward delivery ratio, called Df, which is the measured probability
that data packets successfully arrive at the recipient, and (2) the reverse delivery ratio, Dr,
which is the probability that ACKs packets are successfully received. The probability that
a transmission is successfully received and acknowledged is Df x Dr. Then, ETX is
expressed as follows:

ETX(link) = 1/(Df x Dr).

The main issue when it comes to ETX implementation is that Df and Dr are not directly
available locally. The only solution is to exchange delivery ratios among neighbours.
These delivery ratio can be determined in various manners: (1) by looking at statistics
reported in a per-neighbour fashion by XIAN (e.g., number of data transmission trials,
number successful data transmissions), (2) by comparing the number of broadcast packets
that have been received from neighbours to those that should have been received, assum-
ing that nodes send broadcast messages every T milliseconds.

 9

In this work, to demonstrate how ETX can be implemented as a XIAN Cross-layer Met-
ric modules, nodes exchange their delivery ratios for all their out-going links using XIAN
Nano-protocol messages. They also take advantage of these message exchanges to calcu-
late these delivery ratios using the solution (2) explained in the previous paragraph.

4.2 ETX implementation in XIAN

ETX has been implemented within the XIAN framework as an XCM, called ETX_XCM.
At the load of the ETX_XCM, we configure the XNM to send every T milliseconds the
metric Dr in a broadcast message. Thus we create a new configuration identifier and a new
metric code for it. The parameter pf given to the function register_id() is a func-
tion called at each reception of the metric ETX, which has the following prototype:

processing_ETX(unsigned char*saddr, struct metric m sg *metric) .

The broadcast message contains the values of Dr for the list of MAC addresses provided
by the function insert_mac_to_broadcast() which is used for each received broadcast
message when the MAC address is not present. At the reception of those messages, the
ETX_XCM stores the Dr metric’s value thanks to the XMR by using its interface: up-

date_xian_stat() . Then, ETX_XCM increments a counter and records it in the XMR.
Thanks to Dr and Df, we can calculate ETX. The calculated ETX values are stored within
the XMR in order to provide the metric and the possibility to estimate the quality of a link.

In parallel, a thread is wake up every W milliseconds to recover the counter and to cal-
culate the Df, thanks to the counter and the expected number of received messages during
W milliseconds. Df is then recorded within the XMR and the counter reset to zero. At last,
ETX is recalculated with the new value of Df and updated within the XMR.

Note that, since the Linux kernel does not manage float values, all the metrics within
the kernel space are under the format struct xian_float and accessible by the function
struct xian_float get_xian_stat() , added to the KSI. In the user space, the results
are available under the format float with the similar function float get_xian_stat() ,
offered by the USI. Moreover, to perform operations on struct xian_float , the addi-
tion, the multiplication and the division are available as functions provided by XIAN.

Based on this implementation of ETX, the following section explains how the
ETX_XCM has been used to perform measurements over a real 802.11 ad hoc testbed.

5 Experimental testbed and results

To illustrate the benefit of XIAN to facilitate cross-layering experiments, we present
experimental measurements oriented on QoS routing and performed with the ETX_XCM,
the implementation of ETX with the XIAN APIs.

The testbed we setup was composed of 3 machines equipped with Cisco Aironet Wi-Fi
cards equipped by the Atheros chipset and configured to use the 802.11b standard at the
bit rate of 11 Mbits/s in ad hoc mode (without RTS/CTS). On each machine, we used
iperf [12] to generate TCP and UDP traffic and the STAF/STAX [13] framework to
automate the experiment runs. We also use a simple program that logs, for each link, the

 10

metrics accessed through XIAN. We logged each of the following metrics every δ sec-
onds:

• The RSSI (Relative Signal Strength Indicator): the wide-band received power
within the used channel;

• The throughput: the sum of total data bytes received and sent at the MAC layer
within the last δ seconds;

• The ETX metric measured over 10 beacons (XIAN Nano-protocol messages) sent
every 200 milliseconds.

Figure 3. Experimental setup and traffic generation.

Figure 3 presents the triangle network topology that we considered and the different
flows that we have generated. The link between the machine N2 and N5 is significantly
longer than the other ones. The traffic generation sequence used (depicted in Figure 3(b))
is composed of the following phases each lasting 24 seconds:

• Phase (0): no traffic.
• Phase (1): UDP traffic between N3 and N5 via N2 at 4 Mbits/s.
• Phase (2): TCP traffic between N3 and N5 via N2.
• Phase (3): UDP traffic between N3 and N5 at 4 Mbits/s.
• Phase (4): TCP traffic between N3 and N5.

Figure 4 presents the measurements that we have performed. More specifically, Figure
4(b) and Figure 4(e) present the throughput respectively for links N3→N2 and N3→N5. We
can see that when UDP and TCP flows issued from N3 are passing via N2 to reach N5, high
throughput are achieved with average values equal respectively to 3.4 Mbits/s (saturation
is achieved) and 2.4 Mbits/s. Whereas when UDP and TCP flows issued from N3 are
passing directly over the link N3→N5, the average values are equal respectively to 0.1
Mbits/s and 0.1 Mbits/s. These results show that in our case, routing decisions based on
hop-count can fail. Cross-layer metrics are then required to achieve acceptable perform-
ances.

 11

Figure 4(a) and Figure 4(d) look at RSSI values respectively for links N3→N2 and
N3→N5. We can see that due to the higher length of the link N3→N5, RSSI values are
lower on this link than those or the link N3→N2 with average values equal respectively to
12.5 Db and 36.1 Db. An average RSSI of 33.4 Db have been observed for the link
N2→N5. In our case, we could have used this metric to make efficient routing decisions.
However, the RSSI does not capture information regarding the congestion and contention
levels at MAC layer and thus may not work in larger and more realistic conditions.

Figure 4. Metric values measured with XIAN.

Figure 4(c) and Figure 4(f) present the ETX values respectively for links N3→N2 and
N3→N5. We can see that the link N3→N5 plots ETX values continuously higher than the
one of the link N3→N2 (see especially values for the different phases (0)) which denotes
the fact that ETX captures the poor quality of links. In phases (3), as the UDP traffic is
totally not able to be transferred over the link, node N3 runs out of buffer memory. This
results in a large amount of drops for the beacons used in ETX computation and thus to
high values of the metric (this impact can also be seen for the ETX value of link N3→N2).
Some of the loses of beacons might have also caused by collisions over the wireless me-
dium. We have seen here that ETX captures two crucial factors: (1) the weakness of links
due to low RSSI values and (2) the local and neighbouring traffic load.

This experiment illustrates how the ETX metric, implemented within the XIAN

Framework through automated XIAN Nano-protocol exchanges, introduced in this paper,
allows to make efficient QoS routing decisions.

Note that the purpose of this work was to show how to implement the original ETX
specifications in XIAN. With XIAN it is moreover possible to explore variants of this
protocol, for example by monitoring more exactly the real traffic to estimate transmission
count in place of the dedicated ETX probes, thus taking into account the packet size dis-
tribution.

 12

6 Conclusions and future work

This paper presented XIAN a cross-layer interface implementation specialized in the
building of experimental setups for validating a large variety of use cases of IEEE 802.11
cross-layering and its extensions to support complex user-defined metrics. The extension
proposed in this paper turns XIAN into an extensible framework dedicated to the creation
of complex cross-layer metrics. Moreover, the decomposition of cross-layer metric defini-
tions in metric calculation formula and protocol exchanges configuration, translated into
software components, facilitates their design and their integration within the XIAN
framework.

It is thus possible to define and to implement cross-layer metrics as new components in
XIAN that can use both local and neighbouring measurements transparently exchanged
with the XIAN Nano-protocol. We exemplified its use with the implementation of the ETX
(Expected Transmission Count) metric and we provided experimental demonstration of its
potential benefits. Finally, we released our code that can be downloaded from [7].

Future work along these lines would include the development of interfaces working in
a publish/subscribe manner. This kind of interface may improve further the integration of
the MAC and routing layers as it would allow, for instance, reporting of link up and link
down events and help the system react more quickly to topology changes. Finally, one
could wish to extend the generic APIs to support other chipsets than Atheros in the spirit
of the Wireless Tools.

References

1. Corson S., RFC 2501, Mobile ad hoc networking (MANET): Routing protocol performance
issues and evaluation considerations. IETF (January 1999)

2. Conti M., Maselli G., Turi G., Giordano S., “Cross-layering in mobile ad hoc network de-
sign”, IEEE Computer (February 2004) 48–51

3. Kawadia V., Kumar P.R., “A cautionary perspective on cross layer design”, IEEE Wireless
Communication Magazine (July 2003)

4. Aïache H., Conan V., Leguay J., Levy M., “XIAN: Cross-layer interface for wireless ad hoc
networks”, In Proc. Med-Hoc-Net. (2006)

5. MadWifi. http://www.madwifi.org
6. De Couto D.S.J., Aguayo D., Bicket J., Morris R., “A high-throughput path metric for multi-

hop wireless routing”, In Proc. MobiCom. (2003)
7. XIAN. http://sourceforge.net/projects/xian/
8. De Couto D.S.J., Aguayo D., Chambers B.A., Morris R., “Performance of multi-hop wireless

networks: Shortest path is not enough”, In Proc. HotNets, ACM SIGCOMM (2002)
9. Awerbuch B., Holmer D., Rubens H., “High throughput route selection in multi-rate ad hoc

wireless networks”, In: Proc. WONS. (2004)
10. M. Déziel, L.L., “Implementation of an IEEE 802.11 link available bandwidth algorithm to

allow cross-layering”, In: Proc. WiMob. (2005)
11. Iannone L., Khalili R., Salamatian K., Fdida S., “Cross-layer routing in wireless mesh

networks”, In Proc. ISWCS. (2004)
12. Iperf. http://dast.nlanr.net/Projects/Iperf/
13. STAF: Software Testing Automation Framework. http://staf.sourceforge.net

