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Introduction

The Internet is the world wide network that everyone use everyday to use appli-
cations like web browsing or e-mail from everywhere around the world. We may
think that this communication ”tool” designed by engineers in the seventies is
now well known and that not secrets remain about its functioning and structure.
Unfortunately, lots of open problems still exist about this fascinating network
in order to understand how it works.

This master’s thesis will concentrate first on one open problem that concern
the Internet: the topology. We will perform a state of the art in order to see the
existing means for acquiring the topology and the studies already done on it.
Then, we will study in detail this topology on the data provided by an American
project. And finally, still with the same data, we will try to characterize of paths
and their connections with the topology in this network.
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Chapter 1

State of the art

The first thing to understand is why acquire and study the Internet topology
is so important. Because we don’t know how this world-wide network evolve
and is exactly structure it is hard to simulate some phenomena or monitor the
network. Indeed, it is hard for system designers to perform some tests of their
applications or protocols before deployment. We will see that some topologies
generators that can be used to fill this lack. Other points that could motivate
this comprehension are network management and siting. The first concern all
the monitoring tasks on the network and the second deal with the localization of
some phenomena in the network. Note that it can be also use to detect the result
of natural disasters, wars or DoS1 attacks. In [5], authors were able to observe a
loss of network connectivity in Yugoslavia during the NATO bombing in 1999.
In this chapter, we will first detail how the Internet is organized, then we will
describe the way to acquire its topology and finally we will try to summarize
works that have been done on the analysis of this topology.

1.1 Organization of the Internet

1.1.1 History and global structure of the Internet

The Internet is born because of the request in 1962 of the US Air force who
has asked to a small research group to work on the creation of a nuclear attack
resistant network. The concept of this network was based on a decentralize
system in order to survive if one or several nodes were destroyed. The first
version of the Internet called ARPANET was achieved in 1972. It was later
partition in two parts, the military one and the public one which has become
the Internet. The way it has grown up [6] explains many things of its actual
structure. The Internet is now a huge network divided into domains that are
connected together. Each domain is a collection of hosts interconnected via
transmission and switching facilities. Domains that share their resources with

1Denial of Service
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other domains are called network service providers (or just providers). Domains
that utilize other domain’s resources are called network service subscribers (or
just subscribers). A given domain may act as a provider and a subscriber
simultaneously. In a more precise way, domains are called autonomous systems
(AS) and are composed of a network or a group of networks. Each AS is under a
common administration and has its own routing policy. The relations between
AS follow commercial or political agreements, which specify in particular the
way packets are transmitted between them. AS interconnects them at peering
points. One peering point is Parix2, an exchange point in Paris that connects
among other things Tiscali (AS 3257), Telia (AS 1299), Easynet (AS 4589),
NERIM (AS 13193) and PROXAD (AS 12322). Figure 1.1 shows a map of the
AS topology. This map and lots of other beautiful maps are referenced by a
research project called Cyber-Geography3.

Figure 1.1: Interconnection in the Internet

1.1.2 Addresses allocation

This part will detail the way IP4 are managed on the Internet, it is important
because we will deal in section 2 and section 3 with an IP graph.

2http://www.parix.net/
3http://www.cybergeography.org/atlas/topology.html
4Internet Protocol
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Both IPv4 and IPv6 addresses are assigned in a delegated manner. Users
are assigned IP addresses by Internet service providers (ISPs). ISPs obtain
allocations of IP addresses from a local Internet registry (LIR) or a national
Internet registry (NIR), or from their appropriate Regional Internet Registry
(RIR) like:

• APNIC (Asia Pacific Network Information Center) for the asia and the
pacific region

• ARIN (American Registry for Internet Numbers) for north America and
sub-Sahara Africa

• LACNIC (Regional Latin-American and Caribbean IP Address Registry)
for Latin America and some Caribbean Islands

• RIPE (Réseaux IP Europens) - Europe, the Middle East, Central Asia,
and African countries located north of the equator

The IANA5’s role is to allocate IP addresses from the pools of unallocated
addresses to the RIRs according to their established needs.

We will just describe the organization of the IPv4 address space because
we will not deal with the ipv6 protocol. IPv4 addresses are partitioned into 5
classes described in the RFC 1466:

Class Net mask Address range
A 255.0.0.0 0.0.0.0 - 127.255.255.255
B 255.255.0.0 128.0.0.0 - 191.255.255.255
C 255.255.255.0 192.0.0.0 - 223.255.255.255
D - 224.0.0.0 - 239.255.255.255
E - 240.0.0.0 - 247.255.255.255

Figure 1.2: IPv4 space

This system is being replaced by the Classless Inter-Domain Routing (CIDR)
(RFC 1517 to RFC 1520) system to face the inefficient use of the address space.
The inefficiencies are mainly in the block assignments. For example, if an in-
stitution gets a class C IP range and only use a hundred of those, there are
154 unused and unavailable addresses. Another problem that motivates the
CIDR system is the overtaxing of the routing tables. If an organization han-
dles several consecutive class C IP ranges, routers have to store one route per
IP range. With the CIDR system, an IP address range might look like this
212.80.191.0/24. This means that the first 24 bits in the address are used to
identify the network while the remaining 8 bits are used to identify the host.

This approach is in use nowadays and is being encouraged. Implementation
of the CIDR has been vital for the growth of the Internet, allowing more orga-
nizations and users to take advantage of this increasingly global networking and

5
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information resource. Those problems have been solved by the IPv6 standard
but IPv4 is still dominant.

We have to note that in IPv4, some IP addresses are reserved for special
purpose (see Figure 1.3).

Use IP range
Loopback 127.0.0.1
Private networks (RFC 1918) 10.0.0.0/8, 172.16.0.0/12

and 192.168.0.0/16
Reserved for future use 218.0.0.0/8 - 223.0.0.0/8

et 240.0.0.0/8 - 255.0.0.0/8
Reserved multicast 224.0.0.0/8 - 239.0.0.0/8
broadcast 255.255.255.255

Figure 1.3: Special addressed in IPv4

1.1.3 Routing

We will use active measurements (see section 1.2),so packets send to perform
this task are under the law of routing policies that is one reason to explain a bit
how information is route in the Internet. The other reason is the fact that we
will study in section 3 paths in the Internet that are the consequences of these
same routing policies.

The main function of routers is to make packets arrive at their destination.
Each router has its policy to treat information. This policy can depends on
commercial agreements, on the bandwidth of adjacent links, on congestion of
certain parts of the networks, etc... The policy of a router is generally partition
into two parts: a static one set by an administrator and a dynamic one handle
by a routing protocol. There are two families of routing protocols use on the
Internet depending on the kind of routers they are installed on. Indeed, there
are routers called border routers that handle traffic between AS and routers
called intern routers that handle traffic in a subnet as shown on 1.4.

The Border Gateway Protocol (BGP) is use to exchange routing information
between AS on border router while an Interior Gateway Protocol (IGP) such
as RIP6, OSPF7 or IS-IS8 is use to exchange routing information within AS on
internal router.

RIP sends routing-update messages at regular intervals and when the net-
work topology changes. When a router receives a routing update that includes
changes to an entry, it updates its routing table to reflect the new route. The
metric value for the path is increased by 1, and the sender is indicated as the

6Routing Information Protocol
7Open Shortest Path First
8Intermediate System to Intermediate System
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Figure 1.4: The different types of routers.

next hop. RIP routers maintain only the best route (the route with the low-
est metric value) to a destination. This protocol just considers distance as the
number of hops between two hosts but it does not take into account delay or
bandwidth of links. This protocol is now outdated but it was one of the first.

OSPF is more efficient than RIP and starts to replace it slowly. In opposite
to the RIP protocol, routers don’t propagate their distances in term of hops but
the state of their adjacent links. Each router is able to compute the best path
by knowing a map of the network. Furthermore, less information is transmitted
over the network.

The main thing to remind here is that routing protocols are design to provide
the best path to packets, meaning the shortest path inside AS and the faster or
most efficient between them. Remind also that there is static information that
can influence routing. In particular, at the AS level, commercial agreements
called peering sessions.

1.1.4 Levels in the topology

Since we study the physical topology of this world-wide network, let’s describe
levels of abstraction that are commonly studied with the help of Figure 1.5.

Indeed, the topology of Internet may be studied as a graph at three different
levels. The first level concerns the way AS are interconnected. The second level
is the interconnection of routers on the Internet. It represents cables, satellite or
radio links, etc... This physical infrastructure is the one over which information
is routed. Finally, at a kind of microscopic level, one may consider the IP graph,
composed of the interfaces (of routers) which exchange information since each
interface owns an IP on the Internet. All these three levels of the Internet
topology are obviously strongly linked.

We will see that each level have been studied in section 1.2. In the exper-

9



Figure 1.5: The three levels of the Internet architecture. Black dots represent
interfaces, blank shapes stand for routers and shaded areas for AS. The (plain
or dotted) lines correspond to physical links (always between two interfaces).

iments we have realized (see section 2 and 3), we will mainly deal with the
interface level and a bit with the AS one.

1.2 Existing acquisition methods and research
projects

Since each acquisition methods of the network topology acts usually at only one
level this part will treat each level separately.

1.2.1 At the AS level

One of the most efforts to get snapshots of the Internet topology at this level is
the Route Views project from the University of Oregon9. This project uses BGP
information from many BGP routers to collect routes between AS. Because a
BGP router sees a set of routes by receiving information from several other
BGP routers. Historically, the Route Views project was originally backed by
telecommunication operators in order to monitor the visibility of their prefixes
and their AS space. But, Route Views data have served many other interesting
projects. For example, it has been used for AS path visualization or to study
IPv4 address space utilization [10]. All papers that deal with the topology of
Internet at the AS level are based on those data. But note that this is not the
only source of AS information. For instance, we can get AS information from
RIPE.

1.2.2 At the IP level

This is at this level that the most number of techniques or tools exist. There
are several methods to acquire the IP graph as [27] said:

9http://www.routeviews.org
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• SNMP10: With this protocol, each router can provide a list of its neighbors.
The main advantage of this method is that it generates a very low overhead
on the network. Unfortunately, in most of case, SNMP is not available
because routers don’t support this feature or allow a restricted access to
it.

• Path forwarding: This is the technique use by the traceroute11 tool. The
traceroute tool is based on the use of the TTL (Time To Live) of IP pack-
ets. Recall that the TTL is an IP header field that is designed to prevent
packets from running in loops. Every router that handles a packet sub-
tracts one from the packet’s TTL. If the TTL reaches zero, the packet
has expired and is discarded. traceroute depends on the common router
practice of sending an ICMP12 time exceeded message [19], back to the
sender when this occurs. traceroute first sends a packet to the destina-
tion with a TTL value 1 and iterate this operation with increasing val-
ues of the TTL. This gives the list of intermediate interfaces on the way
to the destination. Some implementations of this tool can be found at
http://www.traceroute.org.

• broadcast ping: A ping is just an ICMP Echo request [19] to an host in
order to know if it is alive or not. This simple tool can also be used to
send a ping request to a broadcast address in order to get answer of all the
alive machines in the subnet. There are some heuristics in [27] to discover
subnet netmask and to get information about the topology.

• DNS13 transfer zone: Most DNS servers respond to a Zone Transfer com-
mand by returning a list of every name in the domain.

[27] comes to the conclusion that the most efficient is the path forwarding
method if it is done at a large scale. A lot of academic projects have dealt with
this method:

• Mercator14: Mercator is a program from the SCAN project at the Univer-
sity of Southern California that uses traceroute like methods to infer the
Internet topology. This program works on a single computer and does not
need any input since it uses random address probing to explore the all IP
address space. It also uses source-route capable routers wherever possi-
ble to enhance the quality of the resulting map. With this technique the
sender of a packet can specify the route that a packet should take through
the network. This method allows discovering cross links. Unfortunately,
few routers support this feature. In [15], they found that approximately
8% of all Internet routers were capable of source-routing.

10Simple Netwok Management Protocol
11http://www.traceroute.org
12Internet Control Message Protocol
13Domain Name Server
14http://www.isi.edu/scan/mercator/mercator.html
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• Nec: Nec15 is a software developed at the University Louis Pasteur16 by
Damien Magoni. It uses public traceroute servers to acquire quickly a
short snapshot of the topology.

• Skitter : Skitter is a project from CAIDA 17. It provides to the research
community a free access to the data collected. This measurement platform
is composed of about thirty servers which perform traceroutes toward
thousands of destinations every day. Destinations are chosen to span all
the CIDR prefixes in use. The CIDR prefixes in use can be found in BGP
tables (see section 1.2.1).

To our knowledge the Skitter [12] project is at the state of the art since it
is the most ambitious. Our data for the studies of the section 2 and section 3
come from Skitter. In section 2.1.1, more detailed about Skitter can be found.

1.2.3 At the router level

This level of study strongly depends on the interface level because the only mean
to acquire it is to start from the interface topology and to infer it with the help
of some heuristics. We forgot here the possibility to ask ISP for this information
because of confidentiality reasons. For example the ones described in [15]. The
main aim of this technique is to merge interfaces into routers. The trick is to
discover if two interfaces belong to the same router or not. Here is a brief list
of the heuristics developed in [15], let’s analyze two of them:

• Usually routers have an interface called the loopback interface from which
they use to respond to traceroute probes. So, to know if two interfaces
belong to the same router, it is possible to send to each of them an UDP18

packet to an unused port and to compare the address source of the ICMP
port unreachable packets. If they are the same, they belong to the same
router.

• Interfaces have usually DNS names and are often called like X.1.Y.domain.com
and X.2.Y.domain.com for example in the case of two interfaces. So you
can guess by looking at their name if they belong or not to the same router.
This method is not so accurate because DNS content is often obsolete and
this convention of naming is not so used nowadays.

1.2.4 Cross-level methods

Cross layering is possible but difficult and a lot of mistakes are possible. We have
seen in the previous paragraph that from the IP graph you can infer the router
one by using some heuristics. Some tools have implemented such techniques

15http://clarinet.u-strasbg.fr/ magoni/nec/
16Strasbourg - France - http://www-ulp.u-strasbg.fr
17the Cooperative Association for Internet Data Analysis - www.caida.org
18User Datagram Protocol

12



[11] but they don’t obtain accurate results. Mercator and Nec have also this
feature. In the same way, it is possible to go from the IP level to the AS graph
with the help of whois databases like RADB 19 or a continental registry like
RIPE 20 for Europe but it is a difficult task. The IP graph and the information
of these databases have to be acquired at the same period and many problems
appear like the fact that some IP don’t belong to any AS and some routers have
different interfaces belonging to different AS. Furthermore, note that obsolete
data appear in whois databases.

1.3 Limits of acquisition methods

1.3.1 Dynamical aspects

As [25] said, the Internet is an immense moving target so measurements are
hard to perform. In addition to the size of this large network, this phenomena
is emphasized by its structure. Indeed, the Internet has not been built in a cen-
tralized way, it allows heterogeneous networks with very different administrative
policies to interoperate. Consequently, researchers have resigned to believe that
it is impossible to have a complete snapshot of the network at a certain moment.
This is a quite fresh research subject and it does not exist a solid solution yet.
Let’s see some ways to analyze this dynamic and complex system:

• By collecting a huge amount of data on a certain period, the shortest as
possible, like Skitter does. Then one can start to study those data and
assume that they are representative of reality as we did in our study (see
section 2). The entire problem here is to choose the period. Nobody has
the answer. One can say that the graph is quite stable during a month so
you can aggregate data collected during a month, another can argue that
very important changes can occurs suddenly like new links or new routing
policy that change radically the graph.

• By studying the dynamic of this graph and its evolution on a small data
collection by making the assumption that they are representative. Nec is
an example of a tool use to study the evolution of the core of the network
for instance.

1.3.2 Quality of the data

All the methods previously described in section 1.2 related to the acquisition of
the Internet topology are disturbed by some distortion phenomena. At the AS
level, many papers point out problems with instabilities of BGP [16], at the In-
terface level the path forwarding method suffers also of various issues and finally
at the router level the heuristics used don’t work in all the case. Because all

19Routing Assets Database
20Réseaux IP Européens
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the data studied in this thesis are the result of millions of traceroute executions,
let’s concentrate on problems inferred by the path forwarding method.

As seen in section 1.2.2, the path forwarding method triggers ICMP errors
along a path to discover it by playing[32] with the TTL IP field. Unfortunately,
many tricky problems go against this like:

• The desire to keep confidential the topology or other reasons that motivate
administrators to configure routers to not answer to traceroute probes.

• Route changes or parallel load balanced links that make packets of a tracer-
oute probe take different paths. Leading to the creation of bad links in
the IP graph as shown in Figure 1.6.

Figure 1.6: Fake links that can be seen with traceroute.

• Intrusion detection systems triggered alarms because of the traffic gener-
ated. Indeed, the traffic generated may looks like to port scan probes if
UDP is use. The solution is to use only ICMP.

• Bad answers to traceroute probes are sent. Special IPs appear in the
traces. Due to the fact that:

– Sometimes NAT21 is not well performed for the sender address in
IP packets. As a consequence, packets circulate in the Internet with
a private IP for the sender. Packets like this generally reach their
destination because routers don’t take care about the sender address.

– Some administrators configure routers to reply with their own private
IP because they want it to be visible as a hop in a route but not to
be reachable from the outside of the subnet.

• The fact that routers contain bugs. Some examples of traceroute related
problems can be found in appendix 3.3.

21Network Address Translation
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Finally, other facts that have an impact on the quality of data but at a more
structural level because this method study the topology at the IP level:

• Figure 1.7 shows that the logical topology at the IP level is a bit different
than the topology at the router level. The paper of Renata Teixeira[26]
shows this.

Figure 1.7: The difference between the physical topology and the logical one at
the IP level.

• Packets sometimes enter ATM22 or MPLS23 networks and are encapsu-
lated. It does not allow the path forwarding method to discover interme-
diate hops. It seems that it is a reason for the existence of nodes with
very high degrees in the IP graph (see chapter 2).

22Asynchronous Transfer Mode
23Multiprotocol Label Switching
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1.4 Existing analysis of the Internet topology

1.4.1 Properties already observed

Since this topology is a graph, all the analysis made on this graph deal with
graph theory.

The first thing the community has pointed out is the existence of power laws
between properties of this graph. This was introduced by the Faloutsos brothers
in [9] and impressed the network community. The first power-law relationship
they found is between the out-degree of a node v (dv) and its rank (its index
in order of decreasing outdegree) rv: dvα24 rR

v . It reflects the way domain
connects. The second power-law relationship is between the outdegree d and its
frequency fd: fdαdO. This shown that the degree distribution on the Internet
is not arbitrary, it also shows that there is a huge number of nodes with a very
small outdegree and some nodes with a high degree. Finally, the third one they
found links the eigen value λi and the order i: λiαik. This last law allows to
distinguish the differences between graph families.

There are several remarks on this. First, the computation of the exponent is
subject to large error [4]: small variation on the distribution has a huge impact
on the exponent computation. This is why focusing on the exact measured
exponent does not seem to be a reasonable aim for model designers. Second,
this power-law seems to exist because of the way the graph has been explored
[24].

The clustering coefficient has also been studied. The clustering coefficient
of a node gives information about connectivity between neighbors of a node. It
is given by the following formula:

C(u) =
2 ∗ Eu

ku ∗ (ku − 1)
.

Here, ku is the number of neighbors of the node u and Eu is the number of
existing links between the neighbors of u. If this coefficient is equal to 1, it means
that all possible links between neighbors of a node exist. Meaning that the fewer
neighbors are connected together, the less is the clustering coefficient. Some
studies like [21] have shown that at the AS level the average of the clustering
coefficient is quite high (it is at least higher than for traditional random graphs).

This phenomena and the fact that there is a degree distribution in power-law
may be an explanation for the small-world phenomena observed on the graph
of Internet [21]. Intuitively, having a graph that fits a small-world phenomena
means that the length of a path between two nodes chosen randomly is quite
short, in the same order of log(N) if the graph has N vertices. This is the case in
many complex networks [22] like social networks [20] or in the human language
[18]. Small-world graphs are usually obtained by rewiring edges from a regular
graph. [31] provides a small JAVA25 applet that illustrates this phenomena.

24”‘Proportional to”’
25http://java.sun.com
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In order to understand why this graph is very specific, let’s compare it to a
random graph:

Property Random graph the Internet graph
Degree distribution Poisson Power law
Clustering low high

Figure 1.8: Comparison of the graph of the Internet and a random graph

1.4.2 Existing models of generators

There are several topology generators available to the research community.
Some of them mainly aim to generate random topologies, others aim to imi-
tate the hierarchical properties of the Internet, others aim to reproduce degree-
related properties of the Internet and some use some engineering or economic
related constraints.

Random graph generators

Erdos-Renyi [8] developed one of the first topology generators. It creates a
random graph by assigning a uniform probability for creating a link between
any pair of nodes. Later, Waxman [34] improved the Erdos-Renyi random graph
model by including network-specific characteristics such as placing the nodes on
a plane and using a probability function to interconnect two nodes which is
dependant on the distance that separates them in the plane.

Structural generators

In this category of generators, models focus on reproducing the hierarchical
structure of the topology of the Internet.

The Transit-Stub [3] model is one the most famous. The background idea
is that the Internet can be viewed as a collection of interconnected routing
domains. Each routing domain in the Internet can be classified as either as stub
domain or as transit domain. A domain is a stub domain if the path connecting
any two nodes u and v goes through that domain only if either u or v is in that
domain. A transit domain does not have this restriction. So, in the Transit-Stub
domain, a connected random graph is first generated using the Waxman method.
Then, each node in the graph represents an entire Transit domain. Each transit
domain node is expanded (see Figure 1.9) to form another connected random
graph, representing the backbone topology of that transit domain. Next, for
each node in each transit domain, a number of random graphs are generated
representing Stub domains that are attached to that node. Finally, some extra
connectivity is added, in the form of back-door links between pairs of nodes,
where a pair of nodes consists of a node from a transit domain and another
from a stub domain, or one node from each of two different stub domains.
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Another generator that implements models trying to imitate the structure
of the Internet is Tiers [7]. The generation model of Tiers is based on a three-
level hierarchy aimed at reproducing the differentiation between Wide-Area,
Metropolitan-Area and Local-Area networks comprising the Internet.

Figure 1.9: The Transit-Stub generator.

Degree based generators

PLRG26 [28] is a generator which tries to reproduce the connectivity properties
of Internet topologies as reported in [9]. This generator initially assigns node
degrees from a power-law distribution and then proceeds to interconnect them
using different rules.

The Albert and Barabasi model

This model [1] builds a graph by adding nodes one by one: when inserted, the
node is linked to a fixed number of already present nodes chosen randomly, pro-
portionally to their current degrees. This is the rich get richer or the preferential
attachment principle.

Others models that take into account the correlation between the connec-
tivity of the network and the density of the population have been established in
[23].

26Power-Law Random Graph generator
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Here are two sofwares that implements the previous algotithms :

• GT-ITM : the Georgia Tech Internetwork Topology Models generator from
the Georgia institute of technology [30].

• BRITE : the Boston University Representative Internet Topology gEner-
ator [13].

The main question that remains open is how to validate a model of the
Internet? One way may be to ask why are we looking for models of the Internet?
The answer to this question will certainly help to determine proper parameters
to measure.

19



Chapter 2

Analysis of the Skitter
graph

In this chapter, we will detail the observations we made on the data provided by
the Skitter project of the CAIDA group after a presentation of the methodology
adopted.

2.1 Methodology

We have seen in section 1.3.1 that there are two methods to analyze data col-
lected with the path forwarding method. A quasi-static one consists to consider
data on a short period and a dynamic one considering data on a large period.
We have concentrated ourselves with the static method by taking data collecting
by Skitter during a day. We will describe in this part how Skitter works and
what we can expect of its data and we will give information about the tools we
have used to analyze these data. Finally, we will end with some explanations
about implementation of some algorithms.

2.1.1 Skitter

We have seen in section 1.2.2 that Skitter performs millions of traceroutes per
day from their servers. CAIDA currently maintains thirties Skitter hosts all over
the world. However, not all Skitter monitors are running the full destination set
at all times. So we have chosen a day that contains data for 23 servers. Each
server performs the measurements described in 2.1.1 by targeting a destinations
defined in 2.1.1 using the path forwarding method with ICMP1.

Servers’ location

2.1 and 2.2 show the location of the servers.
1http://www.caida.org/tools/measurement/skitter/packets/
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Figure 2.1: Positions of Skitter servers

Name Town Name Town
a-root Herdon,VA US apan-jp Tokyo Jp
b-root Marina del Re US cdg-rssac Paris Fr
champagne Urbana,IL US d-root College Park,MD US
e-root Moffett Field,CA US f-root Palo Alto,CA US
g-root Vienna,CA US h-root Aberdeen,MD US
i-root Stockholm S iad Washington,DC US
k-peer Amsterdam Nl k-root London UK
kaist Taejon Kr lhr London UK
m-root Tokyo Jp mwest San Jose,CA US
nrt Tokyo Jp riesling SanDiego, CA US
sjc San Jose, CA US uoregon Eugene, OR US
yto Ottawa Ca

Figure 2.2: Lists of Skitter’ servers use for our studies.

Measurements

Here is a list given by [12] of the measurements done by Skitter:

• Forward IP Paths : Skitter records each hop from a source to many des-
tinations. By incrementing the ”time to live” (TTL) of each IP packet
header and recording replies from each router (or hop) leading to the des-
tination host.
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• Round Trip Time: Skitter collects round trip time (RTT) along with path
(hop) data. skitter uses ICMP echo requests as probes to a list of IP
destinations.

• Persistent Routing Changes : Skitter data can provide indications of low-
frequency persistent routing changes. Correlations between RTT and time
of day may reveal a change in either forward or reverse path routing.

• Visualization of the Network Connectivity: By probing the paths to many
destinations IP addresses spread throughout the IPv4 address space, skit-
ter data can be used to visualize the directed graph from a source to much
of the Internet

Targets

The pool of replying destinations is constantly changing and decreasing due to
firewalls, changing IP addresses and other reasons. They need to refresh the
destinations lists every 8 to 12 months. Currently, CAIDA use two kinds of
destination lists2: DNS list and IPv4 list. The two families of list in 2.3 have
two different goals:

• IPv4 list : Provide a representative coverage of the routable IPv4 space
for topology measurements. Ideally, this list should have an IP address in
each populated /24 prefix of the global Internet space.

• DNS list : Provide a representative coverage of clients querying DNS root
name servers.

Family Date Size Monitors
IPv4 list 02/25/2003 147,016 champagne, kaist, riesling
IPv4 list 02/25/2003 365,605 apan-jp, iad, lhr, nrt, sjc, yto
IPv4 list 02/25/2003 814,356 mwest, uoregon
DNS Clients list 01/13/2003 147,943 a-root, b-root, d-root,

e-root, f-root, g-root,
h-root, i-root, k-root,
m-root, k-peer, cdg-rssac

Figure 2.3: List of destinations provided by Skitter (fall 2003).

Format of the traces

Traces available to the research community provided by Skitter are stored in
a binary format called Arts++3. This format defined by the CAIDA group

2http://www.caida.org/analysis/topology/macroscopic/list.html
3http://www.caida.org/tools/utilities/arts/
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is dedicated for the storage of traces from active measurements on networks.
CAIDA has provided a C++ class library to access data in this format and
an example 4 that use it. This small example is entirely sufficient to extract
basic information (see section 3.4) collected in the traceroute fashion by Skitter.
Please note that Skitter affects a key for each trace which determines its quality.
Here are its possible values:

• N : no reply was received from the destination although a partial path may
have been recorded. The RTT has no meaning in this case.

• I : Skitter got a reply from the destination, but did not receive a reply
from every intermediate hop on the path. The RTT to the destination is
valid. I stands for incomplete.

• C : The destination and all intermediate hops in the path all replied. The
RTT to the destination is valid. C stands for complete.

Activity

The activity of Skitter is irregular. It can append that a monitor goes down for
a month and then goes up back again. For our studies we have chosen a day
during which 23 monitors have worked. The 2th of July 2003. All monitors of
2.2 have performed about 13 millions of traceroutes where 8 millions are of type
C toward about 600 000 destinations.

We have done some reverse engineering on the data in order to know how
skitter proceed. We will not give all the details of this study in this report but
just an example for the monitor called a-root.

Figure 2.4 shows the number of traceroutes by type this server have done.
For our study we have only keep traces of type C because it was simpler to deal
with.

Nb total of traceroutes 478983
where:

Type N 134049
Type I 66325
Type C 278609
Type C & q 158

Figure 2.4: Consistency of the data collected by a-root.

Monitors generally target a same destination several times in a day. Fig-
ure 2.5 shows that they usually perform 3 traceroutes toward a destination.
This figure also shows the number of different routes discovered when there are
several routes in the data set between a Skitter server and a destination. We can
observe that in many case, there are more than one route toward a destination
discovered per day.

4http://www.caida.org/tools/measurement/skitter/sample code/
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Figure 2.5: Frequency and stability of traceroutes done by a-root.

2.1.2 Tools used

BOOST

The BOOST5 library is a set of portable C++ libraries. The library we have
used is the BOOST Graph Library (BGL) developed by Jeremy Siek. It pro-
vides generic components and algorithms for manipulations of graphs and offers
genericity like the STL6 and optimizations. Algorithms and data structures are
generic, meaning that they can be adapted to any kind of problem. Here are
some algorithms from graph theory that this library implements:

• Breadth first search,depth first search and uniform cost search

• Dijkstra’s shortest paths, Bellman-Ford and Johnson’s shortest paths

• Kruskal’s Minimum Spanning Tree, Prim’s Minimum Spanning Tree

• Connected Components, Strongly Connected Components

• Topological Sort

DOT

The DOT7 format is a very powerful way to represent graphs because it is
simple and it has lots of extend that can handles layout related information.

5www.boost.org
6Standard Template Library
7http://www.research.att.com/ erg/graphviz/info/lang.html
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Documentation on the language is maintained by AT&T within the framework
of the project GraphViz8 which provides a set of tools for graph visualization
(see Figure 2.6). We have chosen this format because of its simplicity and also
because the BOOST Graph Library has an interface that allows to load graph
store in DOT.

Name Function
dot makes hierarchical layouts of directed graphs
neato makes ”spring” model layouts of undirected graphs
dotty & tcldot two customizable interfaces
libgraph the base library for graph tools

Figure 2.6: Content of the Graphviz package.

Here is an Hello World example in DOT:

digraph g{

"202.188.126.141"->"210.187.15.253";

"202.188.126.141"->"202.188.128.144";

"202.188.128.144"->"210.187.15.253";

}

Figure 2.7: Example of a graph drawn with Graphviz.

Shell Scripts

In addition to the use of C++ programs we have use shell scripts because it is
often more efficient to use small utilities already developed and tested. Existing
tools are often better than the ones you intend to make. So, we have chosen to
implement our tools as a mix of gnu tools like sort, awk or gnuplot and C++
programs embedded in Tcsh9 shell scripts.

8http://www.research.att.com/sw/tools/graphviz/
9http://www.tcsh.org
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2.1.3 Implementations

Creation of the Skitter graph

The goal here was to take the entire traces offer by Skitter and to build a graph in
DOT. The question has been regarded before our study. An algorithm developed
at LIP6 before this study in C++ was available. Taking all traceroutes and
adding links to a graph structure one by one. Unfortunately, this algorithm was
too slow, it would have taken more than one month to obtain the graph. So,
we have come with a very simple and efficient solution that builds the graph in
DOT in one hour:

1. For each trace (with awk)

• print each link into a file

2. sort uniquely this file using the sort

3. make some post processing and arrangement to fit the DOT format

This solution which consists to manipulate text files appeared to be faster
that the previous approach.

We have seen in section 1.3.2 that this graph contains special IPs that should
not be seen on the Internet. We need to remove them because they create fake
nodes with high degree. This operation is a part of the post processing.

Manipulations of the Skitter graph

All operations that only concern the Skitter graph have been realized within
the C++ programs such as:

• degree distribution

• clustering distribution

• shortest paths computation

The graph is first loaded with the ReadGraphviz function in a directed or
in an undirected fashion. Then, algorithms are developed simply with BOOST
functionalities and data structures. In term of performance, our program needs
about 300 Mo of RAM memory to use the Skitter graph. It is able to load it
and to run algorithms in few minutes.

Manipulations of the Skitter data

Shell scripts are used to perform manipulations of the Skitters data because it
allows calling all the efficient tools that already exist and that can solve our
problems. For some of our studies, the algorithms use both shell scripts and the
C++ program.

A complete list of the functionalities developed is available in section 3.5.
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2.2 Observations

2.2.1 Data consistency

The Skitter graph freshly build from the set of traceroutes provided by Skitter
contains special IPs (see section 1.1.2) that should not appear in this graph as
shown in section 1.3.2. Indeed, there are

• 12077 (1.3%) IPs are private ones.

• 42390 (3.2%) links in the graph imply at least one private IP.

• 237 links imply the 127.0.0.0/8 addresses.

• 97 links imply the 0.0.0.0 address.

• 210 links imply broadcast IPs.

After purification, the Skitter graph is composed of:

• Vertices: 885 435

• Edges: 1 259 039

All the following studies have been made on this graph.

2.2.2 Degree distribution

As we analyze a graph, a common and useful distribution which characterize it
is its degree distribution. We have seen in section 1.4.1, that on the graph of the
Internet, this distribution follows a power-law fdα dO where fd is the frequency
of the degree d and O a constant around −2. This observation made in 1999 by
the Faloutsos brothers is shown on Figure 2.8 on a directed IP graph.

Figure 2.8: Two observations of the degree distribution done by the faloutso
brothers in [9].

We have recomputed this statistic on Skitter data considering our graph
in a directed fashion and also in an undirected fashion. The question of the
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orientation of the graph will be discuss in section 2.2.6. The exponents of the
power-law found are: -1.9 for the study on the directed graph and -2.2 for the
study on the undirected graph. Our distributions show a distribution with a
heavy tailed. This was pointed out by [4].
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Figure 2.9: Out-degree distribution of the Skitter graph.

2.2.3 Clustering coefficient

The clustering coefficient is also a tool generally use to describe graph. The
formula is given in section 1.4.1. The value of the clustering itself is not sufficient
to compare two graphs because it is influenced by the number of vertices and
the number links of the graphs. Therefore, it is useful to compare two graph of
the same size. That is why in this part we have computed the average clustering
coefficient for the Skitter graph and we have compared it to the one for a random
graph of the same size generated with the Erdos-Renyi model (see section 1.4.2).
We have found a value of 0.0347379 for the Skitter graph and 1.29822e− 06 for
the random graph. This experiment has shown that the Skitter graph is highly
clustered. Meaning that there is a strong connectivity in this graph.

2.2.4 Length of paths

The length of shortest paths between nodes in a graph is also an important
parameter. We have again made this study both in a directed way and in
undirected. The source of paths correspond here to the Skitter’ monitors and the
destinations to destinations of these servers because we want to know what is the
typical distance between the extremities of the graph. Figure 2.10 shows us that

28



shortest paths are quite small. We meet again here the small-world behavior
described in section 1.4.1. Note that the difference between the distribution
done in directed and in undirected is not so important. We will discuss of the
orientation in section 2.2.6. Lengths of shortest paths in the directed graph are
obviously longer in average than in the undirected graph because some detours
are taken.
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Figure 2.10: Probability distribution function of the shortest path lengths.

2.2.5 Core of the Internet

Here is just a trial to analyze the core of the Internet. Our hope was to extract
the core of Internet by different manners and to analyze them by doing a degree
distribution. We intend to not find a power law. Figure 2.11 shows the results
for the different methods explained in the legend. You can see that the power-
law stands again.

2.2.6 Orientation of the graph

This subject has been the center of many discussions during this work and is
not simple. Shall we consider our graph as oriented or not? Shall we perform
our analysis or experimentations on a directed graph or not? We have begun
to look at works already done [2] and we have seen that they always consider
the Skitter graph or the IP graph as directed. We come to the conclusion that
since it is the IP graph we are dealing with, the only possibility is to take it as
directed. But we can make some assumptions depending what we are studying
that allow to consider this graph as undirected. We will do that for our study in
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Figure 2.11: Degree distributions on the different versions of the core of Internet
extracted.

chapter 3 on paths in the Internet Indeed, we can assume that if a link between
two interfaces exists in a way it should exists in the way back but it has not
been discovered. So, it is not crazy to consider the Skitter graph as undirected
since properties like distances in term of number of hops are conserved.
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Chapter 3

What is a route on the
Internet?

3.1 Observations

Let’s recall that we are working on the Skitter graph which has been construct
from the merging of millions of traces from traceroute. We have performed some
statistical analysis to describe the Skitter graph in chapter 2. Furthermore, we
have performed other statistical analysis to described routes in this graph.

3.1.1 Length of routes

We plot in Figure 3.1 the length distributions of both routes and shortest paths,
together with the distribution of their difference, that we now call δ. These
curves have been computed both on the directed and undirected graphs.

Through the δ distribution, Figure 3.1 shows that routes have not always the
same length the shortest paths. We have computed the shortest path and the
δ distributions both in the directed and the undirected fashion because the two
manners are interesting. So, experimentally, we bring the evidence that routing
protocols does their best effort to choose routes closer as possible to shortest
paths but fail at least in more than 80 percent of the cases. This value is given by
the δ curve done with on a directed version of the Skitter graph, it certainly gives
a lower bound for this percentage. According to the discussion in section 2.2.6
where we come to the conclusion that shortest paths in the undirected graph
are more realistic than in the directed one, it is also interesting to look at the
undirected version of the δ distribution because it may give a value close to the
real value of the previous percentage. Meaning that shortest path are in 95% of
the cases longer than in shortest path. Furthermore, because lots of edges are
certainly missing in our graph, this percentage may be higher in reality. This
curve shows that routes are generally 3 hops longer than shortest paths.

Intuitively, the value of δ is not independent of the length of the shortest
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Figure 3.1: Length distribution of routes, shortest paths and their difference (δ)
both in the directed and the undirected fashion.

path length because the values of δ for shortest paths of 5 hops may be shorter
than the values of δ for shortest paths of 15 hops. Actually, as the Figure 3.2
shows, we have observed that the average of δ arraises slightly with the shortest
paths lengths . This figure was plot for shortest path lengths between 9 and
16 which represents more than 85 percents of the cases. We have also plotted
quantiles in order to back this result, they show that values are mainly close to
the mean.
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Figure 3.2: δ function of shortest path lengths.

The analysis of routes in terms of shortest paths in the network assumes
a global knowledge of the network. In the real network, on the contrary, a
route is discovered step after step, each router taking is own decision, without a
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global knowledge of the whole Internet topology. This may reveal special local
properties of routes, like correlations between nodes along a route, we have
studies in next sections.

3.1.2 Degree evolution along routes

In the willing to extract local properties of routes we have come to the following
question: how does the degree evolve along a route? To answer this question,
we plot the evolution of the degree along routes in Figure 3.4. To this question,
before doing the experiments, we came with the expectations of Figure 3.3.

Figure 3.3: Our expectations before doing experiments for the degree evolution
along traceroutes of length N+1

The curve in Figure 3.4 presents the experiments we have made for routes
that have a length of 15. This example has been chosen because 15 is one of the
most common route length in our data set and because the shape and the values
shown in this Figure are very similar to the ones observed for length between
9 and 20. The median value of the out-degree is surprisingly constant in the
core, around 10. Theses results break the intuitive idea that nodes’ out-degree
increase and decrease with a peak at the middle of the route. It also appears
that nodes close to the border but not at the extremities of routes seem to have
slightly a higher out-degree.

In Figure 3.5, we plot the evolution of the average degree which is mainly
disturbed by sparse values.

3.1.3 Local properties of routes

We try to answer here the following question: do routers choose their best-
connected neighbor as the next step on the route? To answer this, we have for
each nodes with an out-degree N classified decreasingly its out-edges function
of the targeted node’ out-degree in order to attribute a rank to each of them.
Thus, the neighbor that has a rank equal to 1 has the highest out-degree. Then,
we have tried to see if routes usually follow low rank edges rather than high rank
edges. In the case of several neighbors have the same out-degree, we consider
that they have the same importance.
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Figure 3.4: Evolution of the degree along routes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2  4  6  8  10  12  14

A
vg

(d
eg

re
e)

hops

Figure 3.5: Evolution of the average degree along routes.

We finally observed in Figure 3.6 that there is a slight trend for routes to use
links that leads to the neighbor that have the highest degree. Therefore, from an
out-degree of 8, the curve still is a bit different. Routes follow preferably edges
that lead to a neighbor that has one of an high out-degree compare to the others
which is not always the highest out-degree neighbor as shown in Figure 3.7.

3.1.4 Properties of links

We have seen in section 3.1.1 that routes are in most of the cases longer than
shortest paths and we have tried to reveal some characteristics that could ex-
plained this phenomena. In addition, we compute statistics shown on Figure 3.8
to see in which proportion links in routes go away from the server, approach
toward the server or remain at a constant distance from the server. This expe-
rience has been made on a sample of routes randomly chosen from the Skitter
data set.

Statistics on Figure 3.8 show that a non negligible proportion of links in

34



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1  2  3  4  5  6  7  8  9

pr
ob

ab
ili

ty

rank

out-degree=2 (candidates: 48973)
out-degree=3 (candidates: 22576)
out-degree=4 (candidates: 14327)
out-degree=5 (candidates: 9960)
out-degree=6 (candidates: 7539)
out-degree=7 (candidates: 5755)
out-degree=8 (candidates: 4568)
out-degree=9 (candidates: 3626)
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Figure 3.8: Direction of links in a sample of routes.

routes go backward, meaning that they go back to the server, and that a quite
important part of them remain stable. This is an explanation of the fact that
routes are longer than shortest paths. Routes may certainly follow some detours.
This phenomena has been pointed out at the AS level in [29].

Figure 3.9 shows the evolution of these proportion function of the distance
from the server in routes of length 15. We can observed that it is in the middle
of routes that there are more floating behaviors. We can suppose that middle of
routes correspond to the core of the network. This shows that it is in the core
of the network that detours appear.

Note that going away from the server is not the same as going toward the
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Figure 3.9: Direction of links in a sample of routes of length 15.

destination. Unfortunately, it was not possible to study the proportion of links
that go toward destinations because of computation problems. Indeed, in the
Skitter data set, from the point of view of a server, you can treat more tracer-
outes (thus links) at a time than from the point of view of a destination.

3.1.5 Dynamics of routes

We just have made preliminary studies. We realized for each Skitter’ server
statistics like the ones of Figure 2.5 showing that if several traceroutes have
been perform between a server and a destination, in most of case there are more
than one route observed. We did not go deeper in this study and the way these
routes are different have to be characterized. Furthermore, studies concerning
length evolution of routes are also necessary.

3.2 How to model routes?

On the light of statistics pointed out in the previous section, we have tried to
define models to design paths on the Internet. Until now, paths in this world
wide network are often modeled by shortest paths because no precise studies
have described what a route looks like on the Internet.

One possibility could have been to complicate a lot our models but we have
taken the position to make it the simple as possible in order to provide efficient
solutions. Let’s described the three methods we have designed to build fake
routes and the results of simulations.

3.2.1 Methods

Random perturbation based

This method tends to generate routes with a random based solution. The short-
est path is compute between the starting point and the destination. Then, at
each hop we set a probability that a perturbation appears. If it appears, a
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routes going through a neighbor of the current node not in the shortest path is
searched. The algorithm also avoids two-loops.

Length based

This one tried to concentrate on the length of the path given information plotted
in Figure 3.1. The shortest path is compute between the starting point and the
destination. Then, a δ is randomly chosen by following the distribution of
Figure 3.1 and is added to the shortest path length. A path of the previous
length is searched.

Local properties based

Finally, the last one is a bit more complicated. Assume that for all nodes,
predecessors are their highest degree neighbor. From the source and from the
destination as well, we replace the current node by its predecessor to find the
piece 1 and 3 (see Figure 3.10) of the path until a loop is reached. At the
end, a shortest path is compute between the two tops of the trees as shown in
Figure 3.10, it corresponds to the part 2.

Figure 3.10: Arbre.

3.2.2 Simulation results

To evaluate our models, we have try to see if routes generated have properties
that are close to the ones studied in section 3.1. We had identify four properties:

• the lengths of routes compare to shortest paths.

• the evolution of node’ degrees along routes.

• the slight trend in routes to go to the highest degree neihbor.

• the proportion of type of links: forward, backward and stable.
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We have generated fake routes on the Skitter graph with the three methods
previously seen. We will see the results of the experiments. Unfortunatly, this
is just preliminary results.

First, the method based on length was too greedy in computation power,
so we are not able to present any results. Indeed, the algorithm stops on some
blocking cases like this one: the shortest path between a source and a destination
was equal to 14 hops, the value of δ randomly choosen was equal to 5, the
algorithm took several days to find that there exist 35968166 paths of length
19! One can imagine some tricks to avoid these blocking cases but it has a great
influence on the model and a loss of control on what is exactly generated can
appear.

Then, the method based on random perturbations and the one based on local
properties have worked well to reproduce length properties of routes. Results are
available in Figure 3.11 and Figure 3.13. We found an average traceroute length
of 16.77 hops for the random based method and of 14.66 for the local properties
based. Concerning the results on the degree evolution along routes plotted in
Figure 3.12 and Figure 3.14 for both methods. A preliminary qualitative result
is that the method based on local properties gives good results because we find
again the result of Figure 3.4.

Figure 3.11: Probability distribution function of lengths for the random based
model.

From the results obtained experimentally, the best model seems to be the
one based on local properties but this need to be confirm.

Naturally, these results and simulation are on going work because we need
more statistics on more generated data like the ones on the type of links. We
have also begun to generate fake routes on other graphs real and simulated.
The real graphs was obtain using the Mercator software and public traceroute
servers. Generated ones was build with the Erdos-Renyi and the Albert and
Barabasi models.
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Figure 3.12: Degree evolution along routes for the random based model.

Figure 3.13: Probability distribution function of lengths for the local properties
based model.

Figure 3.14: Degree evolution along routes for the local properties based model.
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Conclusion and future
works

In this work, after doing a state of the art in topology analysis of the Internet,
we have performed some new analysis on the Skitter graph which is a pseudo
graph of the Internet, then we have realize a deep study on paths in this network.
Our main contribution in this work was to give ideas on what a route on the
Internet is and to provide a simple model to improve simulations accuracy. We
have also provided tools to manipulate huge IP graphs and to perform analysis
on this kind of graph.

For future works, we will try to finish the simulations already started and
also to focus on dynamics of routes to answer the following question: If different
routes exist between two hosts, do packets usually take the same? If yes, why?

Furthermore, we will try to find some solutions to improve the way of grab-
bing data. The Skitter platform which is at the state of the art must be im-
proved. Indeed, more monitors (e.g points of view) are needed to get accurate
data and intelligent ways of doing distributed traceroutes have to be found in
order to enlarge such measurement platforms and to reduce their overhead on
the network.
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Appendix

3.3 Some Traceroute related problems

This is an extract of the man page of traceroute.

* Note that lines 2 \& 3 are the same. This is due to a buggy

* kernel on the 2nd hop system -- lbl-csam.arpa -- that forwards

* packets with a zero ttl.

*

* A more interesting example is:

*

* [yak 72]% traceroute allspice.lcs.mit.edu.

* traceroute to allspice.lcs.mit.edu (18.26.0.115), 30 hops max

* 1 helios.ee.lbl.gov (128.3.112.1) 0 ms 0 ms 0 ms

* 2 lilac-dmc.Berkeley.EDU (128.32.216.1) 19 ms 19 ms 19 ms

* 3 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 19 ms 19 ms

* 4 ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 19 ms 39 ms 39 ms

* 5 ccn-nerif22.Berkeley.EDU (128.32.168.22) 20 ms 39 ms 39 ms

* 6 128.32.197.4 (128.32.197.4) 59 ms 119 ms 39 ms

* 7 131.119.2.5 (131.119.2.5) 59 ms 59 ms 39 ms

* 8 129.140.70.13 (129.140.70.13) 80 ms 79 ms 99 ms

* 9 129.140.71.6 (129.140.71.6) 139 ms 139 ms 159 ms

* 10 129.140.81.7 (129.140.81.7) 199 ms 180 ms 300 ms

* 11 129.140.72.17 (129.140.72.17) 300 ms 239 ms 239 ms

* 12 * * *

* 13 128.121.54.72 (128.121.54.72) 259 ms 499 ms 279 ms

* 14 * * *

* 15 * * *

* 16 * * *

* 17 * * *

* 18 ALLSPICE.LCS.MIT.EDU (18.26.0.115) 339 ms 279 ms 279 ms

*

* (I start to see why I’m having so much trouble with mail to

* MIT.) Note that the gateways 12, 14, 15, 16 \& 17 hops away

* either don’t send ICMP "time exceeded" messages or send them

* with a ttl too small to reach us. 14 - 17 are running the

* MIT C Gateway code that doesn’t send "time exceeded"s. God

* only knows what’s going on with 12.

*
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* The silent gateway 12 in the above may be the result of a bug in

* the 4.[23]BSD network code (and its derivatives): 4.x (x <= 3)

* sends an unreachable message using whatever ttl remains in the

* original datagram. Since, for gateways, the remaining ttl is

* zero, the icmp "time exceeded" is guaranteed to not make it back

* to us. The behavior of this bug is slightly more interesting

* when it appears on the destination system:

*

* 1 helios.ee.lbl.gov (128.3.112.1) 0 ms 0 ms 0 ms

* 2 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 19 ms 39 ms

* 3 lilac-dmc.Berkeley.EDU (128.32.216.1) 19 ms 39 ms 19 ms

* 4 ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 39 ms 40 ms 19 ms

* 5 ccn-nerif35.Berkeley.EDU (128.32.168.35) 39 ms 39 ms 39 ms

* 6 csgw.Berkeley.EDU (128.32.133.254) 39 ms 59 ms 39 ms

* 7 * * *

* 8 * * *

* 9 * * *

* 10 * * *

* 11 * * *

* 12 * * *

* 13 rip.Berkeley.EDU (128.32.131.22) 59 ms ! 39 ms ! 39 ms !

*

* Notice that there are 12 "gateways" (13 is the final

* destination) and exactly the last half of them are "missing".

* What’s really happening is that rip (a Sun-3 running Sun OS3.5)

* is using the ttl from our arriving datagram as the ttl in its

* icmp reply. So, the reply will time out on the return path

* (with no notice sent to anyone since icmp’s aren’t sent for

* icmp’s) until we probe with a ttl that’s at least twice the path

* length. I.e., rip is really only 7 hops away. A reply that

* returns with a ttl of 1 is a clue this problem exists.

* Traceroute prints a "!" after the time if the ttl is <= 1.

* Since vendors ship a lot of obsolete (DEC’s Ultrix, Sun 3.x) or

* non-standard (HPUX) software, expect to see this problem

* frequently and/or take care picking the target host of your

* probes.

*

* Other possible annotations after the time are !H, !N, !P (got a host,

* network or protocol unreachable, respectively), !S or !F (source

* route failed or fragmentation needed -- neither of these should

* ever occur and the associated gateway is busted if you see one). If

* almost all the probes result in some kind of unreachable, traceroute

* will give up and exit.

*
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3.4 The format used for Skitter data

==========================================================================

sample output (default version)

==========================================================================

Key Source Destination Time RTT Count hop1 hop2 ...

------------------------------------------------------------------------------

C 192.172.226.24 194.225.70.80 978307205 709.657 26 192.172.226.1

Key - parameter characterizing the quality of a trace

-------

no reply

N - Noreply

no reply was received from the destination although a partial

path may have been recorded. The RTT has no meaning in this case.

replied

I - Incomplete

skitter got a reply from the destination, but did not receive a reply

from every intermediate hop on the path. The RTT to the destination

is valid.

C - complete

The destination and all intermediate hops in the path all replied.

The RTT to the destination is valid.

Source and Destination - IP addresses in standard dotted octet notation.

----------------------

Source - the IP address of the skitter monitor. The first IP address

in all paths measured by this monitor.

Destination - the IP address of the final destination to which the

packets were sent in a given trace. The last IP address of the

measured IP path.

Time - UNIX timestamp

-------

The meaning of this parameter is different in different versions of skitter.

version 0-9-a3 or earlier (files collected before 2001/02/06):

In I and C type traces - time when the reply was received

from the destination

In N type traces - time when the current cycle (one pass over

all monitored addresses) of probing started. Same value for all

N-type traces in a cycle.

version caida-1.1 (files collected after 2001/02/07):

In all types of traces - time when the skitter send the first

probing packet to this destination.

RTT (Round Trip Time) - in milliseconds

---------------------

The amount of time elapsed between the packet leaving the skitter
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source and the reply from the destination arriving back at the

source. Skitter will always take the first such reply from the

destination; later replies are thrown away.

Count

--------

The Time To Live (TTL) of the first probe packet for which a reply

was received from the destination. Since the packet had to travel

through that many routers to reach the destination, this number

represents the distance from the source to the destination measured

as ‘the number of hops’.

hop1 hop2 ... - IP addresses in standard dotted octet notation or ‘q’.

---------------

These are the IP addresses that replied with the ‘TTL expired’

message at each TTL from the source to the destination.

A ‘q’ is printed if no IP address replied at a given TTL.

Sometimes, multiple IPs reply at a given probe TTL. They all are

printed in the output, separated by commas. In this case, the number

of intermediate IP addresses will be larger than the value of ‘Count’.

It is also possible for a IP address to reply to TTL expired

message at the same value as the count.
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3.5 Functionalities implemented

For Analysis of traces

Program name Type Function
WhereAreTheSpecialIPs Script Performs some statistics

on placement of special IPs.
Stats Script This script performs some statistical

analysis on Skitter’s data and generates
an HTML report for each server.

CreateDotFile Script Creates the IP graph from the
traces in DOT format, performs some
statistics and generates an HTML report.

Bidirectionnalroutes Script Extract from Skitter data,
traceroutes that exist in one way
and also the way back.

ConvertGraphIPToGraphAS Script Converts the AS graph from the
IP graph, computes some statistics
and generates an HTML report.

CreateDotFileWithTroncatedTrt Script Creates an IP graph from traces
in DOT by removing beginnings of
traceroutes and the ends.

Downloads Script Looks at the Skitter data available
on CAIDA’s servers and tells between to
dates for a list of servers when full data
are available.

DynRoutes Script For a server, it follows the evolution of
traceroute length toward a set of
destination on a long period.

For Analysis of IP graphs

Program name Type Function
SkitterAnalysis C++ Degree Distribution
SkitterAnalysis C++ Print all degrees of nodes
SkitterAnalysis C++ Print all clustering coefficients of the nodes
SkitterAnalysis C++ Several methods to extract the core of the Internet
SkitterAnalysis C++ Give the proportion of bidirectional links
SkitterAnalysis C++ Give all the shortest path lengths from a server
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For Analysis of traces and IP graphs

Program name Type Function
DegreesAlongTrt Script study the evolution of degrees
SkitterAnalysis C++ of nodes crossed by the traceroutes.
AnalyzeLengths Script Study traceroute lengths versus
SkitterAnalysis C++ shortest path lengths
TraficVsDegree Script Study the correlation between degree
SkitterAnalysis C++ of nodes and the traffic
TypeOfLinks Script Study types of links in traceroutes:
SkitterAnalysis C++ Forward, Stable and Backward.
DoesTrtFollowDegree Script Study the trend for traceroute to
SkitterAnalysis C++ choose at a node the highest degree neighbor

for the choice of the next node on a route.

For Generation of fake routes

Program name Type Function
SkitterAnalysis C++ Generate traceroutes with the model seen

in section 3.2.1
SkitterAnalysis C++ Generate traceroutes with the model seen

in section 3.2.1
SkitterAnalysis C++ Generate traceroutes with the model seen

in section 3.2.1

VI


