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Abstract—In Wireless Sensor Networks (WSNs) for mon-
itoring applications, energy saving and fast data collection
are two challenging tasks. Asynchronous radio duty cycling
protocols can achieve very low energy consumption in low traffic
conditions and they are fault-tolerant to clock drifts. However,
they may exhibit a delay degradation due to the decoupled wake-
up periods of the nodes. In this paper, we present RAWMAC, a
cross-layer approach where RPL, a tree-based routing protocol,
orchestrates the asynchronous duty-cycled ContikiMAC MAC
layer. The wake-up instants of the nodes are dynamically
aligned, with respect to the RPL topology, to minimize the delay
for data collection. We implement RAWMAC for the Contiki
operating system and we analyze the impact of several key
system parameters. Results show that RAWMAC outperforms
ContikiMAC in terms of delay for data collection, while keeping
the same performance in terms of throughput and energy
consumption.

I. INTRODUCTION

The Internet of Things (IoT) allows to exploit low power
and battery-operated wireless devices for long lasting mon-
itoring systems. These devices can self-organize and form
a Wireless Sensor Network (WSN) to monitor a large area
of interest. They are typically composed of an embedded mi-
crocontroller with some memory, a radio transceiver, physical
transducers that sense the environment, and a battery.

The need for low power but interoperable WSN systems
has already been addressed in the literature. Radio duty
cycling techniques at the MAC layer have been introduced to
reduce energy consumption by turning on and off periodically
the radio interfaces [1]. Similarly, IPv6 extensions and RPL,
the IPv6 Routing Protocol for Low power and Lossy Net-
works [2], have been proposed to provide IP connectivity on
low power radios such as IEEE 802.15.4. This paper focuses
on a practical and standard compliant coordination between
RPL and the asynchronous duty-cycled ContikiMAC MAC
layer [3] to minimize energy consumption while meeting tight
delay objectives.

MAC protocols can be schematically divided into syn-
chronous and asynchronous. Synchronous protocols align
all nodes on one common schedule. While these protocols
are suitable for delay-sensitive applications, they require
an underlying synchronization mechanism, which consumes
more energy, computation resources, and bandwidth [4]. On
the other hand, asynchronous protocols do not require any
control overhead for the synchronization; therefore, these

protocols improve energy efficiency and are more robust to
clock drifts, but they may exhibit a delay degradation due to
the decoupled wake-up periods of the nodes.

In this paper, we propose RAWMAC, an adaptation layer
which exploits the routing layer, where the RPL protocol
is used, into a management layer for asynchronous duty-
cycled MAC protocols (such as ContikiMAC). The idea is
to exploit the Directed Acyclic Graph (DAG) built by RPL
to align each node wake-up phase with that of its preferred
parent, creating a data propagation “wave” from the leaves
of the DAG to the root. This allows to significantly reduce
the latency, as it depends only on small propagation delays
and on the internal processing at each device. By properly
configuring the phase lock mechanism of ContikiMAC, the
transmitting node wakes up only when the receiving node is
ready to receive the packet, so that the energy consumption
is kept as low as possible. A similar approach to align
duty cycles using routing information has been proposed in
DMAC [5]. However, DMAC considers a synchronous MAC
layer with static routing, while we aggregate an asynchronous
duty cycling mechanism with a dynamic routing plane, such
as RPL.

The main contributions of our work are: (i) it leverages on
existing standards for unslotted constrained WSNs, such as
RPL; (ii) it configures the asynchronous MAC layer wake-ups
using information from a dynamic IoT-oriented routing plane;
and (iii) it provides an implementation for a real deployment,
based on Contiki OS.

The obtained results show that RAWMAC outperforms
ContikiMAC in terms of delay for data collection, while
keeping the same performance in terms of throughput and
energy consumption. In addition, the creation of propaga-
tion “waves” does not impact the packet delivery ratio of
the WSN, since no overhead is introduced by RAWMAC.
Conversely, if we fix a delay threshold for data collection,
RAWMAC allows to satisfy the requirement with a larger
duty cycle, resulting in a consistent energy saving.

The structure of this paper is the following. Section II
presents the related work. Section III presents an overview of
ContikiMAC and RPL, which are the protocols used to im-
plement our mechanism. Section IV describes our proposed
solution in detail; analytical bounds for the delay are also
derived. Section V presents the performance evaluation of
RAWMAC. Finally, Section VI concludes the paper.



II. RELATED WORK

In order to overcome intrinsic limitations of traditional sin-
gle MAC layer protocols, a number of cross-layer approaches
have been proposed. The cross-layer optimization involving
physical, MAC and routing layers has been considered in [6]:
by jointly optimizing MAC and routing layers, this work
adapts the wake up phases in order to minimize the delays.
This approach echoes the one proposed in [7], where a
“wave” of propagation is created to collect alarms generated
by the nodes deployed in a given monitored area. However,
this approach requires an external configuration phase, since
the collection path must be a priori determined. In [8], authors
present an interesting solution, based on IEEE 802.15.4 and
RPL, to reduce the delay for data collection. However, the
proposed approach is for slotted cluster-tree networks with
very low duty-cycles (several minutes), which does not fit the
requirements of a surveillance system, where required delays
are in the order of milliseconds. The idea of considering
propagation waves has also been presented in [9], where
authors focus on alarms collection and redistribution via
an energy efficient broadcast. However, network topology
is statically defined at network startup and never updated
during time. Finally, a similar mechanism is proposed in
DMAC [5]. DMAC is based on the staggering of duty cycles
using information coming from the routing plane. However,
this solution does not use a dynamic routing protocol, such
as RPL, and it relies on a synchronous approach rather than
ContikiMAC. In addition, to the best of our knowledge, no
implementation of DMAC is available in Contiki, therefore
no comparison tests are possible.

Current work on 6TiSCH [10] at IETF aims at providing
a management layer for the synchronous and multichannel
802.15.e MAC layer. The idea is that an external Path Com-
putation Element (PCE) solves the joint MAC and routing
optimization to minimize the collection times while mini-
mizing the global energy consumption. However, in order
to provide fault-tolerance to clock drifts, nodes failures and
propagation issues, we believe that managed asynchronous
MAC protocols are very powerful as they can still operate in
asynchronous mode in the case of failure.

III. CONTIKIMAC AND RPL

With respect to related works outlined in Section II, our
solution is based on ContikiMAC and RPL, the “de facto”
emerging protocols for IoT. Therefore, in the following we
present a quick overview of the two protocols.

A. ContikiMAC

ContikiMAC is an asynchronous, sender-initiated radio
duty cycling protocol [3]. In order to transmit a packet, a
sender repeatedly transmits its packet until it receives a link
layer ACKnowledgment (ACK) from a receiver. The packet
is repeated, in the worst case, for an entire sleeping interval,
to ensure that the receiver awakes at least once during this
period. The sleeping interval is denoted as cycle time (CT,
dimension: [s]). On the other side, the receiver periodically
wakes up, with period CT, to check for possible incoming
packet transmissions. If a packet transmission is detected
during a wake-up, the receiver turns its radio transceiver on to

Fig. 1. Phase lock mechanism in ContikiMAC: the sender learns the
wake-up phase of the receiver after reception of an ACK. At the second
transmission, the sender can decrease the number of probes. The cycle time
is CT.

be able to receive the entire packet. After complete reception,
the receiver sends the ACK to the sender. Before transmitting,
the node must sense if the channel is available. In order
to reduce energy consumption, ContikiMAC introduces a
phase lock mechanism to learn the wake-up phase of the
receiver. By recording the time of the reception of the ACK,
and assuming that the receiver will wake-up at the constant
interval CT, the phase lock mechanism is able to estimate
the wake-up time of the receiver. This allows to decrease the
number of probes needed in the following transmissions, thus
reducing the energy consumption. A graphical representation
of the phase lock mechanism is shown in Fig. 1.

B. RPL

RPL is a distance-vector routing protocol based on the
creation of a tree-like structure, referred to as Destination
Oriented Acyclic Directed Graph (DODAG) [2]. The tree is
anchored at one or more nodes, denoted as DAG root(s). The
cost of each path in the tree is evaluated according to metrics
defined in an objective function. The current RPL implemen-
tation for the Contiki operating system adopts, as default, the
Expected Transmission Count (ETX) metric, which tries to
minimize the total number of packet transmissions required
to successfully deliver a packet to the ultimate destination.

In order to build and maintain the topology, RPL uses
two types of control messages: DODAG Information Objects
(DIOs) are broadcast messages used in the down direction to
help nodes to join the topology. Destination Advertisement
Objects (DAOs) are unicast messages used to populate the
routing tables of ancestor nodes in the DAG and to create
downstream routes. RPL uses a trickle mechanism to reduce
the transmission of redundant DIO messages when the net-
work is stable. RPL has two modes of operation, namely,
storing and non-storing: in storing mode, downward routes
are stored by each node in the tree; in non-storing mode,
routes are stored only by the root.

IV. DESIGN PRINCIPLES OF RAWMAC

We assume that a WSN is deployed in a surveillance
system with bounded delay requirements. In such a scenario,
the traffic transmitted upward, which consists of alerts, is
far more critical than the one directed downward, which may
include configuration requests or software updates. Nodes are
organized in a tree-like structure, e.g., a RPL DAG, rooted
at a sink node. In order to save energy, nodes periodically
switch their radios on and off.

The goal of RAWMAC is to minimize the data collection
process (i.e., the delay of upward traffic), while keeping radio
duty-cycling for energy saving purposes. We assume that the



Fig. 2. Design principle of RAWMAC: wake-up phase alignment. Accord-
ing to the network topology built by RPL, each node aligns its wake-up
phase to that of its preferred parent in the DAG. The top node in red is the
root of the DAG.

sleeping period is the same for all nodes and has been set to
meet the requirements of external applications. To achieve
the described goal, nodes progressively align their wake-
up phases to those of their preferred parents in the RPL
DAG, configuring the asynchronous phase lock mechanism
of ContikiMAC. This phase shifting mechanism reduces the
delay for alert collection, without requiring any overhead for
the alignment of the phases.

A. Wake-up Phase Alignment

An illustrative representation of the wake-up phase align-
ment in RAWMAC is shown in Fig. 2. As long as the routing
structure is established, a node shifts its wake-up phase in
order to be aligned with that of its parent. More precisely,
it sets the wake-up phase to the time at which it saw the
last link layer ACK from its RPL preferred parent. Since the
preferred parent must have been awake to receive the packet,
the reception of the ACK means that it has successfully
transmitted a packet within the preferred parent’s wake-up
window and, thus, that it has found the preferred parent’s
wake-up phase. We define the phase offset Po (dimension:
[s]) as the offset between the node’s wake-up phase and
the wake-up phase of its parent. Given the node’s sleeping
interval CT, it holds that 0 ≤ Po ≤ CT. The parameter Po

has indeed to be chosen carefully, since it has an impact
on the system delay performance. If Po is too short, a node
relaying a packet may not be able to catch its parent’s wake-
up because the reception of the same packet from its child has
not completed yet. If this is the case, then the child should
wait the next cycle time CT to be able to forward the packet.
If Po is too long, instead, the delay increases significantly,
as the sender has to wait for the receiver to wake up to be
able to transmit the packet.

RAWMAC adjusts the phase alignment every time the
node receives an ACK from its preferred parent: this happens
for the transmission of application data, and when RPL
DAO messages are sent. In addition, RAWMAC leverages
the phase lock mechanism of ContikiMAC which allows
the transmitting node to send the packet only when the
destination node is ready to receive it, allowing a considerable
energy saving since useless packet strobing is suppressed.

(a) (b)

Fig. 3. Examples of clock drift which may occur after the wake-up phase
alignment. In (a), the wake-up phases diverge. In (b), the wake-up phases
get very close with each other. ∆Po is the clock drift.

With RAWMAC, nodes which are located at the same hop
distance from the sink in the routing structure calibrate the
same wake-up phase. In case a parent has several children,
packet collisions may arise. RAWMAC handles this problem
exactly as ContikiMAC, relying on a CSMA strategy. In
Section V, we evaluate the impact of traffic load on the
delay and energy consumption performance. In particular,
we highlight how the collisions affect those two performance
indicators, trying to identify the maximum offered traffic that
can be supported by the network with negligible performance
degradation.

B. Clock Drift

The phase lock mechanism estimates the wake-up phase of
the receiver with some error. The reception of the ACK does
not correspond to the time at which the receiver has switched
the radio on, but it comes from several contributions, such
as: (i) the time spent by the receiver for a partial reception of
the packet; (ii) the time for a complete reception of a packet;
(iii) the time to process the packet and to generate the ACK;
and (iv) the time to deliver the ACK back to the sender. In
short, the reception of the ACK depends on the length of
the transmitted packet. In addition, the internal clocks of the
nodes are not synchronized with each other, and different
oscillators may cause small clock drifts, which would affect
the phase synchronization as well.

RAWMAC introduces the following mechanism to prevent
a node from shifting its wake-up phase if the offset with its
preferred parent has not changed significantly. We define a
phase offset threshold ∆Po (dimension: [s]), with ∆Po ≤ Po,
to check if the phase should be aligned or not. In particular,
denoting with φC and φB,C (dimension: [s]) the wake-
up phases of node C and of node C’s preferred parent B
(estimated by C), with φC ≤ φB,C, respectively, node C
aligns its wake-up phase to B’s wake-up phase if

φB,C − φC ≥ Po +∆Po ∨ φB,C − φC ≤ Po −∆Po. (1)

Note that Eq. 1 underlies the assumption that the drift may
cause a convergence as well as a divergence of the phases
with equal probability, as shown in Fig. 3.

Similarly to Po, the parameter ∆Po has to be chosen care-
fully, since it has an impact on the system delay performance.
If ∆Po is too short, a continuous reshift of the phase would
occur at any new received ACK, which may cause instabilities
downward and may make children lose the synchronization
with their preferred parents. If ∆Po is too long, reshift would
occur more occasionally, which may cause a node to lose the
synchronization with its preferred parent.



C. Topology Reconfiguration

Changes in the network topology may occur. In particular,
a node may change preferred parent whenever a neighbor
has a lower path cost to the DAG root. If a node changes
its preferred parent in the DAG, RAWMAC aligns its wake-
up phase to that of the new preferred parent. This may
cause children to lose the synchronization, and the effect
would propagate to children nodes, since each child should
reconfigure its wake-up phase as well.

In order to be more reactive against changes of the routing
structure, we modify the phase lock mechanism of Contiki-
MAC. If a node does not receive an ACK after 4 consecutive
transmissions—16 in ContikiMAC— it starts a new phase
discovery process.

D. Delay Evaluation

Under the assumption of low generated traffic and equal
duty cycles at the nodes, the transmission delay can be
analytically evaluated as follows.

The phase offset used by RAWMAC to align the wake-up
phase of a node with that of its parent node is denoted as
Po. As demonstrated in [11], the forwarding delay on a single
hop dsh, with uncorrelated phases, can be expressed as

dsh = CT/2 + Pmin (2)

where Pmin (dimension: [s]) is the minimum forwarding time
needed to forward a packet to a neighbor. In Section V we
will derive this parameter by simulations. In the case of
RAWMAC, each node shifts the wake-up phase to match
that of its preferred parent (which is, indeed, a neighbor).
The shift is dictated by the phase-offset Po. In this case, the
upward delay Dup,R for a node which is h hops away from
the sink can be expressed in two ways, depending on the
value of Po:

Dup,R =

{

(h− 1) · Po + dsh Po > Pmin

(h− 1) · (Po + CT) + dsh 0 ≤ Po ≤ Pmin

(3)
In the second expression in Eq. 3, Po is shorter than the
minimum forwarding time Pmin: therefore, each intermediate
node has to wait an additional cycle time CT to forward
the packet. For the first hop transmission, the delay is given
by dsh, since there is no correlation between the packet
generation instant and the status of the duty-cycle of the node.
For the remaining h− 1 hops, the delay is given only by the
Po, since the propagation wave has been created.

Similar considerations hold for the delay in the downward
direction, denoted as Ddown,R. In particular, two cases can
be distinguished in this case as well:

Ddown,R =
{

(h− 1) ∗ (CT − Po) + dsh CT − Po > Pmin

(h− 1) ∗ (CT − Po + CT) + dsh 0 ≤ CT − Po ≤ Pmin

(4)

As before, the delay for the first hop transmission is given
by dsh.

In the case of ContikiMAC, the average downward delay
Ddown,C, from the sink to a node placed at h hops, is

Fig. 4. Evaluation scenario with N = 50 nodes. We use the unit disk radio
model with distance loss. The transmission range is set to 20 m.

equivalent to the delay in the up direction Dup,C, since the
wake-up phases are uncorrelated. Thus, one obtains

Ddown,C = Dup,C = h · (CT/2 + Pmin) . (5)

V. PERFORMANCE EVALUATION

We have implemented RAWMAC in Contiki 3.x and we
have tested it via Cooja, a Java-based simulator for Contiki-
based WSNs [12]. The simulated scenario, shown in Fig. 4,
is composed of N = 50 randomly-deployed nodes. Two
types of node are deployed: (i) a sink node, responsible for
configuring the RPL DAG and collecting the data, and (ii)
sending nodes, in charge of transmitting packets periodically
to the sink and, eventually, relaying incoming packets. As
soon as the network is started, the sink creates an RPL DAG
which can be joined by the other nodes. In Fig. 4, the sink
node is node 1. Each sending node generates an 8-byte length
alert packet at a random instant within consecutive time slots
of duration T (dimension: [s]). For instance: one packet at a
random instant in [0, T ]; one packet at a random instant in
[T, 2T ]; etc. Therefore, the average packet generation rate
r per node (dimension: [pck/s]) is equal to 1/T . Packets
are sent to the sink using the UDP transport protocol. The
duration of the simulations Tsim (dimension: [s]) is 5 hours.
In order to bound statistical fluctuations, each simulation
result is obtained by averaging over three runs (with different
random seeds).

Table I summarizes the main parameters of RAWMAC,
with the associated values. In the remainder of this section,
when not explicitly stated, we will consider T = 120 s.

In order to estimate energy consumption, we rely on
Powertrace, a Cooja plugin that measures and logs energy
consumption for each node in the network. Our simulations
have been carried out with Tmote Sky nodes, whose datasheet
current consumptions for transmission and reception phases,
namely, ITx and IRx, respectively, are indicated in Table I.
We study how the system performance is affected by (i) the
phase offset Po, (ii) the phase offset threshold ∆Po, and (iii)
the average packet generation period T . The performance of



Fixed parameters

Duration of the simulation Tsim 5 hours

Number of nodes N 50

Radio duty cycle CT 250 ms

Transmission current consumption ITx 20 mA

Reception current consumption IRx 20 mA

Voltage tension VDD 3 V

Packet length L 8 bit

Variable parameters

Phase offset Po 25 ÷ 55 ms

Phase offset threshold ∆Po 1 ÷ 9 ms

Packet generation period T 25 ÷ 200 s

TABLE I. FIXED AND VARIABLE PARAMETERS CONSIDERED IN

SIMULATIONS.

RAWMAC is directly compared with that of ContikiMAC in
terms of delay to and from the sink, energy consumption,
packet loss rate, number of parent changes, and number of
wake-up phase realignments.

A. RPL Topology

In this subsection, we first evaluate the depth of the RPL
DAG created according to the considered topology. Routing
information is collected from the nodes periodically, during
the simulations, in order to track, over time, changes in the
routing structure. This analysis is expedient to understand,
in the following subsections, the impact of traffic load and
of the DAG depth on RAWMAC. In Fig. 5 (a), the DAG
depth is shown for each node involved in the network. Since
topology variations are present, we also show the standard
deviation associated to the average number of hops at each
node. Node 1 is not shown since it is the DAG root. It
can be observed that the resulting DAG is quite stable and
nodes rarely change their positions. However, nodes at a
higher depth in the DAG experience a higher variability
than those closer to the root. This result is confirmed in
Fig. 5 (b), where the Probability Mass Function (PMF) of
the nodes distribution, as a function of the number of hops
to the DAG root, is shown. Each mass is associated with
the corresponding standard deviation. There are only a few
nodes which are 8 or 9-hops away from the sink. It can also
be observed that deep nodes (at least 6 hops away) are not
very stable. This result is reasonable since the computation of
the ETX objective function is more reliable at shorter depths.
If there is an error in the measurements of the metric, this
error propagates hop-by-hop, causing instability in the DAG
at higher depths. For this reason, in the following we consider
only a maximum DAG depth of 7 hops.

B. Impact of the Phase Offset Po

As stated in Section IV-A, the phase shift impacts the
delay and energy consumption performance. In Fig. 6 (a),
we show the impact of the phase offset on the upward delay
performance. In order to validate our adaptation layer, we
compare RAWMAC with ContikiMAC using the phase lock
mechanism. The performance results with RAWMAC have
been generated considering ∆Po = 6 ms. According to
Eq. (2), the delay at the first hop (i.e., at depth 1 in the
DAG) is the same for RAWMAC and ContikiMAC, since
it depends only on the packet generation instant. At higher
depths, two different behaviors can be observed. First, as
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Fig. 5. Configuration of the RPL routing topology. In (a), the average hop
distance and standard deviation are shown for each node. In (b), the PMF
of the number of hops (to the DAG root) is shown.

expected, for proper values of Po RAWMAC outperforms
ContikiMAC, especially for increasing number of hops to
the sink. In particular, for packets generated 6- or 7-hops
away from the sink, the gain of RAWMAC, with respect to
ContikiMAC, is over 30%. Second, we can remark that when
Po is too small (i.e., Po = 25 ms), a packet cannot “ride” the
same wave till the sink: at some depth, it has to wait for the
subsequent wave to reach the next parent. This means that,
with reference to Eq. (2), we can approximate Pmin ≈ 35 ms.

RAWMAC has been conceived for fast and delay-efficient
data collection. The cost of this adaptation mechanism is a
larger delay for downward traffic. In Fig. 6 (b), the downward
delay is shown as a function of the DAG depth of the
destination node, considering various values of Po. More
precisely, the sink generates a packet, on average, every
T = 120 s and this packet is directed to one randomly-
chosen node in the WSN. Besides statistical fluctuations,
ContikiMAC performs like RAWMAC for the very first hops,
while it outperforms RAWMAC when the destination node
is deeper in the DAG, i.e., farther from the sink.

In Fig. 6 (c), the energy consumption of the radio interface
in the active mode, denoted with Eact (dimension: [mJ]),
is shown as a function of the number of hops to the sink,
for various values of Po. As expected, there is roughly no
difference between RAWMAC and ContikiMAC, since they
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Fig. 6. (a) Average delay upward, (b) average delay downward, (c) energy consumption, and (d) percentage of activity of radio interface as functions of
the number of hops to the DAG root, for different values of the phase offset Po. Performance is compared with ContikiMAC.

are both based on the phase lock mechanism that allows to
turn radio interfaces on only when the receiver is expected
to be available. Even for Po = 25 ms, when RAWMAC is
outperformed by ContikiMAC in terms of upward delay (see
Fig. 6 (a)), the energy performance is still comparable to that
of ContikiMAC, since relaying nodes postpone their trans-
missions without staying awake till the intended receivers
wake up.

From the energy consumption curves it is possible to derive
the time each node has spent in transmission and reception
during the simulation. In particular, the power consumption
of the radio in the active mode Pact, that is when the node
is either transmitting or receiving, can be expressed as

Pact = VDDIact = VDD(ITx + IRx) =
Eact

tact
(6)

where Iact is the current consumption due to the active phase,
that is for transmitting (ITx) and receiving (IRx) a packet,
Eact is the energy consumption due to the active phase, and
tact is the time spent in the active phase, over the duration of
the simulation Tsim. The values for VDD, ITx, IRx, and Tsim

are shown in Table I. From (6), one can compute tact and,
consequently, the percentage of time spent for radio activity
by a node over Tsim, which is investigated in Fig. 6 (d), for

various values of Po. For nodes closer to the sink, the amount
of time spent with the radio interface on is approximately
1.4% with both RAWMAC and ContikiMAC. Intuitively,
the deeper the position of a node in the DAG, the higher
should tact be. This trend is confirmed up to the third hop.
However, since the network is rather dense, at 4-hops from
the sink there are more contentions to transmit to the parents,
resulting in a much higher radio activity. The same trend can
be highlighted for ContikiMAC, confirming that the higher
radio activity at 4 hops is due to topology configuration.

C. Impact of the Phase Offset Threshold ∆Po

Another parameter that has a relevant impact on RAW-
MAC is the tolerance to the phase shift offset. Internal clocks
imperfections and internal processing delays may make a
node unprepared to receive a packet at a scheduled instant. If
no tolerance is introduced, the sender would always need to
track the changes of its parent’s wake up scheduling. Clearly,
this would impact on the node’s children activity, since
they should track as well the changed wake-up instant. As
the misalignment between nodes may cause retransmissions,
the phase offset threshold ∆Po has an impact on the ETX
metric used by RPL and may lead to network instability.
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Fig. 7. (a) Parent changes as a function of the simulation time, (b) phase shifts as a function of the simulation time, (c) upward delay as a function of the
RPL tree depth, and (d) packet losses as a function of the simulation time, for different values of the delta phase offset ∆Po. Performance is compared with
ContikiMAC.

In Fig. 7 (a), the cumulative number of parent changes
experienced by the nodes in the network is shown as a
function of simulation time, considering several values of
∆Po. Simulations have been carried out with Po = 40 ms.
Focusing on the values of ∆Po which guarantee the best
performance, namely, ∆Po = 5 ÷ 9 ms, it can be observed
that the number of RPL parent changes with RAWMAC is
the same as with ContikiMAC. Therefore, it can be concluded
that these changes are caused by the instability of the DAG
rather than by the impact of phase shifts on the RPL metric.

In Fig. 7 (b), we evaluate the number of phase shifts that
are experienced by the nodes as a function of the simulation
time. The number of shifts for ∆Po = 5÷ 9 ms is basically
the same, whereas for ∆Po = 1÷ 3 ms the number of phase
shifts is one order of magnitude larger than for the other
values of ∆Po. This means that the nodes continuously try
to track their parents, resulting in worse delay performance,
as shown in Fig. 7 (c), where the upward delay is shown as
a function of the depth of the RPL DAG. The effect of the
phase offset threshold becomes more evident the longer is the
number of hops, resulting in a higher delay. In this case, the
delay is due to the misalignments introduced by the nodes
trying to track the changes of their parents’ phase offsets.

In Fig. 7 (d), the packet loss rate is shown as a function
of simulation time. The losses introduced by the presence of
“waves” are really limited. Even for small values of ∆Po the
packets only experience higher delay but no supplementary
losses with respect to those experienced with ContikiMAC.

D. Impact of the Packet Generation Period T

In order to measure the impact of traffic load on RAW-
MAC, we vary the packet generation period T from 25 s
up to 200 s. According to previous results, Po and ∆Po

are set to 40 ms and 6 ms, respectively. In Fig. 8 (a) the
upward delay is shown as a function of the distance of the
nodes from the sink. For small values of T , the performance
of RAWMAC and ContikiMAC is the same since the delay
is mainly due to retransmissions introduced by the access
contention mechanism. When T increases, i.e., in low traffic
conditions, RAWMAC outperforms ContikiMAC due to the
propagation waves that allow to quickly deliver packets to
the sink.

This behavior is confirmed by the packet loss rate shown
in Fig. 8 (b). For small values of T , the traffic offered to the
WSN is too high, so nodes that are far from the sink (i.e.,
deeper) experience higher losses, and packets are dropped
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Fig. 8. (a) Average delay upward, (b) packet losses, and (c) energy consumption as functions of the hop distance, for various values of the packet generation
period T . Performance is compared with ContikiMAC.

since nodes fail to retransmit. On the other hand, when T is
large, the packet loss rate for the two protocols is comparable.

From an energy point of view, as shown in Fig. 8 (c), the
nodes closer to the sink have a larger energy consumption
since they have to relay information coming from their
children. When T is small, the high energy consumption is
not only due to the large number of packets to be forwarded,
but also to the large number of packets’ retransmissions
which are due to collisions.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented RAWMAC, an adaptation
layer for minimizing the alert collection delay in monitoring
systems. RAWMAC uses routing as a management module
for asynchronous MAC layers, which are more robust to clock
drifts, in order to create a wave of propagation from the
leaves to the root of a routing tree. We have exemplified this
adaptation layer on RPL and ContikiMAC, as these routing
protocols are emerging as standards de facto for the Internet
of Things. Performance results have shown that RAWMAC
largely outperforms the standalone ContikiMAC in terms of
delay for upward traffic. From energy and packet losses points
of view, instead, RAWMAC under the same configuration
parameters has the same performance of pure ContikiMAC.
This means that, given a target maximum delay, RAWMAC
allows to largely reduce the duty-cycle of the nodes compared
to ContikiMAC, resulting in a remarkable energy saving. In
addition, we have studied the impact of the parent changes
due to RPL and of the misalignment due to clock drifts.
RAWMAC proves to be sufficiently reactive to track all
these changes without affecting the packet delivery ratio, that
remains equivalent to that of ContikiMAC.

As future work, we plan to extend RAWMAC to take into
account efficient broadcasting exploiting the mechanism for
the creation of waves introduced by RAWMAC. Another
relevant research direction is the design and performance
evaluation in the presence of heterogeneous radio duty-
cycling across the nodes.
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