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Abstract—We propose an algorithmic framework for network
slicing based on column generation. It aims at efficiently maxi-
mizing the number of accepted slices while minimizing the cost
of embedding virtual networks. It can address key QoS and
high reliability constraints for 5G networks and it extensively
uses parallelization to quickly solve a relaxed version of the
problem and round it to a near-optimal integer solution. This
poster presents performance results on small and large problem
instances.

Index Terms—Resource Allocation, Network Virtualisation,
Combinatorial Optimization.

I. INTRODUCTION

A network slice is a virtual network which is implemented
on top of a physical network in a way that creates the illusion
of the slice tenant of operating its own dedicated physical
network. A virtual link between virtual nodes can be realized
as a multi-hop path with reserved bandwidth on all physical
links constituting the path. A virtual node can implement
specific network functions that can be installed on a physical
node (e.g., firewalls, DPI probes). Virtual links and virtual
nodes can be easily established by an Software Defined Net-
work (SDN) controller or network orchestrator [1]. Network
slicing functionalities are foreseen to be a key component of
5G to provision isolated and personalized network services to
different applications (e.g., connected vehicles, smart factories,
AR/VR content distribution) [2], [3].

This poster presents an algorithmic framework based on
column generation [4] for network slicing which efficiently
maps several virtual networks on top of physical resources
with QoS and high reliability constraints.

II. ALGORITHMIC FRAMEWORK

We briefly introduce the multi-slice embedding problem, its
extensions for QoS and high-reliability constraints, and the
general algorithmic framework we developed.

Multi-slice embedding problem. We consider a set K of
slices to be embedded, each one with a set Sk of possible
embeddings. We want to maximize the number of admitted
slices while minimizing the embedding cost. Ideally we must
admit all the slices if they fit into the physical network. We
denote by ce and be the cost and bandwidth of physical link
e ∈ E , respectively, and rke,s the requested bandwidth on
physical link e used in candidate embedding s for slice k.
Then, the cost of embedding s ∈ Sk is pks :=

∑
e∈E r

k
s,ece.

The optimization variables xks ∈ {0, 1} indicate if slice k uses
embedding s on the physical network.

We want to solve the Integer Linear Program (ILP) formu-
lated in Fig. 1, where βk > 0 is a constant that penalizes not
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xks ≤ 1, ∀k ∈ K (2)∑
k∈K
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s∈Sk
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k
s ≤ be, ∀e ∈ E (3)

xks ∈ {0, 1}, ∀k ∈ K,∀s ∈ Sk

Fig. 1: Multi-slice embedding problem.

embedding slice k on the physical network, and signifies the
importance of slice k. It must be chosen large enough such
that it is always preferable to allocate flows of a slice on the
physical network, if at all possible. (Eq. 1)

Slices can be embedded in the network at most once (Eq. 2).
In addition, the multiple slices must be embedded in a way that
satisfies the capacity constraints of the edges in the physical
network (Eq. 3).

QoS constraints and protection schemes. To meet 5G
requirements, our framework supports the embedding of slices
with latency, capacity and SRLG disjointness constraints on
every virtual link. It also supports the following protection
mechanisms:

• 1+1 protection: A primary working path and a backup
path are provided for every virtual link.

• 1:N protection: A primary working path and N sharable
backup paths are provided for every virtual link

• 1+1 full protection: For each slice request, two disjoint
network slices are provided.

Algorithmic framework. A naive approach to solve the
multi-slice embedding problem could be a greedy algorithm,
called Successive Slice Embedding (SSE), which treats the
slices one-by-one in a decreasing order of βk and increasing
order of amount of requested traffic, finding minimum-cost
single-slice embeddings and reducing the remaining capacity
due to each slice embedding. However, such an algorithm does
not coordinate the resource allocation among slices. If the load
is high, choices made for the first slices might quickly use up
the capacity of important links, and may lead to the rejection
of remaining slices. Our main objective is to embed the slices
for the maximum cumulative value, and hence we need to plan
for all the slices jointly. Therefore, we devise a method that
solves efficiently the optimization problem presented above.

However, due to the integral nature of the problem, in
medium to large problem instances running-time explodes. An



Fig. 2: Slice-based column generation framework.

efficient approach to tackle this issue is to relax integrality, find
a coordinated fractional routing for all the slices, and correct
it to finally obtain an integral routing. From properties of LPs
(Linear Programs), few slices actually use non-integral routing
and the fractional solution is generally easy to patch.

Our slice-based column generation algorithm is depicted in
Fig. 2. It aims at efficiently solving the relaxed problem and
correct it to an integral solution. It first warm starts from an
initial solution using SSE. If some slices cannot be embedded
at this stage, they are put on dummy embeddings with very
high costs βk. Then, column generation starts by solving at
each iteration a restricted LP on the current set of embeddings,
updating the dual prices of the physical edges, and generating
new columns (possible single-slice embeddings). Columns are
generated in parallel and may replace existing ones to keep
the master problem small while accelerating convergence. All
constraints related to QoS and high reliability are addressed
in the generation of columns. At the end of each iteration,
we monitor the improvement of the master problem. If no im-
provements have been made for several iterations, we exit and
keep the last fractional solution. We also monitor execution
time and estimate if we have time for one more iteration. Once
the solution to the relaxed problem has been found, several
instances of rounding methods are instantiated with different
random seeds to increase diversity. Methods like Randomize
Rounding (RR) [5] or Re-Weighting (RW)-based rounding are
used.

III. NUMERICAL RESULTS

We present simulation results obtained on a server with 40
cores on small (10 nodes, 30 slices) and large (200 nodes, 7
slices) instances (20 trials in each case). We compare our slice
generation algorithm with Successive Slice Embedding (SSE)
and the optimal solution obtained with CPLEX (for small
instances). We considered random graphs with representative
distributions of node degrees and SRLGs. Tab. I provides
average properties of the instances. Results are shown as a
function of congestion, i.e., a multiplication factor that scales
up or down the size of virtual links in each slice. Each
instance is generated in such a way that it is marginally

possible to admit all the slices (with their respective protection
mechanism) under a congestion level of 1.

Phy. Nodes Phy. Links SRLGs Virt. links Slices
10 38 43 43 30
200 4005 1195 403 7

TABLE I: Average properties of instances.

Results on small instances. We can see that the number
of accepted slices is nearly optimal and 25% higher than for
SSE. The execution time of ILP explodes when the congestion
increases as the problem becomes harder while it remains very
low for our algorithm.

Fig. 3: Gain over SSP in % of
accepted slices vs congestion.

Fig. 4: Execution time vs con-
gestion.

Results on large instances. On networks with 200 nodes,
the gain is up to 20% in terms of accepted slices. The
execution time of slice generation reaches a plateau as the
algorithm is designed and parametrized to meet an execution
time requirement of 1500s. When the congestion increases,
admission control dominates the minimization of embedding
cost which makes the problem easier to solve, hence reducing
the execution time.

Fig. 5: Gain over SSP in % of
accepted slices vs congestion.

Fig. 6: Execution time vs con-
gestion.
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