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Abstract—In this paper, we experiment on a GNU radio based
platform a point to multipoint transport protocol specifically
designed for cognitive radio environments. Over a dedicated
software defined based platform deployed in our premises we
investigate two main functionalities of transport protocols in
terms of reliability and congestion control. Comparing with state
of the art point to multipoint and even the TCP protocol as a
benchmark, we show that our solution ensures high reliability
and reacts judiciously to losses caused by interference. Moreover,
our transport protocol is able to follow network conditions and
channel switching by adapting its sending rate accordingly. Our
extensive experiments also highlight that our solution is not only
able to manage multiple destinations but also capable to offer
better performance than TCP in terms of throughput over lossy
links.

I. INTRODUCTION

Recently, the cognitive radio paradigm arose as the forefront

of wireless communication and networking research [1]. These

research advances are supported by the emergence of off-

the-shelf devices capable of exploiting multiple frequency

bands and easily programmable by software, called software

defined radios (SDR). In the meantime, new communication

patterns in mobile computing are becoming very common

with applications trying to take advantage of multi-interface

devices and smartphones to distribute information between

multiple users at the same time. These users may share socially

a common interest or be located in geographically close

positions. Disseminating alerts, videos and pictures to a set

of workers or vehicles, in public safety networks or intelligent

transport systems, are well known examples.

Few transport protocols were proposed with the objective

of ensuring reliability and congestion control in point to point

cognitive radio networks [2], [3], [4]. However, the sharing

of content of a common interest to a group of users over

various wireless links cannot be handled efficiently with these

traditional transport protocols. In fact, challenges are related

to sending at a suitable rate for all receivers, reacting to losses

at particular destinations, avoiding that slow receivers penalize

those benefiting from better links to name a few. In practice,

this communication model addresses applications’ need to

distribute content, such as video streams, to multiple receivers

sharing the same interests. Because in a point-to-multipoint

context, users can be spread over different frequencies, chan-

nels, or locations, the links “connecting” each destination to
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the source, might have inherently different characteristics (e.g.

bandwidth, center frequency and thus propagation properties,

etc) or be interfered by different (primary or secondary)

users (in a cognitive radio context). As a result, users in the

same group may experience very heterogeneous performance

in terms of latency, physical transmission rate, MAC layer

retransmissions, etc.

To support point-to-multipoint distribution of the same data

across heterogeneous receivers, the source can adapt its flow

to the slowest receivers, like in the NORM [5] protocol or

in RTMP [6]. This however translates in pulling down the

reception rate of all nodes; while this might be appropriate

in the Internet where receivers have close behaviors, it is not

the case in a multi-channel wireless context. Alternatively the

source could follow the fastest receivers, but it is taking the

risk of “losing” the slowest, resulting in too many packets

being dropped on the saturated slow channels. To solve

this dilemma, we have proposed PMT (Point-to-Multipoint

Transport) in [7], an acknowledgement based transport pro-

tocol which dynamically differentiates among receivers and

separates them according to their reception capabilities. PMT

creates dynamic groups of receivers managed by the source

to improve delivery time for the nodes that can receive data

early, and thus the overall throughput.

In this paper, we compare over an experimental cognitive

radio platform based on USRP GNU radios [8] the proposed

PMT protocol to known transport protocols. Our objective is

to highlight the capability of our solutions to ensure reliability

and efficient congestion and flow control in unstable and

dynamically varying wireless environments. To do so, we

contrast over a real platform PMT with state of art point to

multipoint and even point to point (TCP) transport solutions.

Indeed, even through TCP is not suitable for multi-destination

communications it is used as a benchmark for the high relia-

bility it offers. Our experiments show that as PMT guarantees

high reliability for all destinations of a communication, it also

adapts it flow control to the selected channels outperforming

offering higher throughput than existing solutions.

The remainder of the paper is structured as follows. Sec-

tion II. details the protocol and its mechanisms. Section III.

describes our cognitive radio platform. We define and analyze

our experimentation in IV emphasizing on the comparison

with the TCP protocol. Finally, related work is given in V

then conclusion and future work in Section VI.



II. TRANSPORT PROTOCOL

A. Preliminaries

In a multidestination configuration, the throughput of a

group composed of M members can be expressed as the sum

of the throughput of all the members of the group.

Φgroup =

M∑

i=0

Φi

where Φi is the throughput observed by the member i of the

group.

In order to prevent slow receivers from penalizing those

benefiting from favorable network conditions, we seek to

create dynamically separate groups each served at a particular

throughput. We base the group formation algorithm on the

round trip time (RTT) observed by each node. With these

observations, the source node is able to differentiate between

slow and fast nodes. A single time threshold T is sufficient

to discriminate between both groups: all nodes below the

threshold T go in the fast group, all nodes above in the slow

group (their RTT is larger). In the considered setting, the trade-

off is the following: one could try to maximize the number

of receivers in the first group. However, this would imply

increasing T and thus reducing throughput for all nodes in the

first group. It is intuitive that an optimal value of T should

exist, depending on the RTT probability distribution. Please

refer to [7] for a detailed theoretical analysis.

B. Protocol description

Our mechanism is source driven, in other words the source

node maintains, in a special database, the group affiliation

for every receiver. The average RTT for every receiver (other

participants within the zone) is also stored inside this database.

Moreover two transmission buffers are added, each handling

transmissions for a precise group. The protocol building blocks

are shown in Figure 1.

Fig. 1: Protocol building blocks

The source sends a message for the fast group every T

and serves the slow receivers every Tmax. In fact, the source

transmits the message available in the fast nodes queue to

the fast receivers and waits for the acknowledgements. After

T seconds (i.e at the expiry of the fast nodes interval),

receivers that have answered are labeled as fast; all others are

labeled as slow in the specific database. Using timestamps, the

smoothed RTT of fast receivers is also updated. The message

is then transfered to the slow group buffer and transmitted

to the slow receivers at Tmax. Note that Tmax can have an

important role in tuning the rate and reliability of the PMT

protocol. We have investigated 2 possible solutions. The first

one considers Tmax as a fixed protocol parameter, dictated

by the application requirements, or the need to ensure quite

slow nodes can still get enough packets. The second solutions

optimizes Tmax similarly to T in a way to maximize the slow

group throughput. We have used this second option in our

testbed experiments.

This flow control process is repeated whenever new mes-

sages are available for transmission. More generally, the

throughput of our protocol is dictated by T and Tmax as

follows:

• at T source pushes the message to the slow group queue,

pops a new message and sends it to the fast group

receivers.

• at Tmax source removes from the slow queue the message

sent Tmax seconds earlier, then transmits the message in

head of queue to the slow group members.

Nodes can move from one group to the other depending on

their RTT. From the fast to the slow group, nodes will ignore

the messages that they have already acknowledged. From the

slow to the fast group, the source will consider nodes in both

groups so that they keep receiving old and new messages.

Since the objective is to handle dynamically rate vs. range

requirements enabled by cognitive radios, the strategy of the

protocol is to improve delivery time for the nodes that can

receive data early. The long-term throughput of the system is

unchanged, as it is dictated by the second queue (the slow

nodes that are served every Tmax), since all nodes receive the

same data.

C. Algorithm for dynamic group calculation

In order to select the appropriate value of T that separates

the fast from slow nodes, we propose a greedy algorithm which

maximizes the average throughput per node (which is the same

as maximizing total network throughput for a fixed number of

receivers).

The basic idea of the algorithm is to determine the value

of T by computing the average throughput based on the

receivers’ RTTs. First, we start by sorting received RTTs in

increasing order (line 1). Then, by sequentially selecting the

RTT of receiver j and computing the throughput of each group

accordingly (i.e by also including all receivers having smaller

RTT) we estimate the throughput as if the RTT of receiver j

equals the value of T (line 3 of the algorithm). At the end

of this loop the algorithm returns the RTT value that offers

the highest total throughput. In practice, a slightly bigger (+

ǫ) value from this RTT is selected for T in order to maximize

the total network throughput. In fact, this small margin allows

to account for potential RTT fluctuations.

PMT flow control transmits a window of N segments to

ever destination every T . These N segments generate a single



Algorithm 1 Estimate optimal value of T

Input: N //total number of receivers

τ [N ] //table containing smoothed RTT of every receiver

Tmax

max = 0, index, result, j //intermediate variables

Output: T

1: sort(τ [N ])
2: while j < N do

3: result← (j. 1
τ [j] )+(N−j). 1

Tmax

// Tmax = τ [N−1]+ǫ

4: if result > max then

5: max← result

6: index← j

7: end if

8: j = j + 1
9: end while

10: T ← τ [index] + ǫ

11: return T

ACK from every destination that allow to detect and restore

lost segments in the window. Indeed, reducing the number of

ACK and increasing N the window size sent every T allow

to maximize the network throughput.

III. COGNITIVE RADIO PLATFORM

We describe herein the cognitive radio platform we use to

evaluate the performance of the PMT protocol.

A. Software Defined Radio Devices

In order to implement the previously detailed protocol,

we use the Universal Software Radio Peripherals (USRP)

made by Ettus Research [8]. In our tests, we rely on USRP1

devices, which are the first generation of the USRP products

commercialized by ettus.

The USRP1 is a radio device built around a FPGA. It

possesses four 12 bit Analog-to-Digital Converters (ADCs)

running at 64 MSamples/s and four 14 bit Digital-to-Analog

Converters (DACs) operating at 128 MSamples/s. This enables

us to have four complex channels simultaneously (4 I channels

and 4 Q channels). Therefore, up to two complex inputs and

two complex outputs can be simultaneously exploited.

This software defined radio is controlled through particu-

lar softwares running on a computer (described later). The

communication to the computer is done through a USB 2.0

connection linking the computer directly to the FPGA through

a Cypress FX2 USB controller. The USRP1 motherboard has

four extension slots on which several kinds of daughter boards

can be plugged. In our experiment setup, we use 2 daughter

boards of 2 slots each in order to fill the all 4 available

extension slots

• The RFX900 which enables us to transmit and receive

around 900 MHz (GSM frequency)

• The RFX2400 which enables us to operate around 2.4

GHz (ISM band)

Fig. 2: USRP & GNU Radio software stack representation

B. GNU Radio

GNU Radio [9] is a free and open-source software develop-

ment toolkit that provides signal processing blocks to imple-

ment software radios. It can be used with readily-available

low-cost external RF hardware to create software-defined

radios, or without hardware in a simulation-like environment.

GNU Radio applications are primarily written using

the Python programming language, while the supplied

performance-critical signal processing path is implemented in

C++ using processor floating-point extensions, when available.

Thus, the developer is able to implement real-time, high-

throughput radio systems in a simple-to-use, rapid-application-

development environment.

GNU Radio is therefore a very useful software tool however

it still needs an additional layer in order to control our software

defined radio devices (III-A).

This is the role of the USRP Hardware Driver (UHD)

provided by Ettus Research. It is provided as a standalone

driver, and is made available to the GNU Radio toolkit through

the implementation of several blocks, such as an emitter

(uhd.usrp sink), a receiver (uhd.usrp source), etc.

Therefore, the overall system architecture can be thought of

as a stack with the hardware (USRP device) sitting at the

bottom of it. UHD is the direct link to the hardware and

GNU Radio is the link between user defined flow graphs and

UHD. Although one could directly connect to the hardware

through UHD and without the use of GNU Radio, they would

be limited to simple operations while the GNU Radio toolkit

is very furnished. The complete hierarchy is shown in Figure

2.

IV. EXPERIMENTAL COMPARISON OF TRANSPORT

PROTOCOLS

Over this GNU radio based platform we compare our

transport protocol (PMT) to existing solutions.To the best of

our knowledge, experiments of cognitive radio protocols in

general and particularly transport protocols over a real testbed

are rarely conducted. We believe that undergoing extensive



experimentation and comparison of different protocols in a

cognitive radio platform is a major contribution of our paper.

A. Considered Setup

The experimental validation of the PMT protocol requires

at least 3 nodes: 1 emitter and 2 receivers. Our objective

is to establish point to multipoint communication towards 2

destinations with 2 channels having different characteristics

in terms of capacity and packet error rate. More precisely,

we consider a high speed and reliable channel (less than 1%

packet error rate, PER) offering 1 Mbits/s capacity and a

lossy channel of a PER of 20% with a capacity of 250 Kbits/s.

However, in order to deploy this setup over our cognitive radio

platform, the source node is emulated by two GNU radio

devices each transmitting exclusively over a frequency band.

This was done to overcome the low physical capability of

these experimental devices when a switching from a channel

to another is required. Such configuration allows us to simply

compare point to multipoint protocols to traditional point to

point solutions by running experiments in one of the following

setups (explained in Figure 3):

• The two USRPs are programmed as simple interfaces

operating on different channels. On top of them, a single

point to multipoint transport protocol is instantiated. This

corresponds to a single node equipped with 2 interfaces.

• The two USRPs are managed as 2 independent nodes

each serving a separate TCP source on a separate channel.

Therefore, 2 TCP connections can be initiated in the

Linux kernel and tunneled towards the radio devices using

the socket API.

PMT

UDP

API

GNU Radio 

TCP TCP

APIAPI

GNU Radio GNU Radio 

USRP1 USRP2 USRP1 USRP2

Fig. 3: PMT vs TCP implementation over USRP GNU radio

devices

Throughout our experiments, we use the 2 configurations

shown in Figure 3 to compare PMT reliability and con-

gestion/flow control to TCP when exchanging 1 MegaBytes

of data between the sender and 2 receivers. PMT window

size was set to N = 5 segments. This value was statically

selected since it offers a good trade-off between following

closely network conditions and reducing the overhead caused

by acknowledgments. Indeed, as long as link starvation is

avoided i.e. the source finishes sending before the destinations

start receiving any sent segment, any value of N can be

used. Besides, a minimal MAC layer to regulate access control

through a CSMA-like mechanism as well as a physical layer

that ensures FEC through redundancy are implemented over

our GNU radio devices.

B. General behavior

In the aforementioned configuration, we seek to investigate

our solution behavior in different network conditions and

highlight its ability to cope simultaneously with receivers

observing links with different PER and capacities. Indeed, the

comparison with TCP is justified by the following arguments:

• Evaluate the reliability and the delivery time of the data

relatively to TCP, which is today the reference and the

benchmark of transport solutions

• Highlight the ability of PMT to ensure transport services

for multiple destinations with a single instantiation of

the protocol. Unlike TCP, that requires a separate TCP

connection per destination. (refer to Figure 3)
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Fig. 4: PMT vs TCP comparison on two separate links

Figure 4 shows the amount of sent data in time for PMT

and TCP Reno flavor at each receiver over the reliable and

unreliable channels. The reliability mechanism of PMT offers

similar performance to TCP by ensuring the delivery of the

entire 1 MegaBytes message without any loss on both channels

as shown in Figure 4. More interestingly, a single instantiation

of our protocol is able to achieve similar throughput to TCP

on a high capacity link and in the same time outperforms

the TCP connection on the lossy link. This is due to the

flow control mechanism employed by PMT that adapts the

source sending rate to the measured round trip time. Moreover

sending a single ACK for every 5 segments further increases

the throughput of PMT. Consequently, over unreliable links,

the TCP congestion control reduces its sending rate when

losses are observed hence increasing the total duration of the

message exchange. Whereas with PMT, the source reduces

its sending rate (increase T ) when the RTT become larger

which constitute a more accurate estimation of congestion thus

more suitable reactions. This is further discussed in the fol-

lowing section. Note that we have used Reno the default TCP

flavor implemented in our Linux kernel. While other flavors

of TCP include RTT estimation in their congestion control



mechanisms, even if these flavors can perform better in noisy

environments, none of them is able to handle simultaneously

multiple receivers and manage them dynamically.

C. PMT vs. TCP on lossy links

In order to compare the congestion/flow control of the two

protocol under lossy conditions we study the evolution of

TCP congestion window as well as the measured round trip

time that dictates the source sending rate with PMT. In our

experiments, TCP congestion window size cwnd as well as

slow start congestion threshold ssthresh are directly obtained

from the TCP variables maintained by the Linux kernel. For

the PMT, we show the scheduled sending time for the slow

group Tmax and the measured RTT for this destination. It is

worth mentioning here that since the lossy channel suffers also

from low capacity (250 Kbits/s), the destination reached over

this

channel falls in the slow group with PMT.

Platform experiment results shown in Figure 5 highlight

the two protocols reactions to packet loss over the wireless

medium. Practically, the lossy environment in our context

corresponds to wireless links between the 2 GNU radio devices

without FEC coding on the physical layer. The hence packet

error rate we measure over this link is around 20%. The

results of Figure 5 illustrate why the PMT outperforms TCP

in terms of achieved throughput over lossy links. In fact, the

congestion control mechanism of TCP reduces the sending

rate (congestion window) when packet losses are observed.

Moreover, if lost TCP segments are not retransmitted in

time (i.e upon RTO expiry), the TCP protocol enters slow

start phase thus reducing its congestion window to its lowest

possible value. This effect can be seen in Figure 5a when

the cwnd value goes below the slow start threshold (ssthresh)

value. Clearly this happens very often in our experimentation.

In contrast, PMT exploits exclusively the RTT measurement

in computing the sending rate at the source. Occurring losses

on the wireless links are retransmitted by the source however

without impacting the RTT measurements. As a direct result,

our protocol is able to closely follow the network conditions

and adapt its sending rate accordingly as shown in Figure 5b.
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Fig. 6: PMT vs TCP over congested and unstable links

D. PMT vs. TCP reaction to congestion

Because PMT is conceived to operate in point to mul-

tipoint cognitive radio networks, we investigate its reaction

to congestion and link properties variation in Figure 6. To

do so, we modify the link capacity over the reliable link

initially at 1 Mbits/s to 700 Kbits/s at second 4 then to 500

Kbits/s at second 5. These capacity changes can be seen as

a congestion through the start of a competing traffic or a

channel switch in a cognitive radio environment that requires a

dynamic adaptation of the transport protocol. Our experiments

show that both protocols dynamically adapt to the network

conditions by modifying the source sending rate. This can be

observed in the change of the slope of the number of sent

octets in time. Moreover PMT, by following the measured RTT

adapts smoothly it sending rate unlike TCP that goes to the

slow start phase when packets are lost and not retransmitted

in time (refer to seconds 4 and 5 of TCP curve in Figure 6).

Note here, that the additional delay for PMT to transmit the 1

MBytes message is induced by our demonstration setup that

implements our protocol as an application and compares it to

TCP directly connected to socket API. This configuration adds

few milliseconds at each transmission for PMT what makes

the 2 curves diverge at the end of the experiment. Note also

that this effect is present in Figure 4 but not visible due to

scale effects.

We have also compared PMT with the NORM protocol

that creates a group of receivers with a sending rate adapted

to the slowest receiver. Unsurprisingly, these real testbed

measurements not shown here for space constraints show that

PMT, by creating multiple groups, outperforms NORM in

terms of achieved throughput.

V. RELATED WORK

Recently proposed transport protocols for point to point

cognitive radio networks [2], [4] do not address challenges of

the point-to-multipoint communication scheme. In fact, these

solutions make the comprehensive assumption that at time t a

single destination needs to be reached. Hence rate adaptation is

based on optimizing the transmission parameters based on this

destination reception capabilities. Alternatively, present point-

to-multipoint transport solutions do not cope well with the new

conditions created by cognitive radio environments. Standard

multicast solutions target essentially multicast sessions with

large groups [10], [6]. For receivers with different flow rates,

one can compute multicast groups based on throughput [11]

or create layered multicast protocols [12]. They apply well to

layered content/stream distribution, where each quality layer

is mapped to the corresponding receiver rate.

In the meantime an increasing interest for the GNU Radio

development kit have been observed in the wireless research

community. These activities mostly focused on implementing

SDR oriented solutions using GNU Radio in order to validate

theoretical studies. Clearly, validating technical contributions

in realistic environments hence going beyond simulations is

highly encouraged in wireless communication and networking

communities. This tendency is gaining momentum with the
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Fig. 5: TCP vs. PMT control over lossy links

proliferation of low cost and highly efficient off the shelf

configurable devices. However, most of the work in the GNU

Radio community focuses on physical layer [13] [14] and

MAC layer aspects [15], [16]. Very few efforts have looked

on implementing higher layer solutions and protocols. In a

sense, we are also using GNU Radio as a mean to implement

our protocol and test its behavior in real-life conditions,

nevertheless our approach, using GNU Radio in order to

implement a point to multipoint transport protocol, is to the

best of our knowledge one of the first initiatives towards this

direction.

VI. CONCLUSION AND FUTURE WORK

In this paper we have validated over a real cognitive

radio platform an acknowledgement based transport protocol

for point-to-multipoint multi-channel networks which splits

receivers into groups, each served at a suitable throughput.

The major advantage of our solution consists in preventing

slow receivers from affecting the service offered to receivers

possessing better conditions (fast group). Our experiments

demonstrate first that TCP performs poorly in lossy envi-

ronments. This observation is well accepted today in the

community.

More importantly, these testbed experimentations highlight

the capability of our transport solution (PMT) to ensure with a

single instantiation of the protocol high reliability and efficient

flow and congestion control, two main services of transport

protocols. More precisely, PMT offers similar performance

to TCP over reliable and high speed wireless links and

outperforms TCP congestion control in lossy environments.

In the future, we plan to extend the solution to N groups.

Intuitively, this can be seen as running the same algorithm

recursively on the created groups. However, optimality of this

solution should be verified in terms of obtained throughput for

every group. On our platform, we envisage to test our transport

protocol in multihop context where new problems related to

hidden node and channel allocation arise and may impact its

performance. Investigating the fairness of our solution with

multiple flows competing for the same wireless resource is

also envisaged in our future work.
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