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Taking into account the dynamic nature of traffic in telecom-
munication networks, the robust network design problem
is to fix the edge capacities so that all demand vectors be-
longing to a given polyhedral set can be routed. While a
common heuristic for this co-NP hard problem is to com-
pute, in polynomial time, an optimal static routing, affine
routing can be used to obtain better solutions also with
polynomial-time algorithms. It consists in restricting the
routing to depend on the demands in an affineway. Wefirst
show that a node-arc formulation is less conservative than
an arc-path formulation. We also provide a natural cycle-
based formulation that is shown to be equivalent to the
node-arc formulation. To further reduce the solution’s cost,
several new formulations are proposed. They are based on
the relaxation of flow conservation constraints. The ob-
tained formulations have been further improved through
aggregation. As might be expected, aggregation allows us
to reduce the size of formulations. A more striking result is
that aggregation reduces the solution’s cost. Finally, some
numerical experiments are presented.
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1 | INTRODUCTION

Network optimization [34, 51] plays a crucial role for telecommunication operators allowing them to carefully invest
in their infrastructure, i.e., reducing capital expenditures. As Internet traffic is ever increasing, the network capacity
needs to be expanded through careful investments every year or even half-year. Beyond traditional carrier networks
that build and maintain their own physical infrastructure, Over-The-Top (OTT) operators are also building wide area
overlay networks to obtainworldwide, long-haul and cost effective services. These companies are renting and reselling
bulk capacity from transit operators and Internet eXchange Points (IXP). For instance, SD-WAN (Software-Defined
Wide Area Networks) operators build high-performance and low cost WANs (Wide Area Networks) for enterprises
based on Software-Defined Networking [36] technologies by efficiently mixing expensive private lines with low cost
Internet access. Other OTT such as cloud service providers or online platforms (e.g., video streaming, social networks)
are leasing a mixture of connectivity services to interconnect central and regional data centers. In all cases, network
connectivity, whether leased or owned, has a cost and needs to be carefully designed to optimize profits.

Ideally, the network capacity should follow the demand. However, in most of the cases, the demand varies over
time and re-configurations can only be realized at a slow pace. When the traffic demand can be precisely known,
several approaches have been proposed to solve the capacitated network design problem using for instance decom-
position methods and cutting planes [23, 27, 46]. But in practice, perfect knowledge of future traffic is not available
at the time the decision needs to be taken. The dynamic nature of the traffic due to ordinary daily fluctuations, long
term evolution and unpredictable events requires us to consider uncertainty on traffic demands when dimensioning
network resources. While overestimated traffic forecasts could be used to solve a deterministic optimization problem,
it is likely to produce a costly over-provisioning of the network capacities, which is not acceptable. Therefore, robust
optimization under uncertainty sets is a must for the design of network capacities. In this context, our paper proposes
an in-depth study of affine routing [41, 44], a particular restriction of the robust network design problem [20] that
permits its resolution with polynomial-time algorithms.

More formally, let us consider a directed graph G = (V (G ), E (G )) representing a communication network. The
traffic is characterized by a set of commodities h ∈ H and associated to different source and sink pairs. The routing of
a commodity can be represented by a flow f h ∈ RE (G ) of intensity d h . To take into account the changing nature of the
demand, d is assumed to be uncertain and more precisely to belong to a polyhedral set D. The polyhedral model was
introduced in [8, 9] as an extension of the hose model [25, 26], where limits on the total traffic going into (resp. out of)
a node are considered. Other types of polyhedra are typically used for robust network design, in particular the Budget
uncertainty set [19] that considers a maximum deviation for each nominal demand and a global budget for possible
variations. Also of interest, the All Routable Demands uncertainty from [6] contains all demand vectors that can be
routed through the network.

When solving a robust network design problem, several objective functions can be considered. Given a capacity
ce for each edge e , one might be interested in minimizing the congestion given by maxe∈E (G ) uece where ue is the
reserved capacity on edge e . Another common objective function is given by the linear reservation cost ∑e∈E (G ) λeue .
This can also represent the average congestion by taking λe = 1

ce
. The goal is to choose a reservation vector u so that

the network has enough capacity to support any demand vector d ∈ D, i.e., there exists a (fractional) routing serving
every commodity such that the total flow on each edge e is less than the reservation ue . As presented in [44], this
problem can be viewed as a two-stage optimization where (first stage) capacity design decisions are made in the long
term while the actual (second stage) routing is adjusted based on observed user demands. In practice, this second
stage is realized using a centralized network controller that performs continuous traffic engineering, for instance a
Path Computation Element (PCE) [42], or using a distributed routing protocol, such as OSPF [38], where link weights
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are periodically engineered to accommodate traffic.
The robust network design problem where a linear reservation cost is minimized was proved to be co-NP hard

in [32, 37] when the graph is directed. A stronger co-NP hardness result is given in [21] where the graph is undirected
(this implies the directed case result). Some exact solution methods for robust network design have been considered
in [5, 22, 35, 50]. In the case where the objective function of minimizing congestion is considered, a well-known
O (log n) approximation ratio was presented in [47]. In a recent study on the approximability of robust network de-
sign [2], we proved that the robust network design problem with minimum congestion or with linear reservation cost
cannot be approximated within any constant factor. Using the ETH conjecture, we also obtained a Ω( log n

log log n ) lower
bound which implies that the O (log n) approximation ratio [47] is tight. Robust network design is also referred to as
dynamic routing in the literature since the network is optimized such that any realization of the traffic matrix in the
uncertainty set has its own routing.

Routing with uncertain demands has received significant interest from the community. As opposed to dynamic
routing, static routing or stable routing was introduced in [8]: it consists in choosing a fixed flow xh of value 1 for
each commodity h. The actual flow f h (d ) for the demand scenario d will then be scaled by the actual demand d h of
commodity h, i.e., f h (d ) = d hxh . Static routing is also called oblivious routing in [4, 6]. In this case, polynomial-time
algorithms to compute optimal static routing (with respect to either congestion or linear reservation cost) have been
proposed [4, 6, 8, 9] based on either duality or cutting-plane algorithms.

To further improve solutions of static routing and overcome complexity issues related to dynamic routing, a num-
ber of restrictions on routing have been considered to design polynomial-time algorithms (see [11, 20, 43] for more
references). This includes, for example, the multi-static approach [3, 7, 12] where the uncertainty set is partitioned
using some linear inequalities and routing is restricted to be static over each partition. This idea has been generalized
in [48] to unrestricted covers of the uncertainty set and an extension to share the demand between routing templates,
called volume routing, has been proposed in [53]. Further extensions appeared in [49]. An approach encompassing
the previous approaches is the multipolar approach proposed in [10, 13]. Finally, based on affine adjustable robust
counterparts introduced in [15], restricting the recourse to be an affine function of the uncertainties, [40, 41] applied
affine routing for robust network design leading to an arc-path formulation. The performance of this framework has
been extensively compared to the static and dynamic routing, both theoretically and empirically in [43, 44] where
a node-arc formulation is studied. In practice, affine routing provides a good approximation of the dynamic routing
while it can be solved in reasonable time thanks to polynomial-time solution methods.

In this paper, we extensively study affine routing formulations for the robust network design problem and we
make the following contributions:

• We study the relationship between the original affine routing formulations [41, 44], namely the node-arc and
the arc-path formulations. We show that the node-arc formulation (denoted by F=) is less conservative than (i.e.,
it reduces cost for some instances) the arc-path formulation (denoted by Fpath ). We also derive a natural cycle-
based formulation equivalent to the node-arc formulation but that uses fewer variables and constraints. (Section
2)

• We introduce two ways of relaxing the flow conservation constraints in the node-arc formulation (respectively
denoted F− and F+). We prove that this leads to feasible solutions and thenwe show that they can both dominate
the standard node-arc formulation. (Section 3)

• We propose Fcut , a cut based formulation, as an improved solution over both relaxed-flow conservation formu-
lations. However we show that, unless P = NP , it cannot be solved in polynomial time. (Section 4)

• We combine the two relaxed-flow conservation formulations using an extended graph. We prove that this for-
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mulation, called F, dominates both relaxations F− and F+, and that it can be solved in polynomial time. (Section
5)

• To drastically reduce the size of models and consequently the solution times, we present variants of the formula-
tions based on the aggregation of different flows having the same source and/or sink in the node-arc formulation.
Moreover, we show that this can also improve the cost of the solutions. (Section 6)

• Wenumerically test the different formulations that can be solvedwith polynomial-time algorithms after a reformu-
lation using a classical duality-based method. We compare the solutions and execution times for two polyhedra,
two topologies and two objective functions. (Section 7)

To close this section, we just wanted to point out that the work presented in this paper falls in the framework of
robust optimization and more specifically multi-stage adjustable robust optimization. Several general works can be
cited here such as [10, 15, 16, 17, 18, 28, 33, 45]. Further references can be found in [24, 52].

2 | POSSIBLE AFFINE FORMULATIONS

We start by recalling some standard node-arc formulations that we will improve later in Section 3. Then we recall
an arc-path formulation that might be more practical when paths can be enumerated easily and we show that it is
dominated by node-arc formulations. Finally, we close this section by proposing a natural cycle-based formulation
that is equivalent to node-arc formulations but with slightly fewer variables and constraints.

In the rest of the paper, we indifferently say that a formulation F1 dominates F2 (or is less conservative than F2)
when the following holds:
- Starting from any feasible solution of F2, one can build a feasible solution of F1 having the same objective value.
- There exists at least one instance for which the value of the optimal objective function of F1 is strictly smaller than
the one of F2.

2.1 | Initial node-arc formulation

Let’s consider a directed graph G = (V, E) representing a communication network. The traffic is characterized by a set
of commodities h ∈ H associated to different node pairs. For a given commodity h, the traffic originates at s(h) and
ends at t (h). As introduced in [44], for each demand scenario, the flow f he (d ) related to commodity h and edge e ∈ E ,
is restricted to affinely depend on the demand vector d . It represents the capacity reservation in the robust network
design problem. This flow f he (d ) is of the form f he (d ) = x

h0
e +

∑
h′∈H

xhh
′

e d h
′ where coefficients xh0e and xhh′e are subject

to optimization.
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The affine routing with congestion minimization can be then modeled as follows:

minm

∑
e∈δ+(v )

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
−

∑
e∈δ−(v )

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
=


dh , if v = s(h)
−dh , if v = t (h)
0 otherwise

[h ∈ H,v ∈ V , d ∈ D (1a)∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
≤ cem, [e ∈ E , d ∈ D (1b)

xh0e +
∑
h′∈H

xhh
′

e d h
′

≥ 0, [e ∈ E , [h ∈ H, d ∈ D (1c)

Constraints (1a) are standard flow conservation constraints, while (1b) express capacity limitation. Finally, con-
straints (1c) impose positivity on capacity reservations. δ−(v ) and e ∈ δ+(v ) respectively denote incoming and outgo-
ing edges from node v ∈ V . Notice that the flow conservation constraint related to v = t (h) can be skipped since it
can be obtained by summing the constraints related to the other vertices.

While in practical applications, congestion can never go above 1, we keep calling m the congestion even if m > 1.
In fact, another interpretation of m can be obtained by considering the problem where demands can be multiplied by
the same number γ that should be maximized and such that the "new" scaled demands can be carried by the network.
This is the classical maximum concurrent-flow problem. Then m is just the inverse of the biggest value of γ. Thus
m > 1 occurs if γ < 1 implying that only a fraction γ of demands can be routed through the network.

As already mentioned in Section 1, another objective function that is very often used in the literature is a linear
objective function expressed as∑

e∈E λeue where λe are scalars corresponding to the unit cost of underlying resources
and ue are reserved capacity variables (so cem is replaced by ue in constraint (1b)). While we use the congestion func-
tion in the analytical sections of the paper, all proposed formulations can be naturally adapted to the linear objective
case. Both objective functions will be considered in the numerical section.

D is supposed to be fully dimensional (it contains a ball). This assumption is not really restrictive since, in practice,
one should not expect that there is any linear equation satisfied by all demand vectors. Moreover, if the assumption is
not satisfied, then one can eliminate some of the coefficients xhh′e . For example, if we always have d h′ = ∑

h′′ αh′′d
h′′

then there is clearly no need to consider any dependency on h′ implying that coefficients xhh′e are useless. Under
this hypothesis, two affine functions a1, a2 are equal over D (i.e., a1(d ) = a2(d ), [d ∈ D), if and only if, a1 = a2 (i.e.,
all coefficients of the affine functions a1, a2 are equal). Using this fact, as proposed in [44], we can replace the flow
conservation constraints (1a) by the following equivalent reformulation:

∑
e∈δ+(v )

xhh
′

e −
∑

e∈δ−(v )

xhh
′

e =


1, if v = s(h) and h = h′

−1, if v = t (h) and h = h′

0 otherwise (including h′ = 0)
(2)
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The obtained formulation proposed by [44] is given below.

minm

∑
e∈δ+(v )

xhh
′

e −
∑

e∈δ−(v )

xhh
′

e =


1, if v = s(h) and h = h′

−1, if v = t (h) and h = h′

0 otherwise

[h ∈ H, h′ ∈ H ∪ {0},v ∈ V (3a)∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
≤ cem, [e ∈ E , d ∈ D (3b)

xh0e +
∑
h′∈H

xhh
′

e d h
′

≥ 0, [e ∈ E , h ∈ H, d ∈ D (3c)

Aswill be recalled in Section 7, when some linear constraintswith uncertain coefficients need to be considered, we
can handle uncertainty either by using constraint generation or by duality-based reformulation techniques. This should
be done for each constraint. The main advantage of (3) is that the uncertainty appearing in the flow conservation
constraints (1a) is already handled using (2). However, the other constraints (3b) and (3c) still need to be treated using
the techniques briefly recalled in Section 7 and used for the numerical evaluation.

2.2 | Arc-path formulation

Another natural formulation is the one obtained by considering path variables. This might lead to solution methods
that are easier to implement in communication networks when only a small number of paths is used for each com-
modity or the total number of paths that could be handled by each router/node is limited. Due to engineering rules,
certain types of paths might not be used. For example, when Internet routing protocols are considered, one can only
route along shortest paths in the sense of some administrative weights.

As proposed in [41], the flow on each path affinely depends on the demand vector d . This leads to the following
model, denoted by Fpath , where Ph is a set of (possibly all) paths from s(h) to t (h).

minm∑
h∈H

∑
p∈Ph :p3e

(
xh0p +

∑
h′∈H

xhh
′

p d h
′

)
≤ cem, [e ∈ E , d ∈ D (4a)

∑
p∈Ph

(
xh0p +

∑
h′∈H

xhh
′

p d h
′

)
= d h , [h ∈ H, d ∈ D (4b)

xh0p +
∑
h′∈H

xhh
′

p d h
′
≥ 0, [h ∈ H, p ∈ Ph , d ∈ D (4c)

Observe that constraints (4c) impose the non-negativity of the flow on each path. Notice that when there is no
uncertainty (i.e., when D contains only one demand vector), then (1) and (4) are equivalent when Ph contains all
possible paths. One might wonder whether this still holds for any D. Each solution of (4) can be transformed into a
feasible solution of (1) and (3) (by setting xh0e =

∑
p∈Ph :p3e

xh0p and xhh′e =
∑

p∈Ph :p3e
xhh
′

p ). However, the following example

shows that (4) can reduce congestion compared to (1) even if all paths are considered.

Proposition 2.1. Formulation (1) is less conservative than formulation (4).
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F IGURE 1 An example with five commodities: hi with i = 1, 2, 3, 4 having the same source and sink as edges e i ,
and h5 from source node s to sink node t . In this example we show that formulation (1) is less conservative than
formulation (4).

Proof As mentioned above, starting from a feasible solution of (4), one can build a solution of (1) having the same
congestion just by identifying xh0e with ∑

p∈Ph :p3e
xh0p and xhh′e with ∑

p∈Ph :p3e
xhh
′

p . Let us then find an instance for which

the optimal objective value of (1) is strictly smaller than the one of (4). In the example of Figure 1, there is a demand
h1 (resp. h2, h3, and h4) having the same source and sink as edge e1 (resp. e2, e3, and e4) and a demand h5 having
the node s as a source and the node t as sink. The demand polyhedron D is defined as the set of d ∈ R5 satisfying
the equations d h1 + d h2 = 1, d h3 + d h4 = 1 and d h5 = 1 in addition to non-negativity constraints. The capacity of each
edge is equal to 1.

This demand polyhedron can be routed with model (1) without exceeding one unit of flow on each edge. This
can be seen by considering the following solution: f hiei (d ) = d hi , f h5ei (d ) = 1 − d hi [i = 1, ..., 4 and f hie j (d ) = 0

[i , j = 1, ..., 4, i , j . By taking m = 1, all capacity constraints and flow conservation constraints of (1) are satisfied.

Now we are going to show that a solution to model (4) necessarily uses strictly more than one unit of flow on
at least one edge. By contradiction, suppose that there exists a solution of (4) such that m = 1. First observe that
given the equalities defining the demand polyhedron D, it is sufficient that the affine flow function depends on the
demand’s values d h1 and d h3 . Let p1 denote the path that uses edges e1 and e3, while p2 contains edges e1 and e4, p3
includes edges e2 and e3, and p4 goes through edges e2 and e4. Notice that by considering f

h5
pi
(d ) ≥ 0 for the vector

d defined by d h1 = d h2 = 0 , we find that all variables xh50p1
, xh50p2

, xh50p3
and xh50p4

are non-negative. Since the total flow
that uses edge e i must be less than 1 and the demand hi must necessarily use edge e i for i = 1, ..., 4, we have the
following inequalities:

1 − d h1 ≥ f
h5
p1
(d ) + f

h5
p2
(d ) (5a)

d h1 ≥ f
h5
p3
(d ) + f

h5
p4
(d ) (5b)

1 − d h3 ≥ f
h5
p1
(d ) + f

h5
p3
(d ) (5c)

d h3 ≥ f
h5
p2
(d ) + f

h5
p4
(d ) (5d)

By summing inequalities (5), we get 2 ≥ 2 × ∑
i=1,...,4

f
h5
pi
(d ). Since ∑

i=1,...,4
f
h5
pi
(d ) = d h5 = 1, all inequalities (5) should be

equalities. Remember that for each path pi , we have f
h5
pi
(d ) = x

h50
pi

+ x
h5h1
pi

d h1 + x
h5h3
pi

d h3 . Writing the four equalities
above for the vector d where d h1 = d h3 = 0, we get: 1 = xh50p1

+ x
h50
p2
, 0 = x

h50
p3

+ x
h50
p4
, 1 = x

h50
p1

+ x
h50
p3
, 0 = x

h50
p2

+ x
h50
p4

.
This implies that xh50p2

= x
h50
p3

= −x
h50
p4

. Using the non-negativity of xh50p1
, xh50p2

, xh50p3
and xh50p4

, one can deduce that
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x
h50
p1

= 1, x
h50
pi

= 0, [i = 2, 3, 4.

Furthermore, by considering the positivity constraint (4c) for path p2 and the demand vector where d h1 = 1 and
d h3 = 0 , we can deduce that f h5p2 (d ) = x

h50
p2

+ x
h5h1
p2

= x
h5h1
p2

≥ 0. Writing equality (5a) leads to −1 = xh5h1p1
+ x

h5h1
p2

.
Combination with the previous inequality implies that xh5h1p1

≤ −1. Similarly, by considering the demand vector where
d h3 = 1 and d h1 = 0 , the positivity constraint related to path p3 and equality (5c) lead to xh5h3p1

≤ −1. Let us now
consider the case where d h3 = 1 and d h1 = 1. The positivity of f h5p1 (d ) is equivalent to x

h50
p1

+x
h5h1
p1

+x
h5h3
p1

≥ 0 implying
that xh5h1p1

+ x
h5h3
p1

≥ −1. This is clearly not possible since xh5h1p1
≤ −1 and xh5h3p1

≤ −1, and it ends the proof. �

2.3 | Cycle-based formulation

We have seen that the arc-path formulation is dominated by the node-arc formulation. The main reason for that is
the positivity constraint imposed for each path and each d ∈ D. Then, if one tries to relax these positivity constraints
and replace them by constraints expressing the fact that the total flow on each directed edge is non-negative (i.e.,
f he (d ) ≥ 0 for each h, e and d ), then we will get a new formulation where circulations appear. However, an easy way
to present the new formulation is proposed below starting from formulation (3).

Let us first recall a basic result (e.g., see [29]) about circulation decomposition as a sum of elementary circulations
through elementary cycles. We fix a spanning tree T of the graph G (supposed to be connected). For each e ∈
E (G )\E (T ), there is a unique elementary cycle σ inT ∪ {e }. We denote by χσ this circulation that has a value of 1 on
the edges oriented in the same direction as edge e , -1 in the other direction and 0 on the edges outside σ . We denote
by Σ(T ) the set of cycles. It is well-known that every circulation φ can be (uniquely) written as: φ =

∑
σ∈Σ(T )

xσχσ for

some scalars xσ ∈ R.

Let us now go back to constraints (3a). For each commodity h, let ph be any arbitrary fixed undirected path
connecting s(h) and t (h) in T and let χph be the flow of value 1 on ph and zero elsewhere (the value of the flow on
each edge is either 1 or−1 depending on the direction of the edge). Since xhh−χph is a circulation, xhh can bewritten as:
xhh = χph +

∑
σ∈Σ(T )

xhhσ χσ . Furthermore, for h , h′, xhh′ is a circulation and thus it can be written as xhh′ = ∑
σ∈Σ(T )

xhh
′

σ χσ .

We then obtain the new model (6) by substituting xhhe in model (1) by χph ,e +
∑

σ∈Σ(T )
xhhσ χσ,e and replacing xhh′e by∑

σ∈Σ(T )
xhh
′

σ χσ,e .

minm∑
h∈H

( ∑
σ3e

(
xh0σ χσ,e +

∑
h′∈H

xhh
′

σ χσ,ed
h′

)
+

∑
ph3e

χph ,ed
h

)
≤ cem, [e ∈ E , d ∈ D∑

σ3e

(
xh0σ χσ,e +

∑
h′∈H

xhh
′

σ χσ,ed
h′

)
+

∑
ph3e

χph ,ed
h ≥ 0, [e ∈ E , h ∈ H, d ∈ D

xhh
′

σ ∈ R, [σ ∈ Σ(T ), h ∈ H, h′ ∈ H ∪ {0}

(6)

Observe that since the number of elementary cycles |Σ(T ) | is equal to the cyclomatic number |E | − |V | + 1, the
number of x variables in (6) is equal to ( |H | + 1) × |H | × ( |E | − |V | + 1) whereas formulation (3) has |H | × ( |H | +
1) × |E | variables (there are also variables related to duality to take into account uncertainty as will be recalled in
Section 7 but their number is the same in both formulations). Then formulation (6) has around |H |2 × |V | fewer
variables than formulation (3). Formulation (6) has also around |H |2 × |V | fewer constraints than formulation (3) due
to constraints (3a). Formulation (6) is obviously equivalent to formulations (3) and (1) since it was obtained from (3)
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using decomposition.

3 | RELAXING THE FLOW CONSERVATION CONSTRAINTS

In this section, we present some improvements of the node-arc formulation (1) described in Section 2, by relaxing
the flow conservation constraints (1a). Such improvements permit us to further reduce the congestion and minimize
the gap with the solution given by the dynamic routing. The standard formulation (1) might be denoted by F= (“=”
means that we have equalities in constraints (1a)). Let F+ be the formulation obtained from (1) by replacing (1a) by
the following inequalities.

∑
e∈δ+(v )

f he (d ) −
∑

e∈δ−(v )

f he (d )

{
≥ d h , if v = s(h)
≥ 0 if v , s(h), t (h)

(7)

Notice that by summing all inequalities (for some h) we obtain ∑
e∈δ−(t (h))

f he (d )−
∑

e∈δ+(t (h))
f he (d ) ≥ d

h which is equivalent

to ∑
e∈δ+(v )

f he (d ) −
∑

e∈δ−(v )
f he (d ) ≤ −d

h for v = t (h). Since the quantities f he (d ) no longer satisfy flow conservation

constraints, we have no more the notion of flow. However, we can interpret f he (d ) as being the amount of resources
that is reserved for commodity h on edge e when the demand scenario d is considered. We will prove that for each
demand vector d , it is possible to route each commodity h without exceeding the capacity f he (d ) of edge e . We will
then say that F+ is a valid formulation. This concept of valid formulation will also be used in the rest of the paper for
any formulation that computes f he (d ), allowing the routing of each commodity h for each d ∈ D.

Proposition 3.1. F+ is a valid formulation.

Proof Consider any commodity h ∈ H and any cut δ+(C ) separating s(h) and t (h) (so C ⊂ V , s(h) ∈ C and t (h) < C ).
By summing all constraints (7) for vertices inside C , we get

∑
e∈δ+(C )

f he (d ) −
∑

e∈δ−(C )

f he (d ) =
∑
v∈C

©­«
∑

e∈δ+(v )

f he (d ) −
∑

e∈δ−(v )

f he (d )
ª®¬ ≥ d h .

Using the positivity constraint on capacities f he (d ), we deduce that ∑
e∈δ+(C )

f he (d ) ≥ d
h . Since this holds for any sepa-

rating cut, it is possible by the maximum-flowminimum-cut theorem to send from s(h) to t (h) a flow of value d h using
the capacities f he (d ). �

Since F+ is obtained from F= by relaxing some constraints, the congestionm computed by F+ is less than or equal
to the congestion given by F=. One might wonder whether there is any gain by considering F+ instead of F=. The
example given below positively answers the question.

Proposition 3.2. Formulation F+ is less conservative than formulation F=.

Proof Each solution of F= is a feasible solution of F+. Moreover, Figure 2 illustrates a simple graph with two com-
modities hi ,i=1,2 having the same source and sink as edges e i ,i=1,2. There is an additional commodity h3 having node s
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𝑒1

𝑒2

ℎ1
ℎ2

s t

ℎ3

F IGURE 2 An example with three commodities: hi with i = 1, 2 having the same source and sink as edges e i , and
h3 from source node s to sink node t . In this example we show that F+ dominates formulation F=.

as source and node t as sink. All edges have a capacity equal to 1. The polyhedron D is defined as the set of d ∈ R3+
satisfying the two inequalities dh1 + dh2 ≤ 1 and dh3 ≤ 1 in addition to non-negativity constraints.

First, observe that the solution given by f h3e1 (d ) = 1 − d h1 , f h3e2 (d ) = d
h1 , f h1e1 (d ) = d

h1 , f h1e2 (d ) = 0, f h2e2 (d ) = d
h2 ,

f
h2
e1
(d ) = 0, satisfies the constraints of F+. Consequently, m = 1 is the optimal congestion found by F+.
Let us now show that any solution of F= should necessarily use more than one unit of flow on at least one edge.

By contradiction, let’s assume that there exists a solution of F= such that m = 1. First, observe that if the demand for
a commodity, let say h3, is equal to zero then the flow for this commodity must also be 0 in model (1) (i.e., F=). This is
due to the fact that we are dealing here with flows and there are no directed cycles in the graph. Consequently, for
each edge e ∈ E we have f h3e (0) = x

h30
e = 0. Considering the demand vector 1h1 where d

h1 = 1 and the two other
demands are 0, we obtain f h3e (1h1 ) = x

h30
e +x

h3h1
e = 0 leading to xh3h1e = 0. Similarly, by considering the demand vector

1h2 , we prove that x
h3h2
e = 0. Combining the previous facts leads to f h3e (d ) = x

h3h3
e d h3 .

Let us consider the demand vector 1h1 + 1h3 (d
h1 = 1, d h2 = 0, d h3 = 1). Then f h1e1 (1h1 + 1h3 ) = 1 since the only

path to route the demand h1 is through e1. Moreover, the assumption m = 1 implies that f h3e1 (1h1 + 1h3 ) + f
h1
e1
(1h1 +

1h3 ) ≤ 1. Combining the two observations leads to f h3e1 (1h1 + 1h3 ) ≤ 0. Using the positivity constraint, we simply get
f
h3
e1
(1h1 + 1h3 ) = 0. Using the fact that f

h3
e1
(d ) = x

h3h3
e1

d h3 , we finally deduce that xh3h3e1
= 0.

Using a similar argument, we find that f h3e2 (1h2 + 1h3 ) = x
h3h3
e2

= 0. Hence, all coefficients related to commodity h3
are zero which is nonsense. �

Remark 3.1. Observe that the polytope used in the proof of Proposition 4.1 contains dominated demand vectors. Since
it has been shown in [44] that removing dominated demands can improve the solution of the affine routing, one can legiti-
mately wonder if the observation that formulation F+ is less conservative than formulation F= is only due to the existence
of dominated demand vectors. It turns out that this is not true. We will now describe how the instance used in the proof of
Proposition 4.1 can be simply modified so that the demand polytope does not contain dominated vectors. Let us add two
isolated edges e5, e6 of capacity 1 and two new commodities h5 and h6 having the same extremities as e5 and e6, respectively.
We replace the constraints d h1 + d h2 ≤ 1 and d h3 ≤ 1 by the constraints d h1 + d h2 + d h5 = 1 and d h3 + d h6 = 1. This new
polytope does not contain dominated demand vectors. The projection of the new polytope on the variables d h1 , d h2 , d h3 is
exaclty the polytope considered in the proof above. Since d h5 = 1−d h1 −d h2 and d h6 = 1−d h3 , an affine solution depending
on d h1 , d h2 , d h3 , d h5 , d h6 can then be rewritten as an affine function of d h1 , d h2 , d h3 . Therefore the set of affine solutions
for commodities h1, h2, h3 remains the same and F+ is still less conservative than formulation F=.
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Another way to relax the flow conservation constraints consists in replacing (1a) by the following inequalities:

∑
e∈δ+(v )

f he (d ) −
∑

e∈δ−(v )

f he (d )

{
≤ −d h , if v = t (h)
≤ 0 if v , s(h), t (h)

(8)

The obtained formulation can then be called the F− formulation which is completely symmetrical to F+. The validity
of F− can be shown in almost the same way (the proof of Proposition 3.1 can be modified by summing inequalities (8)
through all vertices belonging toV \C ). Proposition 4.1 also holds for F− (the same example provided in the proof can
still be used). While both F− and F+ dominate F=, they are not comparable (for some instances F− provides better
results than F+ and vice-versa).

4 | A CUT-BASED FORMULATION

To show the validity of either F+ or F−, we just proved that every cut separating the source and the sink of a commodity
has enough capacity to carry the demand. This suggests the advantage of proposing a formulation based on cuts. More
precisely, for each commodity h ∈ H and each cut δ+(C ) separating s(h) and t (h) (C ⊂ V , s(h) ∈ C and t (h) < C ) we
require that

∑
e∈δ+(C )

f he (d ) ≥ d
h . (9)

The cut formulation denoted by Fcut is then obtained from (1) by replacing flow conservation constraints (1a) by (9).
Fcut is obviously a valid formulation.

Since solutions of F+ and F− satisfy the constraints of Fcut , the solution provided by Fcut is at least as good as
those of either F+ or F−. We provide below an example showing that Fcut can dominate F+ and F−.

Proposition 4.1. Formulation Fcut is less conservative than F+ and F−.

𝑣1

𝑣2

𝑣3

𝑣4𝑣5
𝑣6

𝑒1

𝑒2

𝑒3
𝑒4ℎ1

ℎ2ℎ3
ℎ4

ℎ5

𝑒1′

𝑒2’

F IGURE 3 An example with five commodities: hi with i = 1, 2, 3, 4 having the same source and sink as edges e i ,
and h5 from source node v5 to sink node v6. In this example we show that Fcut dominates F+ and F−.

Proof Each feasible solution of either F+ and F− is a feasible solution of Fcut . Consider the graph of Figure 3. It
contains 6 directed edges each of capacity 1: e1 = v1v2, e2 = v1v3, e′1 = v2v4, e

′
2 = v3v4, e3 = v5v1 and e4 = v4v6. 5

commodities have to be carried through the network: hi , i = 1, 2, 3, 4 having the same source and sink as edges e i , and



12 Al-Najjar et al.

h5 from source node v5 to sink node v6. The polyhedral uncertainty set D is defined by constraints: d h1 + d h2 = 1,
d h3 + d h5 = 1 and d h4 + d h5 = 1 in addition to non-negativity constraints. We can then assume that routing depends
only on d h1 and d h5 .

Let us first show that the optimal solution of Fcut has a congestion m = 1. Consider the following solution:
f
h5
e1
(d ) = f

h5
e′
1
(d ) = 1 − d h1 , f h5e2 (d ) = f

h5
e′
2
(d ) = 1 − d h2 and f h5e3 (d ) = f

h5
e4
(d ) = d h5 . Observe that each cut separating v5

and v6 that either contains e3 or e4 has a capacity greater than or equal to d h5 . Moreover, a separating cut containing
neither e3 nor e4 will necessarily contain either e1 or e′1 and either e2 or e′2. The capacity of such cut will then be at
least 1− d h1 + d h1 = 1 ≥ d h5 . Let us now show that the congestion obtained by solving either F+ or F− is 4

3 . Consider
the following solution: f h5e1 (d ) =

1
3 −

dh1
3 + dh5

3 , f h5e2 (d ) =
dh1
3 + dh5

3 , f h5e3 (d ) = f
h5
e4
(d ) = 1

3 +
2
3 d

h5 while the assignment
related to the other commodities is obvious since only one path is available for each of them. The congestionm related
to this solution is m = 4

3 . Observe that this solution is feasible for both F+ and F−. Let us prove that any solution of,
for example F+, cannot have a congestion that is strictly less than 4

3 . The following inequalities are valid:

−x
h50
e1
− x

h5h1
e1

≤ 0 (10a)

x
h50
e1

+ x
h5h1
e1

+ 1 + x
h5h5
e1

≤ m (10b)

−x
h50
e2
≤ 0 (10c)

x
h50
e2

+ x
h5h5
e2

+ 1 ≤ m (10d)

−x
h50
e3
− x

h5h1
e3
− x

h5h5
e3

≤ −1 (10e)

(x
h50
e3
− x

h50
e1
− x

h50
e2
) + (x

h5h1
e3
− x

h5h1
e1
− x

h5h1
e2
) + (x

h5h5
e3
− x

h5h5
e1
− x

h5h5
e2
) ≤ 0 (10f)

(x
h50
e1

+ x
h50
e2
) + (x

h5h1
e1

+ x
h5h1
e2
) + 1 ≤ m . (10g)

Constraint (10a) is obtained bywriting f h5e1 (1h1 ) ≥ 0. Constraint (10b) is a consequence of f
h5
e1
(1h1+1h5 )+f

h1
e1
(1h1+1h5 ) ≤

m , while constraint (10c) follows from f
h5
e2
(0) ≥ 0. Writing f h5e2 (1h5 ) + f

h2
e2
(1h5 ) ≤ m leads to (10d). Using f h5e3 (d ) ≥ d

h5

for d = 1h1 + 1h5 implies (10e). Since we have considered a feasible solution of F+, f h5e1 (1h1 + 1h5 ) + f
h5
e2
(1h1 + 1h5 ) ≥

f
h5
e3
(1h1 + 1h5 ) is valid which is equivalent to (10f). More generally, we have f h5e1 (d ) + f

h5
e2
(d ) ≥ f

h5
e3
(d ), f h5

e′
1
(d ) ≥ f

h5
e1
(d ),

f
h5
e′
2
(d ) ≥ f

h5
e2
(d ) and f h5e4 (d ) ≥ f

h5
e′
2
(d ) + f

h5
e′
1
(d ). This implies that f h5e4 (d ) ≥ f

h5
e3
(d ) for any vector d . Combining this

inequality with f h5e4 (d ) + f
h4
e4
(d ) ≤ m for d = 1h1 immediately gives (10g). Summing up all inequalities (10) leads to

4 ≤ 3m ending the proof. �

We already mentioned in Section 1 that the variant where routing is dynamic is theoretically difficult to solve. Let
us use Fdyn to denote the corresponding formulation. The difference between Fcut and Fdyn lies in the affine form
of f he (d ) that is imposed only for Fcut . A possible formulation Fdyn is given below.

minm∑
e∈δ+(C )

f he (d ) ≥ d
h , [d ∈ D, h ∈ H,C ⊂ V , s(h) ∈ C , t (h) < C∑

h∈H
f he (d ) ≤ cem, [e ∈ E , d ∈ D

f he (d ) ≥ 0, [e ∈ E , h ∈ H, d ∈ D

(11)

Let us now study the complexity of Fcut . If the number of separating cuts in the graph is polynomial (in fact one
should only consider those not included in larger cuts), then Fcut can still be solved using standard robust optimization
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techniques (See Section 7). However, we will show that solving Fcut is unfortunately NP-hard.

𝑠 𝑡

𝑒1,1

𝑒1,2

𝑒1,3

𝑒𝑖,3𝑒𝑖,2𝑒𝑖,1

𝑒𝑘,1

ℎ𝑘,2

𝑒𝑘,3

ℎ1,1

ℎ1,2

ℎ1,3

ℎ𝑖,3ℎ𝑖,2

𝑒𝑘,2

ℎ𝑘,1 ℎ𝑘,3

ℎ𝑖,1

ℎ𝑠𝑡

F IGURE 4 An example with 3k+1 commodities: hi ,j with i = 1, ..., k , j = 1, 2, 3 having the same source and sink
as edges e i ,j , and hst from source node s to sink node t . In this example we prove that it is NP-hard to solve Fcut .

Proposition 4.2. It is NP-hard to solve Fcut .

Proof We are going to propose a reduction from the 3-SAT problem. Let us consider a 3-SAT formulaϕ with k clauses
and r variables. We denote by L = {l1, . . . , l r ,¬l1, . . . ,¬l r } the set of the literals appearing in formula ϕ and l i ,j the
literal appearing in the i -th clause Ci at the j -th position for i = 1, ..., k and j = 1, 2, 3. We create a polyhedron Ξ by
considering for each literal l ∈ L a non-negative variable ξl and for p = 1, ..., r , we add the constraint ξlp + ξ¬lp = 1.

We build as follows a graph G , a set of commodities H and a polyhedral uncertainty set D. For each i = 1, ..., k ,
j = 1, 2, 3 we add 3 consecutive directed edges e i ,j (see Figure 4) and 3 commodities hi ,j with s(hi ,j ) = s(e i ,j ) and
t (hi ,j ) = t (e i ,j ), and d hi ,j ≤ ξl i ,j . We impose that all nodes s(e i ,1) (resp. t (e i ,3)) for i = 1, ..., k are equal to a single node
noted s (resp. t ) (see Figure 4). We consider an additional commodity hst from s to t whose value satisfies d hst ≤ 1.
The uncertainty polyhedron D is then obtained by projecting Ξ on the space of d h variables. Finally, the capacity ce
of each edge e is here equal to 1 (ce = 1).

Let us now prove that the optimal objective value of Fcut is m = 1 if and only if the 3-SAT formula ϕ is not
satisfiable. If ϕ is satisfiable, then there is a demand vector (induced by the truth assignment) such that for each path
between s and t (there is one path corresponding to each clause), at least one commodity whose endpoints are on
the path is equal to 1 (a commodity corresponding to a true literal). This implies that all paths are blocked and thus
m > 1 since one has to route commodity hst through the network (since Fcut is more restrictive than Fdyn ).

If ϕ is not satisfiable, then for each extreme point of D, there is at least one free path to route the demand d hst .
In other words, each extreme demand vector of D can be routed through the network. Since each demand vector
d inside D can be written as a convex combination of the extreme points of D, d can also be routed through the
network without requiring more than one unit of capacity on each edge. It is then clear that the solution defined by
m = 1 and f hstei ,j

(d ) = 1 − d hi ,j is feasible for Fcut . The optimal congestion is hence equal to 1. �

Notice that the separation problem related to the polyhedron D introduced in the proof above (i.e., given some
vector d , check whether d belongs to D or provide a cut separating d from D) can obviously be solved in polynomial
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time [30]. Otherwise theNP-hardness of solving Fcut would be a direct consequence of the difficulty of the separation
problem related to D.

We know from Proposition 4.1 that Fcut dominates F+ and F−. We just proved that Fcut is NP-hard to solve. We
also recalled in Section 1 that the robust network design problem is NP-hard (i.e., Fdyn is NP-hard to solve). One can
then wonder whether there is any difference between Fcut and the dynamic routing formulation Fdyn . The following
proposition answers this question.

Proposition 4.3. Fdyn is less conservative than Fcut .

𝑣2

𝑣5

𝑣3

𝑒2

𝑒4

𝑣1

𝑣4

𝑣6

𝑒1

𝑒3

𝑒7

𝑒5

𝑒6

ℎ2

ℎ1

ℎ3

ℎ4

ℎ6

ℎ5

F IGURE 5 An example with six commodities: hi with i = 1, 2, 3, 4 having the same source and sink as edges e i , h5
from source node v1 to sink node v3, and h6 from source node v4 to sink node v3. In this example we prove that Fdyn
is less conservative than Fcut .

Proof Let us consider again the example of Figure 5 containing 6 vertices and the 7 directed edges: e1 = v1v2, e2 =
v2v3, e3 = v4v5, e4 = v5v3, e6 = v4v6, e5 = v1v6 and e7 = v6v3, of capacity 1 each. It also contains 6 commodities (see
Figure 5): hi with i = 1, 2, 3, 4 having the same source and sink as edges e i , h5 from source node v1 to sink node v3,
and h6 from source node v4 to sink node v3. The uncertainty set D is here defined by the constraints: d h1 + d h3 ≤ 1,
d h1 + d h4 ≤ 1, d h2 + d h3 ≤ 1, d h2 + d h4 ≤ 1, d h5 ≤ 1 and d h6 ≤ 1 in addition to non-negativity constraints.

To show that the optimal congestion provided by Fdyn is equal to 1we only have to prove that each extreme point
of D can be routed without using more than 1 unit of capacity. It is clear that the more constraining scenarios are
those where d h5 = d h6 = 1. We also either have d h1 = d h2 = 1 and d h3 = d h4 = 0 or d h1 = d h2 = 0 and d h3 = d h4 = 1.
By symmetry, we can just focus on the first case (d h5 = d h6 = 1, d h1 = d h2 = 1 and d h3 = d h4 = 0) where one can
clearly route commodity h5 completely through the path containing e5 and e7 while h6 is routed through e3 and e4. In
other words, m = 1 for formulation (11).

Let us now prove by contradiction that the congestion obtained by Fcut is strictly greater than 1. Assume it to be
equal to 1. Observe that when either d h1 = 1 or d h2 = 1, commodity h5 is necessarily routed through e7. This implies
that f h5e7 (1h1 + 1h5 + 1h6 ) = f

h5
e7
(1h2 + 1h5 + 1h6 ) = f

h5
e7
(1h1 + 1h2 + 1h5 + 1h6 ) = 1, where 1hi denotes the demand vector

where all demands are equal to 0 while d hi = 1. Since f h5e7 (d ) = x
h50
e7

+ x
h5h1
e7

d h1 + x
h5h2
e7

d h2 + x
h5h3
e7

d h3 + x
h5h4
e7

d h4 +
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x
h5h5
e7

d h5 + x
h5h6
e7

d h6 , the previous equalities imply that xh5h1e7
= 0 and xh5h2e7

= 0. Observe that when either d h3 or
d h4 is equal to 1 and demand d h6 = 1 then commodity h6 is fully routed through e7 which requires that h5 does not
use e7. Consequently, we have f h5e7 (1h3 + 1h5 + 1h6 ) = f

h5
e7
(1h4 + 1h5 + 1h6 ) = f

h5
e7
(1h3 + 1h4 + 1h5 + 1h6 ) = 0. These

equalities lead to xh5h3e7
= 0 and xh5h4e7

= 0. From f
h5
e7
(1h3 + 1h4 + 1h5 + 1h6 ) = 0, we obtain xh5h5e7

+ x
h5h6
e7

= 0, while
f
h5
e7
(1h1 + 1h2 + 1h5 + 1h6 ) = 1 leads to the contradictory equality xh5h5e7

+ x
h5h6
e7

= 1. �

5 | EXTENDED GRAPH FORMULATION

We have seen that formulations F− and F+ can be strictly tighter than F= (i.e., closer to Fdyn ). The difference between
F− and F+ lies in the sign of the terms ∑

e∈δ+(v )
f he (d )−

∑
e∈δ−(v )

f he (d ) for v ∈ V \ {s(h), t (h)} required to be negative for F−

and positive for F+. Our first attempt to improve both F− and F+ led to formulation Fcut . However, Fcut is generally
NP-hard to solve. We would like to propose a stronger formulation that is still easy to solve, where the features of F−
and F+ are combined in some way.

We propose the following. For each commodity h ∈ H, and for each node v ∈ V \ {s(h), t (h)}, we add to G the
two directed edges t (h)v and vs(h). We also add an edge directed from t (h) to s(h). For each commodity h, an s(h)t (h)
flow f h is considered in the extended graph. Notice that the extra edges we added t (h)v , vs(h) and t (h)s(h) can only
be used by commodity h. Flow conservation constraints can be expressed as follows.

f hvs(h)(d ) +
∑

e∈δ+(v )

f he (d ) − f
h
t (h)v (d ) −

∑
e∈δ−(v )

f he (d ) = 0 if v , s(h), t (h) (12)

∑
e∈δ+(s(h))

f he (d ) −
∑

v∈V \{s(h)}

f hvs(h)(d ) = d
h . (13)

Notice that δ+(v ) and δ−(v ) contain only edges belonging to G .

For sake of completeness, we give below the new formulation F. We use here E to denote {t (h)s(h)} ∪ E ∪⋃
v∈V \{s(h),t (h)}

{vs(h), t (h)v }.

minm∑
e∈δ+(v )∪{vs(h)}

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
−

∑
e∈δ−(v )∪{t (h)v }

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
= 0

[h ∈ H,v ∈ V \ {s(h), t (h)}, d ∈ D (14a)∑
e∈δ+(s(h))

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
−

∑
v∈V \{s(h)}

(
xh0vs(h) +

∑
h′∈H

xhh
′

vs(h)d
h′

)
= d h

[h ∈ H, d ∈ D∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
≤ cem, [e ∈ E , d ∈ D (14b)

xh0e +
∑
h′∈H

xhh
′

e d h
′

≥ 0, [d ∈ D, h ∈ H, e ∈ E (14c)



16 Al-Najjar et al.

Observe that there are no explicit capacity limitations for the edges not belonging to E (the added edges of type
vs(h) and t (h)v ). However, positivity is required for the flow on these edges.

It is easy to see that F+ (resp. F−) is a special case of F since the term
∑

e∈δ+(v )
f he (d )−

∑
e∈δ−(v )

f he (d ) (resp.
∑

e∈δ−(v )
f he (d )−∑

e∈δ+(v )
f he (d )) is positive in F+ (resp. F−) and can be seen as the flow going through an additional edge t (h)v (resp. vs(h)).

In other words, by considering only edges of type t (h)v (resp. vs(h)) and solving F we get F+ (resp. F−) .
Let us now prove that F is a valid formulation.

Proposition 5.1. F is a valid formulation.

Proof For each commodity h ∈ H and for each d ∈ D the solution induced by F is a s(h)t (h) flow in the extended
graph of value d h . Consequently, each cut of the extended graph that separates s(h) and t (h) has necessarily a capacity
greater than or equal to d h . Observe however that additional edges of type t (h)v , vs(h) and t (h)s(h) do not belong to
any separating cut. This means that any separating cut in the extended graph contains only edges from the original
graph. We can thus deduce that any separating cut in G has a capacity greater than or equal to d h . By the maximum-
flow minimum-cut theorem, it is then possible to route commodity h using the capacities f he (d ) on the edges ofG . �

We give below an example showing that F dominates both formulations F− and F+.

Proposition 5.2. F is less conservative than F− and F+.

Proof Consider a feasible solution of, for example, F+. Then it satisfies ∑
e∈δ+(v )

f he (d ) −
∑

e∈δ−(v )
f he (d ) ≥ 0. Let us then

extend it to a feasible solution of F by setting f h
t (h)v

=
∑

e∈δ+(v )
f he (d ) −

∑
e∈δ−(v )

f he (d ) and f hvs(h) = 0. We also define f h
t (h)s(h)

by ∑
e∈δ+(s(h))

f he (d ) −
∑

e∈δ−(s(h)
f he (d ) − d

h . This solution is feasible for F and has the same congestion as the feasible

solution of F+ that we started with.
Let us consider again the example of Figure 3. We have seen that the congestion obtained by both F− and F+ is
equal to 4

3 . We give here a feasible solution of F for which the congestion is only 1.25. We only have to determine
the assignments related to h5. Consider the solution defined by:

• f
h5
e1
(d ) = f

h5
e′
1
(d ) = 0.5 + 0.25d h5 − 0.5d h1 ,

• f
h5
e2
(d ) = f

h5
e′
2
(d ) = 0.25d h5 + 0.5d h1 , f h5e3 (d ) = 0.25 + 0.75d

h5 ,

• f
h5
e4
(d ) = 0.5 + 0.5d h5 − 0.25d h4 , f h5v6v5 (d ) = 0.25 − 0.25d

h5 − 0.25d h4 ,
• f

h5
v4v5
(d ) = 0.25d h4 , f h5v6v1 = 0.25 − 0.25d

h5 ,

while f h5e (d ) = 0 for all other edges. Observe that flow conservation constraints are satisfied in the extended graph.
The three last edges mentioned above (i.e., v6v5, v4v5 and v6v1) do not belong to G (they are of type vs(h) and t (h)v ).
The fact that they appear in the solution means that ∑

e∈δ+(v )
f he (d ) −

∑
e∈δ−(v )

f he (d ) will be always positive for v = v1 and

negative for v = v4 (this is to say that this solution is feasible neither for F− nor for F+). Observe also that the total
capacity used on e1 is given by f

h5
e1
(d )+ d h1 = 0.5+ 0.25d h5 +0.5d h1 ≤ 1.25. Similarly, the capacity used on e2 is equal

to 0.25d h5 +0.5d h1 +d h2 = 0.25d h5 +0.5(d h1 +d h2 )+0.5d h2 ≤ 1.25 (since d h1 +d h2 ≤ 1). One can check that the same
holds for edges e′1 and e

′
2. The positivity of the terms f h5e (d ) is also easy to check for each edge e using the definition

of D. �
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Since Fcut is the best formulation that one can get when f he (d ) is assumed to be affine and is generally NP-hard
to solve while F can be solved in polynomial time, there are cases where F leads to higher-cost solutions than those
obtained from Fcut . This is shown by the example used above (Figure 3) for which we already proved in Proposition
4.1 that Fcut leads to a congestion equal to 1 while F gives a congestion equal to 1.25.

To close this section, we would like to add that formulations (3) and (6) that were proposed as an alternative
to formulation (1) (i.e., F=), can also be expressed in the context of the extended graph. To write the cycle-based
formulation (6), we only have to take into account the fact that the set of cycles will here depend on the commodities
(since for each commodity h we added some edges that can only be used by this commodity).

6 | AGGREGATION

One standard way to solve classical linear multi-commodity problems in a more efficient way consists in aggregating
commodities either by source or by sink [1]. Let us then try to do the same in the context of polyhedral uncertainty
and affine decision rules.

6.1 | Aggregation for F=
Let S ⊂ V and T ⊂ V be two subsets such that for each h ∈ H we either have s(h) ∈ S or t (h) ∈ T . All commodities
having s as a source (s ∈ S ) will be aggregated and considered as one commodity having a source s and several sinks.
Similarly, all commodities having t as a sink (t ∈ T ) are aggregated into one commodity having several sources and
one sink t . It may happen that s(h) ∈ S and t (h) ∈ T simultaneously occur; then we arbitrarily decide whether h
is aggregated by source or by sink. For each s ∈ S (resp. t ∈ T ), let us use Hs (resp. Ht ) to denote the set of
commodities having s (resp. t ) as a source (resp. sink) and aggregated by source (resp. sink). For any h ∈ H, it will be
more convenient here to use d hs(h)t (h) to denote the demand value of the commodity (there is no ambiguity since we
can assume that there are no demands having exactly the same source and the same sink).

We also define for each s ∈ S the setT (s) = {v : h ∈ Hs ,v = t (h)} to denote the set of vertices v such that there
is a commodity aggregated by source s and having v as a sink. Similarly, for t ∈ T , let S (t ) = {v : h ∈ Ht ,v = s(h)}.

Applying this aggregation for F= leads to the following aggregated formulation Fagg .

minm∑
e∈δ+(v )

(
x s0e +

∑
h′∈H

x sh
′

e d h
′

)
−

∑
e∈δ−(v )

(
x s0e +

∑
h′∈H

x sh
′

e d h
′

)
=

{
−d hsv if v ∈ T (s)
0 otherwise

[s ∈ S ,v ∈ V \ {s }, d ∈ D (15a)∑
e∈δ+(v )

(
x t0e +

∑
h′∈H

x t h
′

e d h
′

)
−

∑
e∈δ−(v )

(
x t0e +

∑
h′∈H

x t h
′

e d h
′

)
=

{
d hv t if v ∈ S (t )
0 otherwise

[t ∈ T ,v ∈ V \ {t }, d ∈ D (15b)∑
s∈S

(
x s0e +

∑
h′∈H

x sh
′

e d h
′

)
+

∑
t∈T

(
x t0e +

∑
h′∈H

x t h
′

e d h
′

)
≤ cem, [e ∈ E , d ∈ D (15c)

x s0e +
∑
h′∈H

x sh
′

e d h
′

≥ 0, [e ∈ E , s ∈ S , d ∈ D (15d)

x t0e +
∑
h′∈H

x t h
′

e d h
′

≥ 0, [e ∈ E , t ∈ T , d ∈ D (15e)



18 Al-Najjar et al.

Observe that all variables (exceptm) are either indexed by a source s or a sink t . The number of variables is almost
proportional to |S |+ |T |. Then to minimize the number of variables, one has to minimize |S |+ |T | which can obviously
be done by computing a minimum vertex cover in a bipartite graph (the demand graph) and is equal to the cardinality
of a maximum matching (by Konig’s theorem) [31].

The validity of Fagg is a direct consequence of the validity of aggregation when there is no uncertainty.
It is also obvious that any solution of F= can be used to build a solution for Fagg having the same congestion. For

each s ∈ S (resp. t ∈ T ), we only have to sum the variables related to commodities belonging to Hs (resp. Ht ) to get
those related to s (resp. t ).

We know that when there is no uncertainty, F= and Fagg are equivalent. One may wonder whether they are
equivalent when polyhedral uncertainty is considered. The next proposition states that Fagg dominates F=.

Proposition 6.1. Formulation Fagg is less conservative than formulation F=.

𝑒1

𝑒2

ℎ1

ℎ2
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑒5

𝑒6𝑒4

𝑒3

ℎ3

ℎ4

F IGURE 6 An example with four commodities: hi with i = 1, 2 having the same source and sink as edges e i , h3
from source node v1 to sink node v5, and h4 from source node v1 to sink node v6. In this example we prove that
formulation Fagg is less conservative than formulation F=.

Proof Let us consider the graph of Figure 6 containing 6 edges of capacity 1 each. There are 4 commodities: hi with
i = 1, 2 having the same source and sink as edges e i , h3 from source node v1 to sink node v5, and h4 from source node
v1 to sink node v6.

The polyhedron D is defined as the set of demands d ∈ R4+ satisfying the two equations d h1 + d h2 = 1 and
d h3 +d h4 = 1. Due to the equalities defining D, we can assume without generality loss that there is affine dependence
on only d h1 and d h3 .

First, let us consider formulation Fagg with only source aggregation. We will then aggregate commodities h3 and
h4. Consider the solution of Fagg defined by: f v1e1 (d ) = f

v1
e3
(d ) = 1 − d h1 , f v1e2 (d ) = f

v1
e4
(d ) = d h1 , f v1e5 (d ) = d h3 and

f
v1
e6
(d ) = 1− d h3 . Variables related to the two other sources v2 and v3 are fixed in an obvious way. This solution allows

a congestion equal to 1.
Let us now assume that there is a feasible solution of F= with congestion equal to 1. Let f be such a solution. For

each edge e , we have f h3e = x
h30
e + x

h3h1
e d h1 + x

h3h3
e d h3 . Since the graph is acyclic and f h3 is a positive flow, if the

demand for a commodity h3 is zero then the flow for this commodity must also be zero in model (1). Then when d is
the demand vector where d h3 = d h1 = 0, we should have f h3e (d ) = 0 implying that xh30e = 0 for each edge e . Similarly,
when d is such that d h3 = 0 and d h1 = 1 we also have f h3e (d ) = 0 leading to x

h3h1
e = 0.
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Let us now focus on edge e1. When d h1 = d h3 = 1, e1 already carries commodity h1 whose value is here equal to
1. Then there are no more resources that can be used by commodity h3 implying that f h3e1 (d ) ≤ 0. Using the positivity
constraint we can deduce that f h3e1 (d ) = 0 when d

h1 = d h3 = 1. Thus, xh3h3e1
= 0. In other words, f h3e1 (d ) = 0 for any d

implying that commodity h3 is never routed through e1. It is then fully routed through e2. This is of course not possible
without violating the capacity constraint of e2 since commodity h2 is already routed through e2. �

According to Proposition 6.1 it should be understood that aggregation is not only interesting for accelerating
problem solving (as is the case for problems without uncertainty), but it also leads to better solutions since we are
getting closer to Fdyn . In fact, by aggregating commodities and solving Fagg , the capacities reserved for each aggre-
gated commodity is affine while the capacities used by each individual commodity making up the aggregated one are
not necessarily affine in d .

6.2 | Sink aggregation for F+
Since F+ dominates F= , it would be interesting to perform some kind of aggregation to be able to solve larger problems
and further reduce congestion.

We consider the aggregated formulation Fagg+ given below where only sink aggregation is possible (so S = ∅).
Observe also that equality constraints (15b) are replaced by inequalities (16a).

minm∑
e∈δ+(v )

(
x t0e +

∑
h′∈H

x t h
′

e d h
′

)
−

∑
e∈δ−(v )

(
x t0e +

∑
h′∈H

x t h
′

e d h
′

)
≥

{
d hv t if v ∈ S (t )
0 otherwise

[t ∈ T ,v ∈ V \ {t }, d ∈ D (16a)∑
t∈T

(
x t0e +

∑
h′∈H

x t h
′

e d h
′

)
≤ cem, [e ∈ E , d ∈ D (16b)

x t0e +
∑
h′∈H

x t h
′

e d h
′

≥ 0, [e ∈ E , t ∈ T , d ∈ D (16c)

The validity of Fagg+ is less obvious than the validity of Fagg , and it is demonstrated hereafter.

Proposition 6.2. Fagg+ is a valid formulation.

Proof Consider any feasible solution f of Fagg+. Let us select any traffic vector d ∈ D and any sink t ∈ T . For each
node v ∈ V \ {t } we add to G the edge tv of infinite capacity. Let us also add to G a “virtual" node st and an edge
from st to each vertex v ∈ S (t ) of capacity d hv t . Then, starting from f te (d ) = x

t0
e +

∑
h′∈H

x t h
′

e d h
′ for each edge e ∈ E , f t

can be extended to a positive flow from st to t by taking

f ttv (d ) =


∑

e∈δ+(v )
f te (d ) −

∑
e∈δ−(v )

f te (d ) if v ∈ V \ S (t )∑
e∈δ+(v )

f te (d ) −
∑

e∈δ−(v )
f te (d ) − d

hv t if v ∈ S (t )

and f tst v (d ) = d
hv t for v ∈ S (t ). We are then sending a flow of value ∑

v∈S (t ) d
hv t from st to t . Directed cycles can be

cancelled in a standard way by decreasing flow on the edges of each directed cycle. We can therefore assume that
the set of edges for which f te > 0 does not contain any directed cycle. Since the flow on the “virtual" edges stv is
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exactly equal to d hv t , the st t -flow induces |S (t ) | simultaneous positive flows, each from a vertex v ∈ S (t ) to t and of
value exactly equal to d hv t . Each v t -flow (v ∈ S (t )) uses only original edges ofG . This clearly implies that it is possible
to simultaneously route the demand d hv t for each v ∈ S (t ). Since this holds for any t ∈ T and any d ∈ D, the validity
of the formulation is proved. �

One can easily modify the example of Figure 6 to show that Fagg+ dominates F+. It is also easy to see that Fagg+
dominates Fagg when only sink aggregation is considered to build Fagg (i.e., when |S | = 0).

Finally, we should mention that source aggregation cannot be used in combination with F+ even if there is no
uncertainty. Consider, for example, a graph having four vertices, s , v , t1 and t2 and two edges st1 and v t2 having some
capacity. Assume that we have two commodities h1 and h2 of value 1 each from s to t1 and from s to t2. Observe that
there is even no path from s to t2 so the network design problem has no solution. However, by taking f sv t2 = 1 and
f sst1

= 2, we can ensure that all constraints related to the aggregated commodity will be satisfied (the flow entering
t1 is greater than 1, the flow going out of v is greater than what is going into v , the flow reaching t2 is greater than 1,
and we even have that what comes out of s is greater than the sum of the two demands).

6.3 | Source aggregation for F−
Aggregation can also be considered in combination with F−. However, only source aggregation can be used. The
obtained formulation denoted by Fagg− would be the following.

minm∑
e∈δ+(v )

(
x s0e +

∑
h′∈H

x sh
′

e d h
′

)
−

∑
e∈δ−(v )

(
x s0e +

∑
h′∈H

x sh
′

e d h
′

)
≤

{
−d hsv if v ∈ T (s)
0 otherwise

[s ∈ S ,v ∈ V \ {s }, d ∈ D (17a)∑
s∈S

(
x s0e +

∑
h′∈H

x sh
′

e d h
′

)
≤ cem, [e ∈ E , d ∈ D (17b)

x s0e +
∑
h′∈H

x sh
′

e d h
′

≥ 0, [e ∈ E , s ∈ S , d ∈ D (17c)

The proof of validity of Fagg− is very similar to the proof of validity of Fagg+. One can also build examples showing
that Fagg− dominates F−. It is also easy to see that Fagg− dominates Fagg when only source aggregation is considered
to build Fagg (i.e., when |T | = 0).

Finally, we would like to mention that aggregation can also be considered in the context of formulation Fcut .
However, since solving Fcut is NP-hard and aggregation would not change the theoretical complexity, we are not
going to study this kind of aggregation.

7 | SOLUTION METHODS AND NUMERICAL EVALUATION

Figure 7 summarizes the main domination relations between the models introduced or recalled in the paper. Notice
that we assume here that Fpath can potentially contain all possible paths (this is to say that Fpath dominates Fst at ).
However, a numerical evaluation is needed to quantify the difference in terms of performance between these variants.

In this section, we begin by presenting the two types of uncertainty sets considered in the evaluations. For
the sake of completeness, we briefly recall in Section 7.2 standard duality-based methods to solve the introduced
formulations. Data instances considered for evaluation are described in Section 7.3 and, finally, we present all the
results in Section 7.4.
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F IGURE 7 Domination relations between the models introduced or recalled in the paper.

7.1 | Uncertainty sets

For the numerical evaluation, we consider two different uncertainty sets. We first use the Budget uncertainty set [19]
that considers a maximum deviation for each nominal demandwith a global budget for possible variations. Second, we
consider the All Routable Demands uncertainty set [6] which contains all demand vectors that can be routed through
a given network where capacities are fixed and routing can be adapted to each demand vector. More formally, they
are defined as follows:

• The Budget uncertainty set D is such that:

D = {d ∈ RH : d h = d h + zh d̂ h ,
∑
h∈H

zh ≤ Γ, 0 ≤ zh ≤ 1, [h ∈ H} (18)

where d h is the nominal demand for commodity h, d̂ h is the maximum possible deviation from d
h , and Γ is a

parameter that specifies a limit (the budget) on the deviations of all demands at the same time with respect to
the nominal values.

• The All Routable Demands uncertainty set D on a given capacity vector is formally the set of d ∈ RH such that
there is a multi-commodity flow f (d ) ∈ RH×E satisfying:

∑
e∈δ+(v )

f he (d ) −
∑

e∈δ−(v )

f he (d ) =


d h , if v = s(h)
−d h , if v = t (h)
0 otherwise

[v ∈ V , h ∈ H (19)

∑
h∈H

f he (d ) ≤ ce [e ∈ E

The two uncertainty sets introduced above are easy to handle (i.e., the separation problem related to each set
can be solved in polynomial time).
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7.2 | Solution methods

Themodels introduced in this paper involve constraints thatmust be satisfied for all traffic vectors d ∈ D. When D is a
polytope having a polynomial number of extreme points, some formulations such as Fdyn can be solved by considering
the constraints related to each extreme point. However, for most of polytopes considered in the literature (such as
those described above), the number of extreme points is not polynomial. Then there are mainly two methods to
handle constraints involving d : either cutting-plane algorithms where traffic vectors are generated in an iterative way
[8] or duality-based approaches [14]. While the cutting-plane approach can be applied for any tractable polytope (i.e.,
for which separation is polynomial), the second approach is recommended when the polyhedral set can be described
using a limited number of variables and constraints [11, 14].

We are then going to use duality-based approaches to solve the problems introduced in the paper. Duality allows
us to obtain equivalent compact linear programs of the original problems [14]. In the following we will describe, as an
example, how this is done for model (3) and the Budget uncertainty set D described in (18). The same method can be
(quite) straightforwardly applied to the other models. The numerical results that will be presented later in the section
are obtained using this method.

For each edge e , constraint (3b) (recall that this latter is given as: ∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
≤ cem) is satisfied for

all traffic vectors d ∈ D if and only if the constraint max
d∈D

∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d h
′

)
≤ cem is satisfied. Thus by writing

the polyhedron D in a more explicit form we obtain that a given solution (x ,m) of (3) satisfies this constraint if and
only if the solution of the following linear program gives a capacity reservation/congestion value that is less than cem.

max
z

∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e (d
h′
+ zh

′
d̂ h
′
)

)
∑
h′∈H

zh
′
≤ Γ (20a)

0 ≤ zh
′
≤ 1 [h′ ∈ H (20b)

By linear programming duality theory, model (20) has an optimal solution of value less than cem if and only if the
following dual linear program has a feasible solution of value less than cem.

min
π,µ

∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d
h′

)
+ Γπe +

∑
h′∈H

µh
′

e

πe + µ
h′
e ≥ d̂

h′
∑
h∈H

xhh
′

e [h′ ∈ H

µh
′

e ≥ 0, πe ≥ 0 [h′ ∈ H

where πe and µh
′

e are the dual variables corresponding to constraints (20a) and (20b), respectively.
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We can thus replace each constraint (3b) by the following inequalities.

∑
h∈H

(
xh0e +

∑
h′∈H

xhh
′

e d
h′

)
+ Γπe +

∑
h′∈H

µh
′

e ≤ cem

πe + µ
h′
e ≥ d̂

h′
∑
h∈H

xhh
′

e [h′ ∈ H

µh
′

e ≥ 0, πe ≥ 0 [h′ ∈ H

Constraints (3c) can also be dualized in a very similar way.
Finally, we should mention that in formulations F=, F+, F−, Fagg+, Fagg−, Fagg and F the flow conservation

constraints are handled as done in (3). For example, to solve F+, by adding virtual edges of type t (h)v , we recover
again equalities in the flow conservation constraints that should be satisfied for each d ∈ D. These equalities are
then replaced by a set of equalities that is similar to (3a).

The static routing approach (noted as Fst at in the result tables) consists in choosing a fixed routing for all demand
scenarios (i.e., f he (d ) = xh0e for any d ∈ D). It is described in [6, 8]. Here we solve this problem with the same
duality-based techniques.

7.3 | Network instances

We consider Abilene and Geant, two publicly available directed network topologies taken from the SNDlib [39] library
and commonly used in the networking community for numerical evaluations. The former is of medium size (12 nodes
and 30 links) while the latter is of larger size (24 nodes and 72 links). The arc capacities are those present in the SNDlib
instances.

We compare the affine routing and static routing formulations considering the minimization of two classical ob-
jective functions: 1) the congestion m denoted as Congestion and 2) a linear reservation cost (denoted as Linear). The
congestion m is expressed as maxe∈E ue

ce
where ce is the capacity of edge e and ue is the reserved capacity on such

edge, while the Linear objective is expressed as ∑
e∈E λeue where λe are scalars corresponding to the unit cost of

underlying resources. In practice, physical links are generally composed of multiples of standard capacity values. Un-
fortunately, this leads to NP-hard network design problems. Therefore, the linear objective function is often a suitable
alternative to approximate more complex objective functions.

To generate different sets of commodities on each instance with an increasing number of demands, we begin
with the set H0 consisting of all the possible commodities between sources and destinations. We generate a subset
H1 ⊆ H0 by selecting commodities from H0 with a uniform probability distribution. We re-iterate this process until
H1 is of the size we desire. Next, we build a subset H2 of H1 with the same procedure to get a smaller set of demands.
Successively, we obtain a sequence of demand sets of decreasing size that are successively included in each other.

For each topology and each objective function we also consider the two uncertainty sets, Budget and All Routable
Demands. The parameters for the Budget polyhedron are set as follow: d h = d̂ h = min

e∈E
ce for all commodity h ∈ H and

Γ =
√
car d (H).

7.4 | Numerical results

We first analyze the solutions from the different formulations. Then, we compare solution times and model sizes.
We compare static routing (denoted as Fst at ) with affine routing formulations that can be categorized into 6
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groups: (1) the node-arc formulation F=, (2) those based on the relaxation of flow conservation constraints (F− and
F+) of affine routing (F=), (3) the one based on aggregation (Fagg ), (4) those using a mix of the two former (Fagg−
and Fagg+), (5) the one using the elementary cycle formulation (Fcycl e ), and (6) the one using the extended graph
formulation (F).

In our implementation, we used the CPLEX solver version 12.6.3 on servers having four Intel Xeon E5-4627 v2
3.3 GHz CPU cores and 512GB of memory. In all our computations, CPLEX is configured without a time limit and the
default optimality gap. We used Julia to model problems and interface with the solver.

7.4.1 | Comparison of objective values

Wepresent two series of tables, Tables 1 and 2, with the solution of all formulations onAbilene andGeant, respectively.
For each topology, we consider the two polyhedra and the two objective functions described above.

For each case, the table is organized as follows. The first row gives the number of demands (or commodities)
|K | ranging from 10 to 30 demands for the instances related to the Budget polyhedron (18), and from 5 to 15 for the
more computationally expensive All Routable Demands polyhedron (19), except for Geant and the congestion objective
(Table 2d) where the instances with 15 demands become prohibitively expensive to compute. The subsequent rows
report the value of the objective function at the optimum for all affine routing variants presented in this paper: F=,
F−, F+, Fagg , Fagg−, Fagg+, Fcycl e , and F. We also give the cost of the static routing solution Fst at . The last two
rows contain the gap between the static routing formulation Fst at (resp. original affine routing formulation F=) and
the extended flow formulation F. We denote by BGFst at (resp. BGF= ) those gaps and we compute them as

OFst at −OF
OFst at

(resp.
OF=−OF
OF=

) where OFst at , OF= and O
F
are, respectively, the cost of the solutions of Fst at , F= and F.

First of all, as expected, we can see that, in almost all the tables, all the variants of affine routing exhibit better
solutions compared to the static routing, especially when the number of demands is large (this was also observed in
[44]). Also, the solution given by F= is, on one hand, almost always strictly dominated by the solution obtained by F.
The solution given by F seems to be the best one with respect to all the other variants of affine routing and static
routing in all the considered scenarios (e.g., see Tables 2a and 2c at the 30 commodities column). We also observe
that the solution of F+, and F− can give strictly better solutions than F= (e.g., see Table 2d). Furthermore, observe
that the solutions of Fagg , Fagg+, and Fagg− can give slightly strictly better solutions than F=, F+, and F− respectively
(see, for example, Table 2a with 30 commodities for F− and F+, and Table 2c with 30 commodities for F=).

Let us now lookmore closely at solutions from the different formulations and in particular compare F=, the original
affine formulation, and F. For instance, for Abilene with Congestion and All Routable Demandswe obtain a percentage
gap up to 9.914 % between F= and F, and up to 10.538 % between Fst at and F. Similarly, for Geant, we have the
same trend, with slightly lower percentage gaps (up to 4.458 % and 5.259 %).

7.4.2 | Comparison of model sizes and solution times

We now present two series of tables displaying the solution times and the model sizes. In the first series (Table 3) we
compare the two polyhedra on the Abilene topology with the Congestion objective. And in the second series (Table 4)
we compare both topologies with the All Routable Demands polyhedron and the Linear objective. The solution times
are in seconds. For the size of models, we display for each formulation the number of columns (i.e., variables), denoted
as #col, and the number of rows (i.e., constraints), denoted as #row.

We can observe that, in general, the computation time for the scenarios with All Routable Demands (Table 3b) can
be several hundred times longer than with Budget (Table 3a). This can be explained by the fact that the All Routable
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TABLE 1 Solutions for scenarios with Abilene topology.
(a) Budget.

Linear objective.

Nb demands

10 15 20 25 30

Fst at 44.0 69.87 90.47 115.0 141.91

F= 44.0 69.18 89.68 112.0 134.57

Fcycl e 44.0 69.18 89.68 112.0 134.57

F+ 44.0 69.08 89.68 112.0 134.57

F− 44.0 68.93 89.68 112.0 134.57

F 44.0 67.63 87.97 108.0 129.82

Fagg 44.0 69.18 89.68 112.0 134.57

Fagg+ 44.0 69.08 89.60 112.0 134.57

Fagg− 44.0 68.93 89.68 112.0 134.57

BGF= 0.0 % 2.2 % 1.9 % 3.6 % 3.5 %

BGFst at 0.0 % 3.2 % 2.8 % 6.1 % 8.5 %

(b) All Routable Demands.
Linear objective.

Nb demands

5 10 15

Fst at 21.0 30.5 35.5

F= 21.0 30.5 35.5

Fcycl e 21.0 30.5 35.5

F+ 21.0 30.5 35.5

F− 21.0 30.5 35.5

F 21.0 29.6 34.43

Fagg 21.0 30.5 35.5

Fagg+ 21.0 30.5 35.5

Fagg− 21.0 30.5 35.5

BGF= 0.0 % 3.0 % 3.0 %

BGFst at 0.0 % 3.0 % 3.0 %

(c) Budget.
Congestion objective.

Nb demands

10 15 20 25 30

Fst at 3.0 4.936 6.236 6.5 7.739

F= 3.0 4.936 6.236 6.5 7.739

Fcycl e 3.0 4.936 6.236 6.5 7.739

F+ 3.0 4.936 6.236 6.5 7.739

F− 3.0 4.936 6.236 6.5 7.739

F 3.0 4.936 6.236 6.5 7.739

Fagg 3.0 4.936 6.236 6.5 7.739

Fagg+ 3.0 4.936 6.236 6.5 7.739

Fagg− 3.0 4.936 6.236 6.5 7.739

BGF= 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

BGFst at 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

(d) All Routable Demands.
Congestion objective.

Nb demands

5 10 15

Fst at 1.300 1.424 1.491

F= 1.291 1.420 1.486

Fcycl e 1.291 1.420 1.486

F+ 1.245 1.390 1.452

F− 1.240 1.381 1.448

F 1.163 1.312 1.380

Fagg 1.291 1.420 1.486

Fagg+ 1.244 1.379 1.446

Fagg− 1.240 1.380 1.447

BGF= 9.9 % 7.6 % 7.1 %

BGFst at 10.5 % 7.9 % 7.4 %

Demands polyhedron (19) leads to a larger model size in terms of number of variables and constraints. Observe, for
example, that the model related to F with the Budget polyhedron and 15 demands on the Abilene topology has five
times more variables and six times more constraints than the model with the All Routable Demands polyhedron (Tables
3c and 3d).

We further observe that increasing the number of demands greatly increases the required solution time for the
affine variants without aggregation (e.g., F=, F−, F+, Fcycl e , and F). The aggregation technique for the affine routing
that we introduced (e.g., Fagg , Fagg−, Fagg+) permits us to alleviate this drawback for large enough commodity set
size (Tables 3a and 3c). This is somewhat explained by the fact that the number of x variables varies quadratically with
the number of demands in the non-aggegated model while it is linear with the number of demands in the aggregated
models.

Let us now focus on a given scenario, for instance, Abilene with Budget and the Linear objective (Table 1a), to com-
pare the solution times. It can be observed that F, the routing scheme based on the extended graph formulation, takes
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TABLE 2 Solutions for scenarios with Geant topology.
(a) Budget.

Linear objective.

Nb demands

10 15 20 25 30

Fst at 48.00 71.87 94.00 118.00 131.48

F= 47.07 70.25 92.47 114.00 127.75

Fcycl e 47.07 70.25 92.47 114.00 127.75

F+ 47.01 70.04 92.47 114.00 127.50

F− 46.96 69.83 91.96 113.71 127.39

F 46.94 69.20 90.83 110.53 123.22

Fagg 47.07 70.25 92.47 114.00 127.75

Fagg+ 46.94 69.78 91.96 113.50 126.99

Fagg− 46.94 69.46 91.79 113.50 127.04

BGF= 0.3 % 1.5 % 1.8 % 3.1 % 3.6 %

BGFst at 2.8 % 3.7 % 3.4 % 6.3 % 6.3 %

(b) All Routable Demands.
Linear objective.

Nb demands

5 10 15

Fst at 33.0 52.0 63.0

F= 33.0 52.0 63.0

Fcycl e 33.0 52.0 63.0

F+ 33.0 52.0 63.0

F− 33.0 51.0 63.0

F 33.0 50.5 62.5

Fagg 33.0 52.0 63.0

Fagg+ 33.0 51.0 63.0

Fagg− 33.0 50.5 62.5

BGF= 0.0 % 2.9 % 0.8 %

BGFst at 0.0 % 2.8 % 0.8 %

(c) Budget.
Congestion objective.

Nb demands

10 15 20 25 30

Fst at 1.621 2.311 3.174 3.252 3.836

F= 1.515 2.218 2.868 3.000 3.427

Fcycl e 1.515 2.218 2.868 3.000 3.427

F+ 1.505 2.218 2.868 3.000 3.422

F− 1.515 2.218 2.868 3.000 3.427

F 1.505 2.218 2.868 3.000 3.422

Fagg 1.515 2.218 2.868 3.000 3.422

Fagg+ 1.505 2.218 2.868 3.000 3.422

Fagg− 1.515 2.218 2.868 3.000 3.422

BGF= 0.6 % 0.0 % 0.0 % 0.0 % 0.2 %

BGFst at 7.2 % 4.0 % 9.6 % 7.7 % 10.8 %

(d) All Routable Demands.
Congestion objective.

Nb demands

5 10

Fst at 1.154 1.312

F= 1.133 1.301

Fcycl e 1.133 1.301

F+ 1.091 1.282

F− 1.111 1.285

F 1.091 1.243

Fagg 1.133 1.301

Fagg+ 1.091 1.282

Fagg− 1.111 1.285

BGF= 3.7 % 4.4 %

BGFst at 5.5 % 5.3 %

the longest time to compute the optimal solution with respect to all the other approaches when varying the demand
in the range [5-30]. This is indeed expected since the formulation of F is more complex: for each commodity h, we
added to the original graph G directed edges from the sink of h (i.e., t (h)) to each node v ∈ V of G, from each node v to
the source of h (i.e., s(h)), and from t (h) to s(h). The complexity of this approach naturally increases with the number of
demands and number of nodes. However, as mentioned above, F shows the best solutions among other formulations.

Table 4 shows the impact of the topology on the problem size and the solution time. The problems related to
Geant topology clearly have larger size than those related to Abilene and require much more time to be solved. While
the number of nodes and edges is twice as large in Geant compared to Abilene, the number of variables and constraints
for models can be between five and seven times larger.
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TABLE 3 Scenarios with Abilene topology and Congestion objective: Impact of the polyhedron on the solution
time.

(a) Budget.
Solution times (s).

Nb demands

10 15 20 25 30

Fst at < 1 < 1 < 1 < 1 < 1

F= < 1 1 5 12 29

Fcycl e < 1 3 5 41 76

F+ < 1 2 7 23 89

F− 1 2 7 20 37

F < 1 3 12 30 61

Fagg < 1 < 1 2 4 6

Fagg+ < 1 < 1 2 5 6

Fagg− < 1 1 2 4 6

(b) All Routable Demands.
Solution times (s).

Nb demands

5 10 15

Fst at < 1 < 1 1

F= 6 447 2929

Fcycl e 9 170 2421

F+ 9 415 5284

F− 9 402 3806

F 29 1136 11405

Fagg 6 132 590

Fagg+ 8 340 2342

Fagg− 6 189 2127

(c) Budget.
Size of the models.

Nb demands

10 15 20 25 30

Fst at #col 961 1411 1861 2311 2761

#row 770 1125 1480 1835 2190

F= #col 6931 14881 25831 39781 56731

#row 4950 10560 18270 28080 39990

Fcycl e #col 5721 12241 21211 32631 46501

#row 3630 7680 13230 20280 28830

F+ #col 9791 21121 36751 56681 80911

#row 6380 13680 23730 36530 52080

F− #col 9791 21121 36751 56681 80911

#row 6380 13680 23730 36530 52080

F #col 14851 32161 56071 86581 123691

#row 7590 16320 28350 43680 62310

Fagg #col 4291 9121 15751 19501 23251

#row 3036 6384 10962 13572 16182

Fagg+ #col 8251 17761 30871 38221 45571

#row 3828 8112 13986 17316 20646

Fagg− #col 9571 17761 28351 35101 41851

#row 4411 8112 12873 15938 19003

(d) All Routable Demands.
Size of the models.

Nb demands

5 10 15

Fst at 5251 8701 12151

9415 18770 28125

F= 16201 49501 100801

28440 103950 226560

Fcycl e 15871 48291 98161

28080 102630 223680

F+ 22116 69131 141946

38580 144380 317430

F− 22116 69131 141946

38580 144380 317430

F 27841 88381 182521

47160 178590 394320

Fagg 16201 44971 75481

28410 94389 169696

Fagg+ 22741 64843 109669

37770 127977 231208

Fagg− 18703 51367 90793

31152 101611 191712
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TABLE 4 Scenarios with Linear objective and the All Routable Demands polyhedra: Impact of the topology on the
solution time.

(a) Abilene.
Solution time (s).

Nb demands

5 10 15

Fst at < 1 < 1 < 1

F= < 1 17 122

Fcycl e < 1 19 213

F+ 1 33 495

F− 1 32 606

F 2 457 3292

Fagg < 1 14 60

Fagg+ 1 30 272

Fagg− < 1 27 145

(b) Geant.
Solution times (s).

Nb demands

5 10 15

Fst at 0.271 0.536 1.34

F= 13.57 406.57 3094.01

Fcycl e 18.5 340.56 3339.84

F+ 33.05 1628.02 11155.9

F− 49.87 2220.21 12307.3

F 85.24 7480.31 53291.0

Fagg 12.07 265.31 787.58

Fagg+ 18.0 1030.97 4561.98

Fagg− 58.59 819.89 6972.41

(c) Abilene.
Size of the models.

Nb demands

5 10 15

Fst at #col 5281 8731 12181

#row 9415 18770 28125

F= #col 16231 49531 100831

#row 28440 103950 226560

Fcycl e #col 15901 48321 98191

#row 28080 102630 223680

F+ #col 22146 69161 141976

#row 38580 144380 317430

F− #col 22146 69161 141976

#row 38580 144380 317430

F #col 27871 88411 182551

#row 47160 178590 394320

Fagg #col 16231 45001 75511

#row 28410 94389 169696

Fagg+ #col 22771 64873 109699

#row 37770 127977 231208

Fagg− #col 18733 51397 90823

#row 31152 101611 191712

(d) Geant.
Size of the models.

Nb demands

5 10 15

Fst at 25921 41401 56881

52809 105474 158139

F= 78697 231337 463177

158772 581372 1267872

Fcycl e 78067 229027 458137

158112 578952 1262592

F+ 99742 298727 602212

200862 749502 1645992

F− 99742 298727 602212

200862 749502 1645992

F 119872 363187 735202

241122 910322 2007672

Fagg 52345 189145 289081

105786 475536 792144

Fagg+ 65611 246521 378379

129942 604192 1009152

Fagg− 100807 246521 495193

199002 604192 1319232
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8 | CONCLUSION

We have presented variants of the original affine routing formulation to further improve the solutions of the robust
network design problem. We proposed a formulation Fcycl e based on cycle decomposition that is equivalent to the
initial node-arc formulation F= of [44]. We also proved that a formulation based on paths is dominated by F=. Then
two main ideas have been proposed: relaxation of flow conservation constraints and aggregation. The first idea led
to F− and F+ that have been combined into a stronger formulation F by considering an extended graph. All these
formulations are less conservative than F=. The second idea allowed us to build new formulations Fagg , Fagg+ and
Fagg− that are respectively less conservative than formulations F=, F+ and F−. The striking fact is that aggregation
simultaneously reduces the size of formulations as well as the solution’s cost. Furthermore, we have proposed a cut-
based formulation Fcut that improves over formulation F but is generally NP-hard to solve. Finally, we illustrated our
results with a numerical evaluation on two popular network topologies, two objective functions and two polyhedra.

Despite the efficiency of the new proposed formulations, several challenges remain. To solve larger size problems
and reduce solution cost, it would be nice to find some way to combine aggregation with the extended-graph-based
formulation F. Combining the uncertainty partitioning techniques (i.e., [3, 7, 12]) recalled in the introduction with
some of the formulations introduced in the paper would be another challenge. Further investigations and comparisons
with other routing schemes such as dynamic routing can also be conducted.
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