
Scalable Damper-based Deterministic Networking
∗M. Yassine Naghmouchi, †Shoushou Ren, ∗Paolo Medagliani, ∗Sébastien Martin, ∗Jérémie Leguay

Huawei Technologies, ∗Paris Research Center, †Beijing Research Center.

Abstract—With 5G networking, deterministic guarantees are
emerging as a key enabler. In this context, we present a
scalable Damper-based architecture for Large-scale Deterministic
IP Networks (D-LDN) that meets required bounds on end-to-
end delay and jitter. This work extends the original LDN [1]
architecture, where flows are shaped at ingress gateways and
scheduled for transmission at each link using an asynchronous
and cyclic opening of gate-controlled queues. To further relax the
need for clock synchronization between devices, we use dampers,
that consist in jitter regulators, to control the burstiness flows
to provide a constant target delay at each hop. We introduce
in details how data plane functionalities are implemented at
all nodes (gateways and core) and we derive how the end-to-
end delay and jitter are calculated. For the control plane, we
propose a column generation algorithm to quickly take admission
control decisions and maximize the accepted throughput. For a
set of flows, it determines acceptance and selects the best shaping
and routing policy. Through a proof-of-concept implementation
in simulation, we verify that the architecture meets promised
guarantees and that the control plane can operate efficiently at
large-scale.

Index Terms—Deterministic Networking, Damper, Routing,
Scheduling, Zero jitter, Bounded delay.

I. INTRODUCTION

Deterministic networking with end-to-end delay guarantees
is becoming a must for a wide-range of Internet applications
like factory automation, connected vehicles, and smart grids.
Indeed, a low and bounded delay (e.g. below 1 ms) with
nearly zero jitter (e.g. less than tens of µs) can be vital for
some closed-loop control systems related to robots or guided
vehicles [2]. Therefore, networks must not only guarantee
deterministic bandwidth for services, but also provide low
End-to-End (E2E) delay and jitter, in such a way that data
packets are delivered to the destination in time and on time.

In the past decade, a collection of IEEE 802.1 Ethernet
standards, known as TSN [3], has been developed to support
professional applications over Local Area Networks (LAN)
with layer-2 mechanisms such as priority queuing, preemption,
traffic shaping, and time-based opening of gates at output
ports. To improve the scalability of TSN solutions, the IETF
DetNet (Deterministic Networking) [4] group has been work-
ing on the Large-scale Deterministic Network (LDN) [5]
architecture that specifies how traffic should be scheduled and
forwarded in large-scale IP networks.

To address the aforementioned challenges, we presented
in [1] a comprehensive LDN architecture, that extends current
work at IETF [5], to guarantee deterministic E2E delay and
bounded jitter for high-priority flows. In this original LDN
architecture, flows are shaped at ingress gateways (I-GWs)

and scheduled for transmission at every hop using a cyclic
opening of gate-controlled queues, i.e., IEEE 802.1Qch or
Cyclic Queuing Forwarding (CQF), to ensure hop-by-hop
guarantees. At the data plane, scalability is achieved thanks
to an asynchronous and cyclic opening of 3 queues and a
forwarding of packets based on a hop-by-hop permutation of a
header label to identify the next transmission queue. Forward-
ing operations at intermediate nodes are of low complexity
and totally stateless in the core, while flows are shaped at
I-GWs to control their arrival rate. At the control plane, an
algorithm based on Column Generation (CG) [6] has been
proposed to decide about acceptance, ingress shaping and
routing for each flow. While CQF with 3 (or more) queues
enables asynchronous transmissions at each hop and relax the
need for an absolute time-synchronization, synchronization in
frequency, i.e., on the duration of each cycle, is still required
to ensure that packets are transmitted in the right queue at
each hop.

To alleviate the need for synchronization, we consider a
LDN architecture based on dampers [7]. The concept was
introduced by Verma et al. [8], where a per-flow regulator,
called delay-jitter regulator, is placed at every node to com-
pensate the time between a target delay, corresponding to the
maximum queuing delay of the parent node, and the delay
experienced at the previous hop. Cruz [9] was the first to
use the term damper, which he introduced to guarantee a
low deterministic E2E delay and a bounded jitter. The main
benefit, compared to CQF with 3 queues, is that it only
requires a good accuracy of the oscillator and does not need
for frequency synchronization between nodes. Recent works
have confirmed that it can work with non-ideal clocks [10].
In many practical use cases, such as metro or large enterprise
network, nodes do not have time synchronization capabilities,
making an approach like damper applicable and reliable.

This paper extends [1] by introducing an efficient damper-
based LDN (D-LDN) architecture for both control plane and
data plane levels. The D-LDN network is composed by (i) user
devices sending and receiving traffic; (ii) edge devices shaping
and routing the traffic to enforce isolation between flows and
core network devices forwarding flows inside the network, and
(iii) a network controller, responsible for taking admission
control decisions. As in LDN, this architecture relies on
ingress shaping and stateless forwarding at core nodes. At the
data plane level, we present how we implemented dampers
using gate-controlled queues, and we detail how end-to-end
delay and jitter are calculated. We also analyze the impact
that dampers can have on transmission patterns decided at

1

the I-GWs, explaining how this must be taken into account
by the controller when taking admission control decisions in
order to avoid performance degradation. To decide which flows
to accept and the applied shaping and routing policies, we
propose a control plane algorithm that operates efficiently at
large scale. It is based on an Integer Linear Programming (ILP)
techniques, namely Column Generation (CG) [6], used to solve
the optimization problem of maximizing the accepted traffic
throughput in a D-LDN network [11].

This paper is organized as follows. The state of the art is
presented in Sec. II. In Sec. III, we present the data plane
mechanisms, including shaping and damper-based forwarding.
Sec. IV is dedicated to the CG-algorithm for the control
plane. Sec. V provides a proof-of-concept implementation in
simulation. Sec. VI concludes the paper.

II. RELATED WORK

Traditionally, data plane scheduling methods rely on
round-robin (RR)-based scheduling methods, such as WRR,
DRR, MDRR, and URR [12], and Weighted Fair Queuing
(WFQ) [13], [14]. In RR-based methods, a system of queues
that are scheduled one after another is set up. At each round,
an amount of data based on each queue’s weight or deficit
is scheduled. This mechanism is used to prioritize traffic,
but also to provide deterministic guarantees at each hop with
delay bounds. The upper bound of end-to-end delay of these
algorithms can be calculated by using the network calculus
theory [15]. But, in general, the upper bound of the delay
is large and deteriorates greatly with the increase of the
number of flows. Methods such as Packetized GPS (PGPS)
or WF2Q, derived from General Processor Sharing (GPS)
[12], can guarantee better E2E delay bounds, but they need to
maintain per-flow states. Therefore, the traditional scheduling
methods have poor scalability and are difficult to be used in
large-scale IP networks.

In recent years, the IEEE TSN [16] working group has pro-
posed a series of standards for Ethernet, including 802.1Qbv,
802.1Qch, 802.1Qcr [17]. IEEE 802.1Qch specifies the Cyclic
Queuing and Forwarding (CQF) method [18] which relies on
the use of two cyclic queues. For a given cycle, while one
of the queues is being served, the other one is queuing the
arriving packets and the cycles change periodically. Although
CQF provides low and bounded jitter, it requires time synchro-
nization and can only be used over short distance links. IEEE
802.1 Qcr, also called ATS (Asynchronous Traffic Shaper),
specifies methods to manage delay without synchronization
between devices. Nonetheless, ATS uses a method that shapes
every flow at every hop which lacks of scalability as all
core nodes need to maintain per-flow states to be updated for
each packet. To integrate TSN technologies into IP networks,
the IETF DetNet working group has defined a general DN
(Deterministic Networking) architecture [4].

The main difference between LDN [1] (with CQF with 3
or more queues) and D-LDN lies in the mechanism used to
schedule packet transmissions. In D-LDN, as each packet car-
ries the information about the time spent in the queues of the

parent node, there is no need for strict cycle synchronization
between nodes, differently from LDN, in which the cyclic
opening of queues must be strictly synchronized. Indeed, each
packet must be scheduled for transmission in a specific cycle
(i.e., transmission queue) according to the label carried out
in the packet header. Even if routers may face clock drift,
mainstream network devices operate with a clock accuracy
smaller than 100ppm. Thus, jitter requirements in the order
of tens of µs can be satisfied even with non-ideal clock [10].
In addition, our architecture remains functional even in the
case of non-ideal clocks [10]. This makes D-LDN a promising
solution for large-scale deterministic IP networks.

Dampers can be quite complex to implement in the data
plane. Older implementations considered a variant of earliest-
deadline-first [8], [9] and static priority [19] schedulers. Recent
implementations have shown that dampers can coexist with
any scheduling mechanism [7]. Some of these implementations
enforce dampers to behave in a FIFO manner [7], [9]. Another
similar approach is presented in [20], where the authors
introduce a damper-based forwarding mechanism using an
ideal Push-In First-Out Queue (PIFO). Differently from this
work, we present how the PIFO can be implemented in the
data plane using gate-controlled queues, and we analyze the
impact for bandwidth allocation. We also provide an efficient
control plane algorithm for admission control.

III. DATA PLANE MECHANISMS

This section presents the data plane mechanisms at
ingress/egress gateways (I-GW/E-GW), and at core nodes.

A. Ingress shaping at I-GWs

According to network calculus [15], each flow f can be
characterized by an arrival curve Af (t) = rf t+ bf , where bf
is the maximum burst size for f , and rf is the arrival rate.

Each I-GW shapes incoming flows with bursts bf into
smaller bursts of size b′f . I-GWs implement shaping via
the asynchronous cyclic opening of Gate Controlled Queues
(GCQs), in order to schedule packet transmissions, and whose
utilization allows supporting transmission patterns, i.e. the
mapping of incoming flows into specific GCQs reservations,
over a hypercycle of length HC cycles, each of them of
duration T . As only one cycle is active at the same time, the
corresponding queue opens for transmission at the beginning
of the cycle and closes at the end. The remaining of the time,
the queue is open for reception and closed for transmission.

Incoming flows are injected at I-GWs into transmission
patterns selected by the controller. In this paper, we consider
regular patterns, where reservations in transmission queues are
of the same amount of resources and separated with a constant
period Tres. When Tres = T , the reservation is uniform and
equal at all cycles. As an incoming burst is spread over ⌈ bf

b′f
⌉

cycles, every Tres cycles, the shaping introduces an additional
delay of dshaping = Tres⌈ bf

b′f
⌉, which is the shaping delay

experienced by the last packet of a maximum burst size. Fig. 1
shows three possible reservations for regular patterns at the

2

Fig. 1. Examples of reservation patterns to shape an incoming flow at I-GW.

I-GW, for an incoming flow with a burst of 12 KB and a
maximum packet size of 1.5KB.

B. Damper-based Forwarding

While several damper architectures [21] are possible, we
will consider in this paper the architecture of Fig. 2 which
illustrates a damper pair that consists of three elements: 1)
the queuing system of the parent node h, 2) the transmission
by the parent node h, and the reception by the child node
h + 1, and 3) the damper module on the child node h + 1,
used to compensate the queuing delay experienced at parent
node h. This approach allows keeping the node architecture
fairly simple, as a single damper is used.

1) Scheduling with dampers: In our architecture, packet
scheduling is implemented via a queuing system at each port,
represented at the bottom of Fig. 2 and operating as follows:
for a system of N queues, the queue Qi−1 opens before the
queue Qi. We point out that only one queue can be open at
the same time. The time interval between the opening of Qi−1

and Qi is fixed and equals to T . When a packet arrives at the
node h, the damper mechanism is responsible for deciding
in which queue a packet must be transmitted, in order to
let it experience the same delay Q as the other packets of
the same flow. For this reason, given the information carried
in the header of the packet about the time qh spent in the
parent node h, the child node h + 1 can compute at which
time the packet must be released by the damper and select
the queue accordingly. This time instant Eh+1 is referred to
as eligibility time. According to our implementation, a packet
will be inserted in the next queue opening after the eligibility
time, resulting in a maximum queuing delay Q = 2T . This
bound comes from the worst case analysis, according to which
a packet is queued in Qi just after the opening of Qi−1 and
has to wait until the end of Qi−1 for being transmitted.

2) Forwarding Process: The damper module must enforce
a constant delay Dh for all packets passing through the damper
pair. The expression for Dh is given by Eq. 1, where qh is
the actual queuing delay, ph+1 is the actual processing delay
and dh+1 is the time a packet needs to wait in the damper. Qh

and Ph+1 represent respectively upper bounds on the queuing
and processing delays.

Dh = qh + ph+1 + dh+1 = Qh + Ph+1 (1)

In Eq. 1, we suppose that the processing delay is constant:
ph+1 = Ph+1. Besides that, since the propagation delay is

Fig. 2. Damper-based forwarding between nodes h and h+ 1.

nearly constant in wired networks, it is not considered in Eq. 1.

The packet forwarding process is described as follows,
assuming that a packet has already been put into the damper
by node h, that the next hop is determined using standard IP
routing (and determined by the network controller), and the
eligibility time Eh has already been computed for the node h:

1) Node h enqueues the packet for transmission in the first
available queue following the eligibility time Eh;

2) When the queue is opened for transmission, packets
inside are sent in a FIFO order to the next hop, selected
either via Segment Routing (SR) labels or via routing
tables;

3) Node h computes the time spent in the queues by the
packet as qh = th out − Eh and encapsulates it in the
header of the packet, together with the information about
the expected duration Qh;

4) Node h + 1 receives the packet and process it, experi-
encing a processing delay Ph+1.

5) The damper module of h + 1 computes the eligibility
time Eh+1.

The steps described above are repeated for each core node
that forwards packets, including the E-GW that sends data to
the final client. We point out that at the I-GW, as there is no
parent node sending packets, E0 is set to the first opening
queue matching with the selected transmission pattern.

The eligibility time Eh at the hop h+ 1 can be expressed
as follows:

Eh+1 = t(h+1) in + Ph+1 + [Qh − t(h) out + Eh], (2)

where t(h+1) in is the time at which node h+ 1 receives the
packet, and t(h) out is the time at which node h sends the
packet.

3) Damper Impact on Traffic: The damper, in this imple-
mentation common to all the ports of a device, is introduced to
compensate the queuing delay experienced by a packet in the
parent node, in order to provide a constant forwarding delay
for all the packets of the same flow.

3

Fig. 3. Impact of damper on a transmitted pattern.

Neglecting the fixed term Ph+1, as Qh = qhb +dh+1
b = 2T ,

at its eligibility time Eh
b in the node h, a packet b can be

enqueued either in the first opening queue (if qhb ≤ T),
or in the second opening queue (if qhb ≥ T). Therefore, it
may undergo a shift delay of one additional cycle. The delay
experienced by a packet in the damper can then change the
transmitted pattern structure initially selected by the I-GW
through shaping. An example is given in Fig. 3. Here, the
packet b, received by the node h in cycle 1, is delayed by the
damper to be transmitted in cycle 2 together with packets c
and d.

From Eq. 2, we can deduce that:

Eh
a − Eh

b = Eh+1
a − Eh+1

b ≤ T, (3)

where h and h+ 1 is a damper pair, and a, b are two packets
of the same flow transmitted in the same cycle, as shown in
Fig. 3. Eq. 3 says that the eligibility time gap between any
pair of packets transmitted in the same cycle remains constant
in any node of the path, and it is not larger than T . This
guarantees that the delay introduced by the dampers over any
E2E path is at most one additional cycle. In the example of
Fig. 3, we can see that the packet b is received by the node
h+1 in the second cycle. The worst case scenario occurs when
the damper h delay leads to a transmission of the packet a in
the second cycle.

From a control plane point of view, when deciding about
bandwidth allocation, we must take into account that due to
the damper, in the worst case all the packets of two adjacent
cycles can be transmitted on the same cycle and the next hop
must have the sufficient capacity to accept both of them. This
configuration occurs when the pattern period Tres is equal to
the cycle period T . However, if Tres > T , there is no risk that
packets from adjacent cycles will overlap on the same cycle.
The maximum pattern reservation on a cycle for a flow f and
an initial reservation pattern k with a shaping parameter b′f is
denoted by β(f, k) and given by

β(f, k) =

{
2b′f if Tres = T,

b′f otherwise. (4)

4) E2E delay and jitter bounds: Over a path composed of
H devices, the upper delay bound (excluding link propagation
delays) can be written as

DE2E =

H∑
k=1

Dk. (5)

Damper guarantees that the delays D1, . . . , DH−1 expe-
rienced by any packet at each pair are the same. However,
the damper at the node H constitutes an incomplete pair, and
we have DH = QH , which only accounts for the maximum
queuing delay. Due to the damper mechanism, nodes from 1
to H − 1 do not generate jitter and the E2E jitter along the
path comes only from node H . Hence, the E2E jitter bound
is QH = 2T .

IV. CONTROL PLANE ALGORITHM

Here, we formally define the admission control problem
that the control plane needs to solve. We present a path-
based formulation and a CG-based algorithm to maximize the
accepted traffic throughput over the D-LDN network.

A. Problem Statement

An instance of the problem is given by a couple (G,F):
• G = (V,A) is a digraph representing the network

topology, where V is the set of network devices and A
is the set of arcs representing physical links. Each node
v ∈ V has a buffer capacity cv shared over all ports (in
data units). Each arc a = (i, j) ∈ A has a transmission
delay la and a link capacity ca (in data units). We have
la = Di + Propij = Qi + P j + Propij , where Propij
is the propagation delay from i to j.

• F is a set of flows that need to be admitted with
proper shaping and routing policies. Each flow f ∈ F
is characterized by:

– a source sf ∈ V and a destination tf ∈ V ;
– an arrival curve Af (t) = rf t + bf , where rf is the

flow rate and bf is the maximum burst size;
– a throughput Rf ;
– a maximum end-to-end delay Df ;
– a set of possible transmission patterns Πf such that

each flow f of pattern k has a period T (f, k), a
maximum per cycle reservation β(f, k), defined by
Eq. 4, and a shaping delay d(f, k).

For every flow f ∈ F , let Pf denote the set of paths
between sf and tf . Let us also denote Sf the set of path-
pattern couples such that the end-to-end delay constraint is
respected. It is formally defined as follows:

Sf = {(p, k) : p ∈ Pf , k ∈ Πf and
∑
a∈p

la + d(f, k) ≤ Df}.

A feasible solution to the problem consists in selecting for
each flow at most one element in Sf , i.e., select or not for
each flow a single pattern in Πf and a single path in Pf ,
respecting the end-to-end delay constraints, in such a way that
the following constraints are satisfied:

4

(1) Arc-capacity constraints: for each arc a ∈ A, the sum
of β(f, k), the maximum per cycle reservations for each
flow f of pattern k passing through link a, does not
exceed capacity ca;

(2) Buffer capacity constraints: for each node v ∈ V , the
sum of β(f, k), the maximum per cycle reservations, for
each flow f of pattern k crossing node v, does not exceed
the buffer capacity cv;

The overall objective of the admission control problem is
to maximize the total accepted throughput. The capacity con-
straints (1) and (2) are defined under a worst-case scenario for
the way transmission patterns of multiple flows can combine
at each node or link. It has the advantage of being simple and
robust against the worst case.

B. Mathematical Model

The problem is equivalent to the following path-based ILP
Damper Formulation (DF):

(DF)max
∑
f∈F

∑
s∈Sf

Rfxf,s

(constraint: dual variables)∑
s∈Sf

xf,s ≤ 1 f ∈ F ,

(1. routing and shaping: λf)∑
f∈F

∑
s=(p,k)∈Sf :a∈p

β(f, k)xf,s ≤ ca a ∈ A,

(2. arc capacity: µa)∑
f∈F

∑
s=(p,k)∈Sf :v∈p

β(f, k)xf,s ≤ cv v ∈ V,

(3. buffer capacity: ωv)
xf,s ∈ {0, 1} f ∈ F , s ∈ Sf

(4. integrality)

Constraints (1) are routing constraints, they ensure that each
accepted flow has exactly one path-pattern couple. Constraints
(2), and (3) are respectively link capacity and buffer capacity
constraints. Finally, (4) are integrality constraints. The number
of constraints in (DF) is polynomial: |F |+ |A|+ |V |. As the
number of paths in general graphs is exponential, the number
of variables in (DF), namely columns, may be exponential.
Therefore, it is not possible in general to solve the entire prob-
lem with a solver. However, we can use a column generation
algorithm with an ILP Rounding procedure to obtain high
quality solutions. The algorithm we develop is called CGX,
and it is described in the following.

C. CGX Algorithm

The Column Generation with exact (CGX) rounding first
solves the linear relaxation LDF of (DF), which relaxes
the integrality constraints (4) on the variables xf,s, and then
rounds the LDF solution to an integer solution, using an ILP
solver. The overall algorithm is described in Algorithm 1.
The optimal solution to the linear relaxation provides an
Upper Bound (UB) to DF, and it can be used to evaluate the

optimality gap. Knowing an integer solution of objective value
Z, the optimality gap is given by UB−Z

UB × 100.
1) Solving the linear relaxation: It is well-known that

Linear Programs (LPs) such as LDF can be solved in poly-
nomial time in terms of input size [22]. However, the number
of variables of LDF is not polynomial. We overcome this
problem by applying column generation, which permits to
obtain an optimal solution to the linear relaxation LDF by
generating only a polynomial subset of variables.

The column generation procedure starts with a restricted
master Linear Program (LP) LDF 0; with no variables for our
case. By solving the pricing problem, a method based on LP
duality [11], we decide whether there are variables that are
currently not contained in the restricted master LP, but that
might improve the objective value. If no such variables can
be found, the current subset of variables is guaranteed to be
sufficient to solve the master LDF problem optimally. Oth-
erwise, newly generated variables are added to the restricted
LP and the process iterates.

For a given iteration i, let LDF i and Si
f denotes respec-

tively the restricted linear relaxation and its associated set of
columns indices. Remark that a solution xi

f,s of LDF i induces
a feasible solution xf,s of LDF by setting xf,s = xi

f,s for all
f ∈ F , s ∈ Si

f and xf,s = 0 otherwise. We can determine that
the induced solution xf,s is optimal for LDF by considering
D − LDF i, the dual of the LDF i:

min
∑
f∈F

λf +
∑
a∈A

caµa +
∑
v∈V

cvωv∑
a=(u,v)∈p

β(f, k)(µa + ωv) ≥ Rf − (λf + β(f, k)ωsf),

f ∈ F , s = (p, k) ∈ Si
f , (Dual constraint)

λf , µa, ωv ≥ 0 f ∈ F , v ∈ V, a ∈ A.

Let (λ∗
f , µ

∗
a, ω

∗
v) be the optimal solution of D − LDF i. if

there exists a flow f , a pattern k and a path p such that∑
a=(u,v)∈p

β(f, k)(µ∗
a + ω∗

v) < Rf − (λ∗
f + β(f, k)ω∗

sf). (6)

then, the solution is infeasible to D−LDF i. The problem D−
LDF i+1 with Si+1

f = Si
f∪si+1 is an improved approximation

to D−LDF i, where si+1 = (k, p). If no such path exists, the
solution is feasible to D − LDF and also optimal to LDF .

The pricing problem consists in finding a separating path
for each flow-pattern couple. This reduces to solving a Con-
strained Shortest Path (CSP) [23] problem in the graph G. The
goal is to find a path p∗ that minimizes

∑
a=(i,j)∈p∗

β(f, k)(µ∗
a+

ω∗
j) while respecting the delay constraints.
2) ILP Rounding: In this final step, we consider the linear

relaxation LDF ∗ of the last column generation iteration and
reapply integrality constraints (4). Using an ILP solver, we
obtain a feasible solution to the original (DF) problem.

5

Algorithm 1 CGX: Column Generation and ILP Rounding
Require: An instance (G,F) of the problem.

while Columns added or first iteration do
Solve the restricted LP and get the dual variables values
for all flow f ∈ F , pattern k ∈ Πf do

Path p∗ ← ∅.
Solve pricing problem for f and k
if path p∗ found such that inequality (6) is satisfied then

add the variable xf,(k,p∗) to the restricted LP
end if

end for
end while
Set the columns added to 0-1
Solve the ILP using an ILP solver
return Solution of the ILP

V. PERFORMANCE EVALUATION

We now verify with a proof-of-concept implementation in
simulation that the D-LDN architecture can guarantee E2E
delay requirements and jitter bounds at large-scale. We also
show the efficiency of CGX algorithm in terms of accepted
throughput and computational time.

A. Proof-of-concept Implementation

We conduct simulations results based on a scenario of 5
flows where the egress bandwidth of all devices is 10 Gbit/s.
The average rate of flow 1 is 2.24 Gbps, and the maximum
burst size is 1400 bytes. The average rate of flows 2 and 3
is 6.72 Gbit/s, and the maximum burst size is 4200 bytes.
The average rate of flow 4 and flow 5 is 3.36 Gbps, and the
maximum burst size is 2100 bytes. In addition, some best-
effort traffic passes through each hop, and low-priority traffic
is used. The upper bound Q of the queuing delay of each hop
interface is set according to the network calculus theory, and
it is 5µs, and the transmission delay is omitted.

We collect statistics on the E2E queuing delay of packets
for all flows. Fig. 4 shows the results for flow 1. As we
can see, even when an interfering flows exist, based on the
damper scheduling mechanism, the D-LDN network can still
be ensured that the E2E delay is respected, and the jitter does
not exceed the worst delay of the last hop Q = 5µs.

0 25 50 75 100 125 150 175 200
Packet number

15.6

15.8

16.0

16.2

Pa
ck

et
 q

ue
ui

ng
 d

el
ay

 (
s)

Fig. 4. E2E Queuing Delay

B. Admission Control

1) Instances description and implementation features: We
have generated a realistic network topology composed of 505
nodes and 1061 links, each with a maximum propagation delay
of 40µs. Based on this topology, we build two families of
instances. The first one is obtained by varying the capacity
of links and nodes at capacity levels from 1 to 10 and with
an E2E delay requirement of 1ms for all flows. At capacity
level i, instances correspond to a maximum buffer capacity
of i × 10Mb and maximum link capacity of i × 100Gb/s,
respectively. The second family of instances is obtained by
considering the capacity level 10 and varying the E2E delay
requirements of flows in 100, 200, . . . , 1000µs. In all families
of instances, for a given capacity level and a given E2E
delay requirement, we also vary the number of flows in
100, 500, 1000, . . . , 5000 and select origin/destination pairs at
random. In a simulation, all flows have the same E2E delay
requirement, the same maximum burst size of 1500 bytes, a
random throughput in 1, . . . , 10 Gb/s. At I-GWs, we consider
a hypercycle length HC of 8 cycles, and we set the cycle
duration to T = 10µs.

We implement our algorithms in C++ and solved the linear
programming formulation using the CPLEX 12.6 [24] solver.
As we are dealing with an off-line planning algorithm, we
limit the overall resolution time of CGX to 5 mins.

2) Numerical results: We compare the performance of
CGX to the OSPF routing protocol, which selects the shortest
path for each flow where each link a ∈ A has a cost of
108

8×ca
. To this end, we introduce the accepted throughput gap

as Th(CGX)
Th(OSPF) × 100, where Th is the accepted throughput.

Fig. 5(a) reveals the sensitivity of the accepted throughput
gap between CGX and OSPF to the maximum E2E delay and
the number of demands. As we can see, for some demands
or for a weak E2E maximum delay, the throughput accepted
by CGX and the one accepted by OSPF are the same. In fact,
when the number of demands is smaller than 1000 or the
E2E delay is smaller than 20µs, the gap is equal to 100%.
Nonetheless, we can notice that this gap increases with the
increase of the number of demands and the maximum E2E
delay to reach 200% for a maximum E2E delay between 80µs
and 100µs and a number of demands greater than 4500. In
that case, corresponding to large instances, CGX accepts 2
times more traffic throughput than OSPF. To conclude, CGX
solutions are clearly of better quality than OSPF.

Fig. 5(b) shows the evolution of the solution time for CGX,
according to E2E delay. We can see that the time limit of 5
mins is reached only with 4500 and 5000 demands. For this
number of demands, the resolution time is sensitive to the
E2E delay requirements. Indeed, we can notice in Fig. 5(b) a
decrease of the resolution time for low or very high delays (10,
90, 100 µs,). Finally, note that the solutions of our algorithm
also have the merit of being optimal or almost optimal. In fact,
for all the instances that we have tested with a time limit of
5 min, CGX has an average optimality gap of 0.35%.

6

Number of demands
0

1000
2000

3000
4000

5000

Max E2E delay (s)
20406080100

Ac
ce

pt
ed

 th
ro

ug
hp

ut
 G

ap
 (%

)

100

120

140

160

180

200

100

120

140

160

180

200

(a) Accepted throughput gap between CGX and OSPF.

Number of demands
0

1000
2000

3000
4000

5000

Max E2E delay (s)
20406080100

Ti
m

e
(s

.)

0

50

100

150

200

250

300

50

100

150

200

250

300

(b) Computational time for CGX (s).

Fig. 5. Admission control results for CGX and OSPF routing: sensitivity to E2E delay requirements and number of demands.

VI. CONCLUSION AND PERSPECTIVES

We have proposed D-LDN, a damper-based architecture for
large-scale deterministic networks with End-to-End delay and
bounded jitter guarantees. We have introduced the data plane
mechanisms and the theoretical background to determine E2E
delay and jitter bounds. To maximize traffic throughput accep-
tance in the network, we have developed an efficient control
plane algorithm called CGX based on column generation.
Through a proof-of-concept implementation we verified that
D-LDN can meet strict QoS guarantees. We also presented
numerical results to demonstrate that our CGX algorithm gives
very good solutions on large-scale instances.

The control plane algorithm we have introduced in this
paper is an offline algorithm. An interesting direction of this
work is to study and design an efficient online algorithm to
solve the admission control problem.

REFERENCES

[1] B. Liu, S. Ren, C. Wang, V. Angilella, P. Medagliani, S. Martin, and
J. Leguay, “Towards large-scale deterministic ip networks,” in IFIP
Networking, 2021.

[2] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5g: Ran, core network and caching solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, 2018.

[3] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein,
and H. Elbakoury, “Cyclic queuing and forwarding for large scale
deterministic networks: A survey,” ArXiv, vol. abs/1905.08478, 2019.

[4] “Deterministic networking architecture,” RFC 8655, Oct. 2019.
[5] L. Qiang, X. Geng, B. Liu, T. Eckert, L. Geng, and G. Li, “Large-scale

deterministic ip network,” Internet Engineering Task Force, Internet-
Draft draft-qiang-detnet-large-scale-detnet-04, 2019.

[6] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column generation.
Springer Science & Business Media, 2006, vol. 5.

[7] A. Grigorjew, F. Metzger, T. Hoßfeld, J. Specht, F.-J. Götz, F. Chen, and
J. Schmitt, “Asynchronous traffic shaping with jitter control,” 2020.

[8] D. C. Verma, H. Zhang, and D. Ferrari, Delay jitter control for real-time
communication in a packet switching network. International Computer
Science Institute, 1991.

[9] R. L. Cruz, “Sced+: Efficient management of quality of service guaran-
tees,” in Proc. IEEE INFOCOM, vol. 2, 1998, pp. 625–634.

[10] E. Mohammadpour and J.-Y. Le Boudec, “Analysis of dampers in time-
sensitive networks with non-ideal clocks,” IEEE/ACM Transactions on
Networking, 2022.

[11] A. Schrijver et al., Combinatorial optimization: polyhedra and effi-
ciency. Springer, 2003, vol. 24.

[12] W. Y, L. KP, G. Y, and C. Y, “Research and prospect of queue scheduling
algorithm in packet switched network,” Acta Electronica, pp. 553–559,
2001.

[13] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM transactions on networking, vol. 1, no. 3, pp.
344–357, 1993.

[14] J. C. Bennett and H. Zhang, “Wf/sup 2/q: worst-case fair weighted fair
queueing,” in Proc. IEEE INFOCOM, 1996.

[15] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer, 2001.

[16] J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking
standards,” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 20–21, 2018.

[17] J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive
switched ethernet networks,” in 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS). IEEE, 2016, pp. 75–85.

[18] P802-1qch, “cyclic queuing and forwarding,”
https://1.ieee802.org/tsn/802-1qch/.

[19] H. Zhang and D. Ferrari, “Rate-controlled service disciplines,” Journal
of high speed networks, vol. 3, no. 4, pp. 389–412, 1994.

[20] T. Eckert, A. Clemm, and S. Bryant, “gLBF: Per-Flow Stateless Packet
Forwarding with Guaranteed Latency and Near-Synchronous Jitter,” in
2021 17th International Conference on Network and Service Manage-
ment (CNSM), 2021, pp. 578–584.

[21] R. Shou-shou, L. Bing-yang, W. Chuang, M. Rui, and L. Xuan, “A
damper scheduling mechanism based on network calculus theory,”
Journal of Beijing University of Posts and Telecommunications, vol. 44,
no. 2, p. 26.

[22] L. G. Khachiyan, “A polynomial algorithm in linear programming,” in
Doklady Akademii Nauk, vol. 244, no. 5. Russian Academy of Sciences,
1979, pp. 1093–1096.

[23] Y. P. Aneja and K. P. Nair, “The constrained shortest path problem,”
Naval Research Logistics Quarterly, vol. 25, no. 3, pp. 549–555, 1978.

[24] CPLEX, https://www.ibm.com/products/ilog-cplex-optimization-studio.

7

