
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Adapting caching to audience retention rate

Lorenzo Maggi⁎, Lazaros Gkatzikis, Georgios Paschos, Jérémie Leguay
Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies France SASU, 92100 Boulogne-Billancourt, France

A R T I C L E I N F O

Keywords:
Cache replacement
Audience retention rate
Chunk
LRU

A B S T R A C T

Rarely do users watch online contents entirely. We study how to take this fact into account to improve the
performance of cache systems for video-on-demand and video-sharing platforms, in terms of traffic reduction on
the core network. We exploit the notion of “audience retention rate” (ARR), introduced by mainstream online
content platforms and measuring the popularity of different parts of the same video content. We first char-
acterize the performance limits of a cache able to store parts of video files, when the popularity and the ARR of
each file are available to the cache manager. We then relax the assumption of known popularity and we analyze
the performance of a natural adaptation of Least Recently Used (LRU) cache replacement policy that operates on
the first chunks of each file. We call it chunk-LRU. We prove that, under a weak assumption on the content
popularity distribution, choosing smaller chunks allows to improve the performance of chunk-LRU policy, and
we show numerically that even for a small number of chunks, the gains of chunk-LRU are almost optimal.
Finally, we provide some guiding principles for chunk-LRU parameter design in real systems.

1. Introduction

Content Distribution Networks (CDN) and Video on Demand ap-
plications use network caches to store the most popular contents near
the user and reduce backhaul bandwidth expenditure. The future pro-
jections for the cost of memory and bandwidth promote the use of
caching to satisfy the ever-increasing network traffic [15]. Since the
bandwidth saving potential of caching is restricted by the number of
files that fit in the cache (the cache capacity), it is interesting to max-
imize the caching effectiveness under such a constraint. Here, we
consider the use of partial caching, a technique according to which we
may cache specific parts of files, instead of whole ones.

We focus on video files (or, simply, files) which represent a sig-
nificant fraction of the global Internet traffic (64% according to [6]).
Videos are the most representative example of contents that are only
partially retrieved, since specific parts of a video file are viewed more
often than others. Typically, the average user will “crawl” several vi-
deos before watching one in its entirety. Moreover, there exist several
“uninteresting” videos that are typically abandoned very early. The
above imply that most of the times it is not needed to cache the entire
file. Fig. 1 shows the video watch-time from a trace of 7000 YouTube
videos. The histogram emphasizes the fact that the vast majority of files
is only partially watched, and motivates the design of caching algo-
rithms that avoid caching rarely accessed file parts, e.g. the tail.

Optimization of caching is often based on file popularity. Storing the

most popular files results in more cache hits, which decreases the impact
on the traffic on the core network. Nevertheless, not all the parts of a
file are equally popular [11]. Hence, a natural generalization of “store
the most popular files” is to split the files into chunks and “store the
most popular chunks” instead. To differentiate the popularity of each
file chunk we use the metric of the audience retention rate (ARR) [24],
which measures the popularity of different parts of the same file. Al-
though it has never been exploited before, the ARR has many ad-
vantages: it is file specific, it is available in most content distribution
platforms, e.g., YouTube [24], and it evolves very slowly over time,
which facilitates its easy estimation.1 The latter is not generally true for
chunk popularity which are affected by the time-varying popularity of
the corresponding file.

In this paper, we establish a link between the audience retention
rate (ARR) and the efficiency of partial caching. Our approach is based
on decomposing popularity into file popularity and ARR. More speci-
fically, we address the following questions: (i) How much bandwidth
could we save via partial caching of video content by exploiting statistics on
ARR and (ii) Is this gain achievable by practical caching algorithms?

1.1. Related work

Partial caching techniques were first reported in the context of
proxy caching, where it was proposed to store the file headers to im-
prove latency performance [16]. To capture both latency and

https://doi.org/10.1016/j.comcom.2017.11.015
Received 31 May 2017; Received in revised form 13 November 2017; Accepted 24 November 2017

⁎ Corresponding author.
E-mail address: lorenzo.maggi@huawei.com (L. Maggi).

1 The quasi-static nature of ARR relates to file particularities, e.g. a movie may become uninteresting towards the end.

Computer Communications 116 (2018) 159–171

0140-3664/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01403664
https://www.elsevier.com/locate/comcom
https://doi.org/10.1016/j.comcom.2017.11.015
https://doi.org/10.1016/j.comcom.2017.11.015
mailto:lorenzo.maggi@huawei.com
https://doi.org/10.1016/j.comcom.2017.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.11.015&domain=pdf

bandwidth improvements, the work in [21] proposes to split the files
into segments of exponentially increasing size. More generally, it is
possible to cache specific chunks in order to capture the different po-
pularity of sections within a file (a.k.a. internal popularity) [11,19].

Intuitively, infinitesimal chunking (e.g., at byte level) offers finer
granularity and potentially leads to the optimal caching performance.
However, tracking popularity at such fine granularity is impractical and
leads to algorithms of prohibitively high complexity [25]. A series of
works suggest to split each file into a small number of chunks and treat
each chunk independently [1,21]. Alternatively, it is proposed to model
internal popularity as a parametric k-transformed Zipf distribution
[13,25]. Knowing the distribution type, simplifies the estimation task
but still requires parameter estimations individually for each file.
Moreover, deducing the optimal size and number of chunks is not
straightforward. It was shown in [19] that restricting to n homogeneous
chunks incurs a loss which is bounded by O(−n 2). Alternative heuristic
approaches suggest that only a specific segment of each file should be
cached and dynamically adjust its size. For instance, Chen et al.[5]
propose a segmentation scheme where initially the whole object is ca-
ched but the segment size is gradually set equal to its estimated average
watch-time. Similar adaptive strategies have been also considered for
peer-to-peer networks [10], where starting from a small segment, the
portion to be cached is increased according to the number of requests
and watch-time. The caching of several segments of each file was pro-
posed in [8], since users may be interested only in specific, non-con-
tiguous parts of files. In this case the segment size has to be selected
accordingly.

In the context of Dynamic Adaptive Streaming HTTP (DASH) video
streaming, contents are split into chunks along two dimensions, i.e.,
time and encoding quality. Ye et al. [23] only consider the enconding
dimension, thus tackling the problem of deciding which encoding layers
should be cached so as to minimize backhaul traffic. The notion of
audience retention rate (ARR), measuring the popularity of different
parts of the same file, has been first introduced by Maggi et al. [14].
Yang et al. [22] extended its application in the context of coded
caching. There, the ARR is supposed to be known by the cache man-
ager. Instead, in our work we consider uncoded caching and we show
how the classic Least Recently Used (LRU) caching policy can benefit
from splitting files into chunks, even in the extreme case where the
cache manager is oblivious to the ARR. Whereas we exploit audience
retention rates to select which files to cache, in [12] the reverse pro-
blem of prefetching content so as to maximize retention rates is con-
sidered.

1.2. Main contributions

In this paper we first investigate a trace of YouTube data in [26] and
we conclude that partial caching has a great potential to improve per-
formance, mainly because (i) the average video watch-time is no more

than 70%, and (ii) the size of a video is negatively correlated with its
watch-time (see Section 2). Motivated by this, we harness the concept
of ARR and we first study in Section 4 its impact on the theoretical gains
that partial caching has on traditional caching systems, in terms of
reduction of the traffic on the core network. Combining the theoretical
analysis with the YouTube data, we show that in realistic settings the
traffic reduction of partial caching over traditional caching may reach
up to 50% if ARR and popularity were known for each file.

It is then interesting to investigate the benefits brought by partial
caching in a setting where the content popularity and ARR are un-
known. Thus, in Section 5, we derive the performance of a class of
practical chunk-LRU (Least Recently Used) policies, which split files
into different chunks, evict the chunk at the tail of files and perform the
classic LRU scheme on the remaining chunks. Our analysis shows that
chunk-LRU policies realize the gain of partial caching, and its perfor-
mance can be further improved by tuning two essential parameters,
namely the number of chunks and the size of the chunk at the tail of
files. Hence, in Section 6 we gain intuition into the parameter design
and we show that close-to-optimal performance can be attained with
simple design principles in mind.

We resume our main technical contributions to the literature in the
following:

• We formulate the traffic reduction optimization problem under the
knowledge of ARR and provide a waterfilling algorithm to solve it
efficiently. For the special case where users watch each video con-
tinuously until they abandon it, we derive the optimal waterfilling
partial allocation in closed form. It consists of caching a compact
interval [0, ν] of the file where ν is given in closed form.

• We consider a natural adaptation of LRU cache replacement algo-
rithm to the scenario of partial viewing, which we call chunk-LRU
and that operates on the first chunks of each file. We then build an
analytical framework to relate the chunk-LRU performance to the
ARR behavior, subject to the well-known Che’s approximation for
LRU performance [4].

• We provide a sufficient condition for ARR such that sub-splitting
chunks is always beneficial for the chunk-LRU scheme.

• We provide simple hints for the design of chunk-LRU parameters in
real systems, supported by numerical evaluations.

We remark that we choose to show the benefits of file chunking on
LRU specifically for mainly three reasons. First, the analysis of LRU is
tractable, thanks to Che’s analytical approximation [4]. Second, it is
widely used due to its simple and efficient implementation by means of
a doubly linked list. Third, LRU serves as basis for several other more
advanced recency replacement policies, such as LRU threshold, LRU*,
LRU-hot, LRU-threshold, LRU-MIN, LRULSC, SB-LRU, SLRU and HLRU
(see [2,18]).

2. Youtube video watch-time

In this section we examine YouTube access traces2 in [26] in order
to gather some useful statistics on the video watch-time, which for each
file measures the portion (∈ [0; 1]) watched by the users. Watch-times
are crucial for caching: by employing partial caching we may avoid to
cache rarely watched parts of videos and use the freed cache space to
store more files.

Since most strategies try to cache the most popular files, first we
investigate the relationship between average watch-time and file po-
pularity. We classify video files into 10 groups according to their
average daily views. Fig. 2 depicts the estimated probability density

watch-time (average portion of file watched)
0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

ie
s

0

100

200

300

400

500

600

Fig. 1. Histogram of watch-time in YouTube (based on a data sample of 7000 video files
from [26]). On average 60% of a file is watched.

2 The dataset is publicly available and was crawled using the YouTube Data API in
2013. It contains information about 7000 files, including daily views, watch-time,
duration, genre and title of each file.

L. Maggi et al. Computer Communications 116 (2018) 159–171

160

function of watch-time for three representative groups, the 10% most
popular videos, the 10% least popular, and the intermediate ones. In-
terestingly, we observe that the more popular a video is, the higher the
average watch-time. However, even for the most popular ones, on
average only 72% of each video is watched, which leaves room for
caching optimization.

Next, we investigate the relationship between watch-time and file
duration. The latter is a critical parameter for caching due to the cache
capacity constraint which eventually determines caching performance. If
longer videos are only partially watched, avoiding to cache their un-
watched parts will yield a greater benefit. In Fig. 3, we depict with dots the
YouTube data for the 20% most popular files. In order to identify how the
watch-time is affected by the video duration and its popularity, we use
locally weighted polynomial regression [7] to fit a smoothed surface to the
corresponding data. Notice that the most beneficial regime for caching
purposes corresponds to the upper left corner of the plot, namely highly
popular videos of large size. We observe that in this region the average
watch-time is around 0.7. In addition, independently of the video popu-
larity, watch-time decreases rapidly with video duration.

We then group the available data to 10 classes according to their
popularity and duration (≷200 s). We depict the details of the derived
classes in Table 1, namely for each class we depict the average watch-
time, the fraction of videos belonging to this class and its average
duration in seconds. We observe that the large and popular videos amount
to a non-negligible percentage of 5%. In addition, the average watch-time
of large files is significantly smaller than that of smaller ones. To

precisely evaluate the impact of watch-time to caching, we use these
data in the subsequent Sections 4 and 5 to quantify the theoretical
maximum and the practically feasible caching performance.

3. System model

We consider a communication system where users download video
files (or, simply, files) from the network. LetM = ⋯ M{1, , } be the file
catalog. Each file M∈i is of size Si bytes. Content requests are gen-
erated according the well-known Independent Reference Model (IRM)
[9], for which the file requests are independent of each other. We call pi
the probability that file i is requested, under the assumption that a file
request has arrived. Equivalently, the sequence of file requests can be
thought of as M independent homogeneous Poisson processes with in-
tensity rate proportional to the probability vector {pi}i. For convenience
of notation, we assume that the probabilities are in decreasing order,
i.e., ≥ ≥ ⋯≥p p pM1 2 .

One cache of size C bytes is deployed in the network.3 Whenever a
requested file is found in the cache, the cache itself can directly serve
the user. Otherwise, the file needs to be retrieved through the core
network, which provides access to a central file content store con-
taining the entire file catalog, see Fig. 4. Hence, caching can have a
profound impact on the traffic reduction on the core network.

We next introduce the crucial concept of audience retention rate,
that will be proven to have an intrinsic connection with the perfor-
mance of partial caching.

3.1. Viewing behavior model: audience retention rate

The audience retention rate (ARR) Ri(τ) is defined by YouTube as
the percentage of users that are still watching video i at the corre-
sponding (normalized) instant τ, out of the overall number of views
[24], see also Fig. 5. As it will become apparent, in our analysis the ARR
has a prominent role in determining the caching performance.

Let us shed light on the definition of ARR by formally describing the
typical viewing behavior of a typical video-on-demand user. A user may
watch video file i from instant ai(1) up to bi(1), then she possibly skips
to ai(2) and watches until bi(2), and so forth4. The (random) watched
part Wi, which equals the minimum portion of file i that the user needs
to download, is the union of all watch intervals j:

watch-time
0 0.2 0.4 0.6 0.8 1

de
ns

ity

0

0.5

1

1.5

2

2.5

3

3.5
10% most popular files
40%-50% popular files
10% least popular files

Fig. 2. Watch-time distribution for different classes of video popularity. The average
watch-time of a video increases with its popularity.

 popularity
(daily views)

104

102

100101

duration (sec)

102

1

0.8

0.2

0.4

0.6

w
at

ch
-ti

m
e

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 long and popular videos

Fig. 3. Average watch-time is increasing with the popularity of files, but steeply de-
creasing with its duration.

Table 1
The characteristics of videos in [26], classified with respect to their size (“small” and
“large”). These data will be used to derive realistic and class-specific AARs for our nu-
merical evaluation.

Popularity duration Small

Av. watch-time Fraction of population Av. duration (s)

Lowest 0.52 0.179 81
Low 0.6 0.162 112
Medium 0.64 0.153 128
High 0.67 0.152 130
Highest 0.72 0.145 124
Popularity duration Large

Av. watch-time Fraction of population Av. duration (s)
Lowest 0.37 0.020 220
Low 0.47 0.036 220
Medium 0.57 0.045 223
High 0.60 0.047 222
Highest 0.65 0.053 235

3 Our analysis can be extended to a cache hierarchy by letting pi express the probability
that a request for file i is missed by the caches at all the child nodes [15].

4 We remark that such intervals may also overlap, i.e., a user may rewind the video and
watch a part of it multiple times. We assume that, if this occurs, then the user can directly
retrieve the file portion that she has already watched from her terminal’s cache.

L. Maggi et al. Computer Communications 116 (2018) 159–171

161

= ∪W a j b j[(); ()].i j i i

We call |Wi| the (random) watch-time of user watching file i. For ease of
notation, we consider ai, bi∈ [0; 1] as portions of the whole video file
duration. The ARR5 function Ri(τ) can be then formally defined as the
probability that a user has watched the (normalized) instant τ of the
file, i.e.,

= ∈ ∈R τ τ W τ() Pr(), [0; 1].i i

Alternatively, we may think of Ri(τ) as the fraction of users that watch
the (normalized) instant τ of the file i.

We remark that, thanks to the definition of Ri, we can easily eval-
uate the average watch-time for file i as ∫ R τ dτ()i0

1 .
In order to come up with a realistic ARR function, we will use the

estimated parameters in Table 1 for our numerical investigations in
Sections 4.3 and 5.4.

Next, we devise a realistic and more specific viewing behavior
model and we derive its relationship to ARR.

3.1.1. Viewing abandonment model
This is a special instance of the viewing model presented above. It

assumes that users always start watching each file i from its beginning,
and they abandon it after a random time portion bi∈ [0; 1]. Hence, in
this case the watched part Wi takes on the simple form =W b[0;],i i thus
bi equals the watch-time. We call πi(.) the probability density dis-
tribution of the abandonment time variable bi. The relationship be-
tween the abandonment distribution πi and the ARR Ri is described by
the expression:

∫= −R τ π t dt() 1 () .i
τ

i0 (1)

Hence, in this case the ARR Ri(τ) measures the fraction of users with
watch-time higher than τ for the particular file i. We first observe from (1)
that Ri is inherently non-increasing, with =R (0) 1i . We also remark
that, under the viewing abandonment assumption, the ARR Ri uniquely
describes the random watch behavior [0; bi] of user via πi. This ob-
servation does not hold though for the general case described in
Section 3.1, where the same ARR Ri may result from an arbitrary dis-
tribution of watch behaviors.

In this paper we will specialize some of our results to the scenario
where the viewing abandonment model holds.

4. Performance limits of partial caching

This section analyzes the performance limits of partial caching in
the context of ARR. Our performance metric is core network traffic and
we tackle the off-line problem of finding the optimal static (partial) file
cache allocation.6 In particular, we will compare the maximum network
traffic saved by caching entire files versus caching arbitrary portions of

each of those. In both cases it is idealistically assumed that the file
popularity distribution M∈p{ }i i and the ARR functions M∈R{ }i i are per-
fectly known to the cache manager. This analysis serves as an upper
bound for any cache replacement strategy with more limited informa-
tion, as the one devised in Section 5.

Let us first formalize our problem. We define the partial allocation Yi

⊆ [0; 1] of file i to be the collection of (possibly) non-adjacent portions
of file i, that are selected to be permanently stored in the cache. Subject
to a partial allocation Yi, any requests for the remaining portions [0; 1]
∖Yi need to be served by the origin file store. Due to the specific ARR for
this file, this happens with probability ∫ ∖ R τ dτ()Y i[0;1] i

. Therefore, under
a partial allocation vector Y, we may express the expected traffic on the
core network per request B(Y) as

M

∫∑=
∈

∖
YB S p R τ dτ() () .

i
i i Y i[0;1] i (2)

Considering the file size Si and cache size C, a partial allocation
vector Y is feasible whenever

M ∫∑ =∈ S dx Ci i Yi
. Our goal is to select a

feasible vector Y that minimizes the incurred traffic Bs(Y), i.e.,

M

∫∑

=

⎧

⎨
⎪

⎩⎪

=

⊆

∈

Y YB

S dx C

Y

* argmin ()

s. t.
1

[0; 1]

Y

i
i Y

i

i

(3)

If users always watch the whole file, i.e., =R τ() 1i for all τ∈ [0; 1] and
M∈i , then the optimization (3) takes a simple form which is solved by

the well-known store-the-most-popular-files policy. In this case, we would
choose to fully store, =Y [0; 1],i the files of highest pi up to the cache
capacity and no portion of the rest, i.e. = ∅Yi otherwise. As indicated
by the previous section however, in reality this is not the case, hence we
expect Y* to bring certain improvement, that we evaluate in
Section 4.3.

Technically speaking, if we lift any assumption on the shape of the
ARR, the best cache allocation should intuitively prescribe to partition
all files at the finest granularity (at the byte level, say), order them
according to their popularity, and fill the cache with the most popular
bytes. We now provide an equivalent waterfilling characterization of the
optimal partial file allocation Y* to solve this problem. The main ad-
vantage of this formulation lies in the fact that it leads to an efficient
algorithm to compute Y*, that we present in Section 4.2.

Theorem 1 (Optimal allocation). The optimal partial file allocation Y* can
be expressed as

M= ≥ ∀ ∈Y μ τ p R τ μ i* () { : () } ,i i i (4)

where µ is such that
M

∑ =∈ S Y μ C* () ,i i i where |.| is the size7 of a subset of
[0; 1].

Informally speaking, the water level µ determines a popularity
threshold above which a byte of any file deserves to be stored in the
cache.

4.1. Viewing abandonment model

In the special case of viewing abandonment model (see
Section 3.1.1), we already observed that the ARR Ri is non-increasing
for all M∈i . This allows us to specialize our result in Theorem 1 as
follows.

Corollary 1 (Optimal allocation for viewing abandonment model).
Consider the viewing abandonment model with strictly decreasing Ri, for
all M∈i . The optimal file allocations writes =Y η* [0; *]i for all M∈i ,
where

Fig. 4. System model.

5 Our definition of ARR is in accordance with the definition of audience retention (or
“engagement”) rate by Wistia.com [20]. Youtube’s ARR [24] actually counts the video
rewinds as multiple views inside the same videos.

6 We remark that in our analysis of the optimal traffic bandwidth B(Y*) we assumed
that the files Y* are already present in the cache and we did not take into account the
traffic needed to fill the cache. If we wish to incorporate this aspect, we could say that B
(Y*) is the expected traffic achieved asymptotically over a number of requests tending to
infinity. 7 Formally defined as the Lebesgue measure.

L. Maggi et al. Computer Communications 116 (2018) 159–171

162

M

∑

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=

⎧

⎨
⎪

⎩
⎪

≥ ≥

≤

=

−

∈

η μ

p R μ μ

p μ

R μ p

S η μ C

* ()

1 if (1) (0)

0 if

(/) otherwise

* () .

i

i i

i

i i

i
i i

1

(5)

A remarkable observation here is that the optimum bandwidth
performance is achieved by splitting every file in only two parts and
caching the first one. We may determine the exact splits if the aban-
donment distribution is given. For instance, if πi is truncated ex-
ponential one with parameter λi, i.e.,

=
−

∈−
−π τ λ

e
e τ()

1
, [0; 1],i

i
λ

λ τ
i

i

then the following holds.

Corollary 2 (Optimal allocation for exponential viewing abandonment
model). Under the exponential viewing abandonment model the optimal file
allocations writes =Y η* [0; *]i for all M∈i , where

∑

⎜ ⎟
⎧

⎨

⎪
⎪

⎩

⎪
⎪

= ⎡

⎣
⎢−

⎛
⎝

− + ⎞
⎠

⎤

⎦
⎥ ≥

=

− −
+

=

()η μ
λ

μ
p

e e μ

S η μ C

* () 1 ln 1 , (0)

* () .

i
i i

λ λ

m

M

i i
1

i i

(6)

4.2. Computation of optimal performance

To solve the optimization problem in (3), we observe that it can be
expressed as a separable convex optimization problem with linear and
box constraints. If we further assume that the functions Ri do not have
any plateau, then the objective function becomes strictly convex, thus
we can adapt the water-filling algorithm presented in [17, Section 7.2]
to our scope in order to efficiently compute the optimal cache partial
file allocation Y*. We defer the details of the algorithm to the Appendix,
Section A.2. In few words, we iteratively compute the popularity
threshold µ by solving a fixed-point equation (Step 2). Then, we com-
pute the estimated cache occupation δ (Steps 3 and 4). Then, depending
on whether δ exceeds the available cache capacity or not, we truncate
the cache storing policy η to 0 or 1 (Step 5), until convergence.

4.3. Performance evaluation with real data

In order to evaluate the performance of the optimal partial alloca-
tion in a realistic scenario we utilize the average watch-time parameters
shown in Table 1. In Fig. 6, we compare the core network traffic
= YB B (*)s generated by the optimal partial caching strategy with the

one produced by the most natural strategy prescribing to store the most
popular files in their entirety. We observe that remarkable gains from

partial caching are achieved for cache size ratios higher than −10 2 of the
total catalog size, which we typically find in current CDN scenarios.

We then show in Fig. 7 the optimal portion of files that should be
stored according to the same optimal caching strategy, for different
values of the cache size.

Interestingly, only very popular files are stored in their entirety,
even for large cache sizes.

We finally remark that we will sometimes find convenient to nor-
malize the core network traffic figures with respect to the number of
bytes requested by users Breq per file request, which equals

Fig. 5. Instance of audience retention rate (ARR) from YouTube.

Fig. 6. Core traffic generated by the optimal partial caching strategy in a realistic sce-
nario vs. the traffic produced by storing the most popular files in their entirety. We show
in circled red line the resulting performance gain by using the first strategy. We utilized
the parameters obtained via real data shown in Table 1. The file popularity distribution
follows a Zipf law with parameter 0.8 [9]. S is denoted as the average file size. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7. Optimal portion of files that should be stored according to the same optimal
caching strategy in Fig. 6. Given a certain C/SM, the file with file popularity x should be
stored from its beginning up to portion y.

L. Maggi et al. Computer Communications 116 (2018) 159–171

163

∫∑=
=

B S p R τ dτ() .
i

M

i i ireq
1

0

1

(7)

We notice that Breq is the minimum bandwidth per file request required
to serve the users when no cache is deployed in the system.

5. Chunk-LRU: analysis

After analyzing the best performance that can only be achieved with
full information on the system parameters, we turn to the study of a
practical cache replacement scheme that shows good performance even
when file popularity and ARR are unknown.

It is a widespread understanding that the Least Recently Used (LRU)
cache replacement policy represents a good trade-off between hit-rate
performance and implementation complexity in a real scenario where
no statistics on file popularity are available to the cache manager. LRU
operates in the following way: upon a new file request, if the file is not
stored in the cache, then the least recently requested file is evicted from
the cache and replaced with the newly requested one. Thus, LRU keeps
track of file popularity by updating a recency table of file requests.
Moreover, thanks to its short memory, LRU reacts quickly to variations
in file popularity. In its simplest form though, each time a file is re-
quested even only partially by a user and is not found in the cache, LRU
would prescribe to cache it in its entirety (and to update the LRU recency
table accordingly). Since users rarely watch video files entirely, as
previously observed, such primitive form of LRU would generate extra-
traffic in the core network and would waste precious cache space to
store unpopular portions of files.

In the case of partial viewing, it is then natural to study a general-
ization of the classic LRU policy that operates on file chunks, instead of
the whole file. We call it chunk-LRU, and it functions as follows. Each
file is split into +N 1 consecutive and non-overlapping chunks.
According to chunk-LRU, if a chunk is requested by a user but not found
in the cache, then it is retrieved from the content store and placed in the
cache. If the cache is full, then the least recently requested chunk is
evicted by the cache, in the classic LRU fashion. Finally, the user re-
ceives the requested chunk. We here study a simple generalization of
this standard scheme, where the last (i.e., the +N(1)-th) chunk of each
file, which is the least popular part under the assumption of decreasing
ARR, is never be stored in the cache, even if requested by a user.
Intuitively, this frees up space for more popular chunks of less popular
files to be stored in the cache. We call ν the tail drop factor that pin-
points the position of the last chunk.

We now formally describe the chunk-LRU algorithm. Notice that the
(normalized) file split is denoted as ≡ ⋯ ≡ ≡+x x x ν x[0, , , , 1],N N0 1 1
and the ith chunk corresponds to the file portion −x x[;]i i1 (see also
Fig. 8).

Chunk-LRU algorithm.

Step 1 (Initialization):
1.1) Set the tail drop factor ∈ν (0; 1]
1.2) Partition each file i into +N 1 chunks of the form
= ⋯ ≡ = =− +x x x x x ν x x ν x[0;], [,], , [;], [; 1],N N N N0 1 1 2 1 1 where
∈x [0; 1]i (see Fig. 8)

1.3) An initial chunk request recency vector is available
Step 2: A request for a packet of file M∈i belonging to its kth
chunk −x x[,]k k1 arrives
2.1) If = +k N 1, then the request is handled by the core network
and the cache is not updated (i.e., the tail is never cached)
2.2) Else, if ≤ ≤k N1 , then

2.2.1) If the requested chunk is stored in the cache, then the
cache sends the packet to the user

Chunk-LRU algorithm.

2.2.2) If the requested chunk is not stored in the cache, then it
is retrieved from the core network and then stored in the cache,
after evicting the minimum number of least recently used
chunks. Finally, the cache sends the packet to the user
2.3) The recency vector of the chunks stored in the cache is
updated in an LRU fashion. Return to Step 2)

Remark 1. For the sake of analysis simplicity we assume that the chunk
splitting, described by the variables x and ν, does not depend on the
identity of the file. We leave the study of file-dependent split as a future
extension.

Performing LRU on the first N chunks presents two main benefits.
On the one hand, it reduces the extra-traffic on the core network caused
for the retrieval of file portions that are not requested. For instance,
whenever a user watches a file from its beginning up to portion b, only
the first = ≥k x bmin { }k k chunks are downloaded. Hence, only the
portion −x bk is stored in the cache without being accessed. On the
other hand, we exploit the fact that the tail of a file is generally less
popular than the rest [25]. Hence, by systematically discarding the tail
of each file we avoid to evict from the cache the first chunks, which are
likely to be more popular. Additionally, although this is not the focus of
this paper, performing LRU on chunks would allow to keep track of the
evolution of the popularity of each chunk. Nevertheless, the resulting
benefits would be minor, since the ARR varies on a time scale much
slower than the file popularity dynamics.

5.1. Chunk-LRU performance under viewing abandonment

After having described our chunk-LRU algorithm, we now turn to
the analysis of its performance. To this purpose, in this section we will
assume that the viewing abandonment model holds (see Section 3.1.1).
Moreover, in order to come up with our analytical results we make the
common simplifying assumption that all files have the same size =S Si.
This is well justified by the fact that we can break large files into equal
size fragments, and perform chunk-LRU over the chunks of the file
fragments.

We first observe that, under the viewing abandonment model
(Section 3.1.1), the probability that the kth chunk of file i is requested
by a user knowing that the user herself has already started watching file
i equals ∫=− −

R x π τ dτ() ()i k x m1
1
k 1

. Since the requests for file i follow by
assumption a Poisson process of intensity (proportional to) pi, then the
request process for the kth chunk is also Poisson with reduced intensity

−p R x()i i k 1 . Thus, thanks to an adaptation of the popular Che’s approx-
imation [4] we can already compute the hit rate for a specific chunk,
i.e., the probability that a chunk is found in the cache when requested.

Let us elaborate on this. Che’s approximation was originally pro-
posed in [4] to compute the hit rate for files whose request successions
follow independent Poisson processes. It approximates the character-
istic time tC, measuring the time that a file spends in the cache, as a
constant. When shifting the request granularity from the file to the
chunk level, the independence property of request streams is un-
avoidably lost. Nevertheless we can still rely on the intuition that when
the cache size is significantly larger than the file size the characteristic

Fig. 8. File split into +N 1 chunks. Only the first N are considered for chunk-LRU; the last
one is never stored in the cache.

L. Maggi et al. Computer Communications 116 (2018) 159–171

164

time of each chunk is approximately equal and constant, hence Che’s
approximation still holds, which has been shown valid in [15]. There-
fore, the hit rate hk, i for the kth chunk of file i can be approximated as
= − − −h e1 ,k i

p R x t
,

()i i k C1 where the characteristic time tC obeys the fol-
lowing relation [9]:

∑ ∑=
= =

C
S

x hΔ ,
k

N

k
i

M

k i
1 1

,
(8)

where = − −x x xΔ k k k 1. Intuitively, expression (8) claims the equality
between the number of items that can be cached (C/S) and the sum of
file chunks (Δxk), weighted by their probability of being found in the
cache (∑= hi

M
k i1 ,).

Finally, we can derive the expected traffic per file request BcLRU

forwarded to the core network when the chunk-LRU cache replacement
policy is employed. To this aim, we first observe that the expression

−−R x h()(1)i k k i1 , measures the probability that chunk k of file i is re-
quested but not found in the cache, under the assumption that file i has
been requested (which occurs with probability pi). Moreover, we notice
that the average watch-time of the last chunk (which is never cached)
equals ∫ R τ dτ()ν i

1 . The expression of BcLRU then follows:

∫∑ ∑= ⎛

⎝
⎜ − + ⎞

⎠
⎟

= =
−B ν S p R x h x R τ dτx(,) ()(1)Δ ()

i

M

i
k

N

i k k i k ν icLRU
1 1

1 ,
1

(9)

where = ⋯ −x xx { , , }N1 1 .

5.2. Benefits of chunk sub-splitting

We now focus on the impact of the chunk size on chunk-LRU per-
formance, measured as the traffic generated at the core network BcLRU.
Intuitively speaking, increasing the number of chunks allows chunk-
LRU to estimate the inner popularity of each file with finer granularity.
Nevertheless, this does not prove the intuition, since modifying the
chunk size also has an impact on the characteristic time tC in a non-
trivial way via the expression in (8).

Before stating the main result of this section, we first need to in-
troduce some notation. We denote tC and tC as the characteristic times
when only one chunk (i.e., [0; ν]) and chunks of infinitesimal size dx
(say, at the byte level) are employed, respectively. More formally, tC
and tC are the unique roots of the two following equations:

∫

∑

∑

= −

= −

=

−

=

−

()

()

C
S

ν e

C
S

e dx

1

1 ,

i

M
p t

i

M ν p R x t

1

1
0

()

i C

i i C

respectively. It is easy to see that tC and tC represent a lower and an
upper bound for the characteristic time tC, respectively. Next, we will
say that the chunk split x′ is a file sub-split with respect to the split x
whenever x⊂ x′. In other words, x′ further splits the file in smaller
chunks. We finally observe that if =ν C

MS then the cache can store all
the first files up to their portion ν; hence, it is reasonable to constrain ν

within the interval ⎡⎣ ⎤⎦; 1C
MS .

We are now ready to prove that, under an assumption on the file
popularity and ARR, any refinement of the chunk granularity produces
a decrease in the expected traffic load on the core network.

Theorem 2 (Sufficient condition for sub-splitting to be beneficial). Let
∈ν [; 1]C

MS and let x be a file chunk split. Assume that

∑ < ∀ ∈ ∈
=

−d
dτ

p R τ e t t t τ() 0, [;], [0; 1]
i

M

i i
p R τ t

C C C
1

()i i C

(10)

Then, any file chunk sub-split x′ outperforms x in terms of traffic generated
on the core network, i.e., the following holds:

′ <B ν B νx x(,) (,).cLRU cLRU

It easily follows from Theorem 2 that splitting each file into in-
finitesimal chunks is optimal. Clearly, this holds under the simplifying
assumption that chunks can be managed without any traffic overhead.
In Section 6, we discuss how to design the number of chunks under
more realistic settings.

Finally, we remark that numerical experiments suggest that our
sufficient condition (10) is very loose. More specifically, it generally
holds for realistic popularity distributions and ARRs. It is not satisfied
only in pathological cases where the distribution is extremely con-
centrated around few popular files and the cache size very small, near
to the size of a single file.

5.3. Optimal performance of chunk-LRU

In this section we focus on the computation of the best performance
of chunk-LRU, optimized over the chunk size and tail drop factor ν. We
will utilize it as a benchmark for the performance evaluation of prac-
tical chunk-LRU policies in realistic scenarios in Section 5.4.

In order to come up with the best performance achievable by chunk-
LRU we need to find the solution of the following optimization pro-
blem:

∑ ∑

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= −

≤ ≤

= ≤ ≤ ⋯≤ ≤ =

= =

−

−

−

B B ν

C
S

x e

C
MS

ν

x x x x ν

xmin (,)

s. t.

Δ 1

1

0 .

N ν t

k

N

k
i

M
p R x t

N N

x
cLRU

, , ,
cLRU

1 1

()

0 1 1

C

i i k C1

(11)

It follows from Theorem 2 that, if condition (10) holds, then the
bandwidth utilization of any file chunk split x and ∈ν [; 1]C

MS is lower
bounded by the performance BcLRU(ν) of the infinitesimal split (say, at
the byte level). This greatly simplifies the formulation of (11) in a two-
variable constrained optimization problem (see Eq. (12)). Below we
formalize this result.

Corollary 3 (Performance bound for chunk-LRU). Assume that condition
(10) holds. For any file chunk split x and tail drop factor ν, the traffic
performance BcLRU(x, ν) is lower bounded by the performance BcLRU of the
infinitesimal chunking approach:

≤B B νx(,),cLRU cLRU

where BcLRU is computed as

∫ ∫

∫

∑

∑

= +

⎧

⎨

⎪

⎩
⎪

= −

≤ ≤

=

−

=

−()

B p R x e dx p R τ dτ

C
S

e dx

C
MS

ν

min () ()

s. t.
1

1.

ν t i

M ν
i i

p R x t
ν i i

i

M ν p R x t

cLRU
, 1

0
() 1

1
0

()

C
i i C

i i C

(12)

We stress the fact that BcLRU is the lowest core network traffic
achievable by a chunk-LRU cache replacement policy.

Thanks to the formulation in (12), we can prove the following two
intuitive results via standard Lagrangian optimization techniques. First,
if users never watch video files in their entirety, then it is always op-
timal to never cache a non-negligible portion of file, i.e., ν*< 1.

Corollary 4. If Ri is continuous and =R (1) 0i for all M∈i then the
optimal ν*<1.

L. Maggi et al. Computer Communications 116 (2018) 159–171

165

Finally, as intuition suggests, if all users watch the whole video file
then the best chunk-LRU policy is actually the standard LRU.

Corollary 5. If =R τ() 1i for all τ∈ [0; 1], M∈i then splitting files into
chunks does not improve LRU traffic performance.

5.4. Numerical evaluations of chunk-LRU performance

In this section we evaluate numerically the traffic performance on
the core network of the proposed class of chunk-LRU cache replacement
policies. In all simulations we considered file size and chunks of equal
size, in order to restrict our focus on the two most impacting parameters
on the chunk-LRU performance, i.e., the number of chunks N and the
tail drop factor ν. As in Section 4, we consider the ARR scenario shown
in Table 1, estimated from the real Youtube dataset from [26]. We show
our results8 in Fig. 9. For comparison purposes, we also display the
optimal performance B under full information that we derived in
Section 4, that represents a performance bound for any cache replace-
ment policy under partial viewing assumption.

We first notice that, as hinted by Theorem 2, the traffic generated by
chunk-LRU decreases as the number N of chunks increases (=N 4, 20).
The infinitesimal chunk size limit (= ∞N) is shown to achieve optimal
performance BcLRU, as claimed in Corollary 3. Notably, chunk-LRU
performs close to its optimal performance even with a limited number
of chunks (=N 20, but also =N 4). On the other hand, as expected, not
splitting the file and setting =ν 1 (1-chunk-LRU) is a poor choice in the
presence of partial viewing behavior. In fact, the traffic generated by
retrieving parts of file that are not requested by the users outweighs the
obtained benefits through cache hits even for medium-size caches. This
explains why the traffic generated by 1-chunk-LRU can be even higher
than the one without any cache deployed.

The best tail drop factor =ν ν N* * () used to produce Fig. 9 is opti-
mized for each value of N and cache size C, as shown in Fig. 10. We
notice that ν* is closely related to average watch-time, since it captures
the portion of files with the lowest popularity which need to be sys-
tematically discarded from the cache. For small cache sizes, simulations
show that the optimal value ν* is lower than the watch-time: in fact, to
compensate for the reduced cache size, low values of ν allow to squeeze
in the cache a significant amount of different - and popular - file
headers.

Nevertheless, we remark that in order to compute the optimal value
of ν*(N) one should be aware of all system parameters, i.e., content
popularity and abandonment distribution. Since this is clearly not the
case in real systems, we should expect that a sub-optimal value of ν is
chosen in reality. Therefore, the lines in Fig. 9 for different values of N
should be regarded as performance lower bounds for chunk-LRU po-
licies operating on N chunks.

Motivated by this, in Section 6 we tackle this issue by showing the
sensitivity of chunk-LRU performance with respect to ν, and by pro-
viding sensible advice on the design of ν in real systems.

6. Chunk-LRU: principles for parameter design

In the previous sections we investigated the impact of content
chunking on caching performance. We first computed the performance
limit B of any cache replacement policy, then we analyzed the perfor-
mance of chunk-LRU, being a natural adaptation of LRU operating on
chunks of files, rather than on the whole files.

In this final section we aim at providing some hints on the practical
design of the parameters defining chunk-LRU. In particular, we will
discuss the choice of the number of chunks N and of the tail drop factor

factor ν.

6.1. Number of chunks N

Firstly, we discuss a fundamental performance/complexity trade-off
faced when designing the number of chunks N. Corollary 3 claims that,
according to our model, it is always beneficial to increase the number of
chunks to decrease the traffic on the core network. However, in prac-
tice, infinitesimal chunking (say, at the byte level) suffers from the two
following limitations on complexity and overhead.

(i) Complexity: It is well known that LRU cache replacement policy
can be implemented with complexity O(1); in other words, increasing
the number of chunks does not affect the amount of operations needed
to handle one chunk. However, increasing the number of chunks N
causes the complexity of chunk-LRU per unit of time to scale linearly
with N.

To tackle this issue, we can suppose that the available processing/
memory resources constrain the number of chunks within some max-
imum value Nmax, i.e., N≤Nmax.

(ii) Overhead: Chunking introduces overhead due to encoding and
data encapsulation. For instance, HTTP streaming also impose file
segmentation of equal size, and segmentation introduces an overhead
per chunk, which increases the overall file size. More specifically, it was
recently shown that dividing a DASH segment into fragments could

Fig. 9. Normalized core network traffic generated by chunk-LRU for different number of
chunks vs. the theoretical optimum B and vs. standard LRU. The optimal =ν ν N* * () is
computed for each value of N and cache size C, as depicted in Fig. 10. We also evaluate
the performance achieved when the sub-optimal value of =ν 1 is utilized. The file po-
pularity distribution follows a Zipf law with parameter 0.8 [9].

Fig. 10. Optimal tail drop factor ν* for different number of chunks = ∞N 4, 20, . We
notice that the optimal ν*(N) is within a neighborhood of the average watch-time of 0.61.

8 The traffic performance is normalized w.r.t. the number of bytes effectively requested
by users Breq per file request (see Eq. (7)).The chunk-LRU policies have chunks with equal
size.

L. Maggi et al. Computer Communications 116 (2018) 159–171

166

improve latency performance, but at the cost of an additional overhead
of up to 20% [3]. Finally, an encapsulation overhead has to be con-
sidered if the chunking is performed at sub-MTU (Maximum transmis-
sion unit) scale, i.e., chunks smaller than 1500 bytes. In this case, if a
chunk size of K times smaller than the MTU is selected, then since TCP-
IP packets carry a header of 66 bytes, an additional overhead of

= K4.466

K
1500 % is imposed.

From the discussion above it should be clear that chunking at very
fine granularity, i.e., setting N arbitrarily large, is not desirable in
practice.

In order to provide some guiding principles on the parameter design
of the number of chunks N in real systems, we make henceforth the
simplifying assumption that each chunk is appended with a header of
invariable size δS. Moreover, since in ABS it is common practice to split
each file in chunks of equal duration, thus here we assume equally sized
chunks. In this case, the original expression of the expected traffic
generated on the core network in (9) becomes

∫

∑ ∑

∑ ∑

= ⎛

⎝
⎜ ⎛

⎝
− ⎞

⎠
− ⎛

⎝
+ ⎞
⎠

+ ⎞

⎠
⎟

= ⎛
⎝
+ ⎞
⎠

−

≤

⎜ ⎟

= =

= =

− ⎛
⎝
− ⎞

⎠

B N ν S p R k ν
N

h ν
N

δ

R τ dτ

C
S N

δ e

N N

(,) (1) (1)

()

s. t. 1 1

.

δ

i

M

i
k

N

i k i

ν i

k

N

i

M
p R k ν

N t

cLRU
1 1

,

1

1 1

(1)

max

i i C

(13)

We observe from Fig. 11 that two different regimes arise for the
choice of N, depending on the relative size of the overhead δ with re-
spect to the whole file size. When the overhead is negligible (Fig. 11,
≤ −δ 10 3) it is beneficial to split the file into as many chunks as possible

in order to minimize the traffic on the core network (i.e., =N Nmax). As
we will see in the following, this choice also has a beneficial impact on
the choice of ν. On the other hand, if the overhead size is non-negligible
with respect to the whole file size (> −δ 10 3), then the traffic depends in
a non-monotonic fashion on the number N of chunks.

6.2. Tail drop factor ν

Turning now our attention to the design of the tail drop factor ν, we
display in Fig. 12 the dependence of the performance of the chunk-LRU
scheme with respect to ν for different values of number of chunks N and
cache size. We can first distinguish two different regimes for the design
of ν. If the number of chunks is sufficiently high (N>50 in this case),
the performance of chunk-LRU has very limited sensitivity with respect
to the choice of ν in a left neighborhood of 1: in fact, the fine granularity
of chunk splitting already prevents the tail of files not to be cached, if not
popular. In this case, setting =ν 1 appears to be a near-optimal choice.

However, for values of N≤ 50 the choice =ν 1 is largely sub-op-
timal. This highlights the fact that, in the “small N” regime, dropping the
last portion of each file helps making up for the poor granularity of file
chunking.

In conclusion, by comparing Figs. 11 and 12 we can distinguish two
different regimes for parameter design, only depending on the size of
the chunk overhead δ. If δ is sufficiently small (≤ 1% of the whole file
size), then opting for the maximum allowed number of chunks
=N Nmax and the maximum tail drop factor (=ν 1, i.e., all chunks can

be stored in the cache) is a good design choice. In fact, this does not
incur a significant performance loss (see, e.g., the curves with = −δ 10 3

in Fig. 11 and =N 50 in Fig. 12) and it is oblivious to all system para-
meters, i.e., popularity distribution pi and ARR Ri.

On the other hand, if the chunk overhead is non negligible (e.g.,
> 1% of the whole file size), then from Fig. 11 a reasonable choice for
N appears to be in a range between 10 and 20. In this case, the choice of
the tail drop factor ν should be refined (ν<1). We suggest that in this
case, to gain further insight in the optimization problem in (13), the
shape of probability distribution p and the ARR R should be somehow
estimated offline. In fact, we firstly remark that the optimal ν* is not
strictly a function of the popularity of each file, but only of the rank-
dependent popularity pi of the i-th most popular file, for each i (see
Eq. (13)). It has been shown in [9] that such rank-dependent relation
depends on the class of traffic and is slowly varying over time, hence it
is easily predictable offline. Secondly, we argue the ARR functions Ri

vary on a much slower time scale than that of file popularity, which
greatly facilitates its offline estimation. For such two reasons, we claim
that an offline estimation of p and R may suffice to refine the choice of
ν. We leave more in-depth analysis of such interesting scenario to future
investigations.

7. Conclusions

In this paper, we shed light on the intrinsic connection between the
caching traffic performance and the audience retention rate (ARR),
which measures the popularity of different portions of the same video
file. We first derive the performance limits of partial caching when ARR
is known by the cache manager. Then we analyze the performance of a
natural adaptation of the classic LRU scheme that operates on chunks of
file, called chunk-LRU. This prescribes to split each file into chunks and
to apply LRU on the chunks, while never storing the last one. We for-
mally prove that sub-splitting is beneficial if chunk overhead is not
considered. In more realistic scenarios, we suggest that if the overhead
is non negligible then the optimal number of chunks is finite, and the
tail drop factor helps making up for the poor granularity of file
chunking.

The introduction of ARR in caching decisions opens up new inter-
esting research directions. ARR is generally available in online video

Fig. 11. Traffic on the core network vs. number of chunks, with tail drop factor =ν 1 (all chunks are cached), for different values of the overhead size and cache size. The file size is =S 1.
All chunks are assumed to be of equal size.

L. Maggi et al. Computer Communications 116 (2018) 159–171

167

distribution systems and does not evolve over time. Thus, it can be used
to decompose the problems of file popularity estimation and optimal
chunking without loss of optimality. In this context, the generalization

of existing caching mechanisms so as to optimally exploit the benefits of
partial caching is an interesting topic for future study.

Appendix

A1. Proof of Theorem 1

Proof. As a first step, let us define fi(τ): [0; 1]→ [0; 1] as a one-to-one function such that the permuted ARR function ′ = −R τ R f τ(): (())i i i
1 is non

decreasing. The function fi is a permutation function that orders the file parts in order of decreasing popularity, such that fi(τ)< fi(τ′) if and only if
Ri(τ)> Ri(τ′).9 Then, ′Ri is the outcome of such permutation. As a second step, we reformulate the optimization problem in (3) as

M

M

∫

∫

∑

∑

=

⎧

⎨
⎪

⎩⎪

=

⊆

∈

∈

Y S p R τ dτ

S dτ C

Y

* argmax ()

s. t.
1

[0; 1]

Y i
i Y i i

i
i Y

i

i

i

(14)

We can recast the bandwidth saving optimization problem in (14) in terms of the permuted engagement rates ′Ri and by considering only right
intervals of 0 of the kind =Y η[0;],i i as follows:

M

M


∫∑

∑

′

⎧

⎨
⎪

⎩⎪

=

∈

∈ ∈

∈

p S R τ dτ

η S C

η

max ()

s. t.
[0; 1].

η i
i i

η
i

i
i i

i

0M

i

(15)

In fact, it is not profitable to consider a larger search domain, e.g., more complicated subsets Y of [0; 1]M: for any collection of subsets Y it is possible

to replace Yi with the interval ∫⎡
⎣⎢

⎤
⎦⎥

dτ0; Yi
with a strict increase of the objective function while the feasibility is still preserved. We can further simplify

(15) by defining the function ′ = ′′R τ p R τ() (),i i i as follows:

M

M


∫∑

∑

− ′

⎧

⎨
⎩

=

∈

∈ ∈

′

∈

R τ dτ

η C

η S S

min ()

s. t.
[0;].

η i

η
i

i
i

i i i

0M

i

(16)

We notice that ∫ − ′ = − ′′R τ dτ p R η() (),d
dη

η
i i i i0i

i which is non-decreasing in ηi. Thus we recognize in (16) a convex optimization problem with linear
and box constraints, where the objective function is separable in the optimization variables η. It is known that such kind of problems can be solved
via a classic water-filling technique (see [17, Chapter 6]): more specifically, there exists a positive “water level” µ such that the optimal portions
η*(µ) can be computed as

Fig. 12. Normalized core network traffic vs. tail drop factor ν, for different number of chunks N and cache size C.

9 We notice that such fi always exists, even though is not unique, since it can arbitrarily break the ties among equally popular parts of a single file, and it is in general discontinuous.

L. Maggi et al. Computer Communications 116 (2018) 159–171

168

M

∑

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=

⎧

⎨

⎪⎪

⎩
⎪
⎪

′ ≥

′ ≤

=

′

∈

′

∈

′

−

∈

′

η μ

R τ μ

R τ μ

R μ

S η μ C

* ()

1 if min ()

0 if max ()

() else

* ()

i

τ
i

τ
i

i

i
i i

[0;1]

[0;1]

1

(17)

By rewriting (17) in terms of ′Ri , we obtain the expressions:

M

∑

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=

⎧

⎨

⎪

⎩
⎪

′ ≥

′ ≤

=

∈

∈
′−

∈

η

p R τ μ

p R τ μ

R μ p

S Y C

*

1 if min ()

0 if max ()

(/) else

* .

i

i τ
i

i τ
i

i i

i
i i

[0;1]

[0;1]

1

and we can finally claim that

M= = ≥ ∀ ∈−Y f η τ p R τ μ i* ([0; *]) { : () } .i i i i i
1

The thesis follows. □

A2. Waterfilling algorithm

Algorithm to compute the optimal stored portion η *i for each content i.

Input: Audience retention rate Ri for all contents i, content popularity distribution p{ } ,i i cache size C, size of video files S{ }i i.

Step 1 (Initialization) Let =k 0, =C C: ,(0) M M=: ,(0) M =∅: ,a
μ M =∅:b

μ . Define ′Ri as a strictly decreasing extension of Ri over the whole real
axis, i.e., ′ =R τ R τ() ()i i for all ∈τ [0; 1] and ′Ri is strictly decreasing over .

Step 2 Estimate the optimal popularity threshold μ k() according to the modified ARR ′R by solving the fixed-point equation:

M
∑ ′ =∈

−S R μ C[] ()i i i
k k1 () ()

k() .
Step 3 Compute the set of contents whose estimated stored portion:

• is negative, i.e., M′ < =−
−m R μ{ : [] () 0}:i

k μ k1 () ()

• exceeds 1, i.e., M′ > =−
+m R μ{ : [] () 1}:i

k μ k1 () ()

• is within [0; 1], i.e., M≤ ′ ≤ =−m R μ{ : 0 [] () 1}:i
k μ k1 () ()

Step 4 Compute the estimated cache occupation δ μ()k() :

M M
= ∑ + ∑ ′∈ ∈

−
+

δ μ S S R μ() [] ()k
i i i i i

k() 1 ()μ k μ k() () .

Step 5
• If the estimated cache occupation equals the available cache memory (=δ μ C()k k() ()) or M = ∅μ k() then set =μ μ k(), M M M= ∪− − − ,μ μ μ k()

M M M= ∪+ + + ,μ μ μ k() M M=μ μ k(). Go to Step 6 and terminate.
• Else, if the estimated cache occupation exceeds the available cache memory (>δ μ C()k k() ()) then set =+C C:k k(1) (). Compute

M M M= ∖+
−: ,k k μ k(1) () () and update M M M= ∪− − −: ,μ μ μ k() = +k k: 1. Go to Step 2.

• Else, update the remaining available cache memory as
M

= − ∑+
∈ +

C C Sk k
i i

(1) () μ k() and set M M M= ∖+
+: ,k k μ k(1) () () M M M= ∪+ + +: ,μ μ μ k()

= +k k: 1. Go to Step 2.
Step 6 (Termination) Set the optimal stored portion =η* 0i for all M∈ −i μ; =η* 1i for all M∈ +i μ; = ′ −η R μ* [] ()i i

1 for all M∈i μ.

Return optimal stored portion η*i for all contents i.

A3. Proof of Proposition 1

Proof. Since Ri is already strictly decreasing, then we can consider =f τ τ()i and ′ =R Ri i. Moreover, in this case =R τmin () 0τ i and =R τmax () 1τ i . The
thesis easily follows. □

A4. Proof of Corollary 2

Proof. Define

= − − +∼− − −(())R τ
λ

τ e e() 1 ln 1 .i
i

λ λ1
i i

L. Maggi et al. Computer Communications 116 (2018) 159–171

169

We notice that =∼− −R μ p R μ p(/) (/)i i i i
1 1 when 0< µ≤ pi and <∼−R μ p(/) 0i i

1
whenever pi> µ. Then, we can rewrite (5) as

M

∑

⎧

⎨
⎪

⎩⎪

=

=

∼− +

∈

η R μ p

S η C

* [(/)]

* .

i i i

i
i i

1

The thesis easily follows. □

A5. Proof of Theorem 2

Proof. Let us first introduce the function

∑=
=

−ξ τ p R τ e() () .t

i

M

i i
p R τ t()

1

()C i i C

We then define I f() ,x where f is a continuous function defined over , the integral approximation of f via Riemann sums of the type:

I ∑=
=

−f f x x() ()Δ .
k

N

k kx
1

1

We notice that if f is increasing (decreasing) then I I< > ′f f() () ()x x for any sub-splitting x′. We can now rewrite BcLRU(x, ν) as (compare with (9))

I

I

=

− =

()
()

B ν ξ

Mν C
S

h

x(,)

s. t.

t

t

x

x

cLRU
()

()

C

C

where = ∑=
−h τ e()t

i
M p R τ t()

1
()C i i C . Since h τ()t()C is increasing in τ, it easily follows from an induction argument that the value of characteristic time for

any chunk splitting is found within t t[;]C C .
Consider now a sub-splitting x′ with associated characteristic time ′tC. Since h τ()t()C is increasing, then I I>′h h() ()t t

x x
() ()C C . Also, since

I I=′ ′h h() () ,t t
x x

() ()C C and h(t)(τ) is decreasing in t then ′ >t tC C. We then have

I I I= > >

= ′

′ ′
′() () ()B ν ξ ξ ξ

B ν

x

x

(,)

(,)

t t t
x x xcLRU

() () ()

cLRU

C C C

where the second inequality follows from the fact that ξ(t)(τ) is decreasing in τ for any value t of the characteristic time. The thesis is proven. □

A6. Proof of Corollary 4

Proof. The derivative with respect to ν of the objective function in (12) in the direction along which the constraint is satisfied writes

∫∑ ∑
∫

= − − +
∑ −

∑=

−

=

− =
−

=
−

()q ν e p R ν p R τ e dτ
e

p R τ e dτ
() 1 () ()

1

()i

M
p R ν t

i i
ν

i

M

i i
p R τ t i

M p R ν t

ν
i
M

i i
p R τ t

1

()
0

1

2 2 () 1
()

0 1
()

i i C i i C
i i C

i i C (A.18)

Let us calculate −q dν(1), which equals

∑ ∑⎛

⎝
⎜
+
+

′ − ′ ⎞

⎠
⎟

= =

dν A B dν
C D dν

p R dν p R(1) (1) .
i

M

i i
i

M

i i
1 1

2 2

Since ∫= ∑ >=
−A p R τ e dτ() 0ν

i
M

i i
p R τ t

0 1
2 2 ()i i C and ∫= ∑ >=

−B p R τ e dτ() 0,ν
i
M

i i
p R τ t

0 1
()i i C then − >q dν(1) 0 and thesis is proven. □

A7. Proof of Corollary 5

Proof.We first observe that, if =R τ() 1,i then for all ν we have =B ν ν B νx([0;],) (,)cLRU cLRU for any chunk splitting x. Then it suffices to prove that q
(ν)< 0 holds for all ν∈ (0; 1), i.e., that the following expression holds:

⎛
⎝
∑ ⎞

⎠
∑ ∑ ∑− − − <

=

−

=

−

=

−

=

−()e p e e p p e1 1 0.
i

M
p t

i

M

i
p t

i

M
p t

i
i

M

i
p t

1 1

2

1 1

i C i C i C i C

The thesis follows. □

References

[1] K. Agrawal, T. Venkatesh, D. Medhi, A dynamic popularity-based partial caching
scheme for video on demand service in IPTV networks, Proceedings of
COMSNETS’14 (2014) 1–8, http://dx.doi.org/10.1109/COMSNETS.2014.6734888.

[2] W. Ali, S.M. Shamsuddin, A.S. Ismail, A survey of web caching and prefetching, Int.

J. Adv. Soft Comput. Appl. 3 (1) (2011) 18–44.
[3] N. Bouzakaria, C. Concolato, J.L. Feuvre, Overhead and performance of low latency

live streaming using MPEG-DASH, Proceedings of the Fifth International
Conference on Information, Intelligence, Systems and Applications, IISA 2014,
IEEE, 2014, pp. 92–97.

[4] H. Che, Y. Tung, Z. Wang, Hierarchical web caching systems: modeling, design and
experimental results, IEEE J. Sel. Areas Commun. 20 (7) (2002) 1305–1314.

L. Maggi et al. Computer Communications 116 (2018) 159–171

170

http://dx.doi.org/10.1109/COMSNETS.2014.6734888
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0002
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0002
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0004

[5] S. Chen, H. Wang, X. Zhang, B. Shen, S. Wee, Segment-based proxy caching for
internet streaming media delivery, IEEE Multimed. 12 (3) (2005) 59–67. ISSN
1070-986X. http://doi.ieeecomputersociety.org/10.1109/MMUL.2005.56 .

[6] Cisco, Cisco visual networking index: forecast and methodology, 2014, http://
www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-
generation-network/white_paper_c11-481360.html. 2014–2019.

[7] W.S. Cleveland, Robust locally weighted regression and smoothing scatterplots, J.
Am. Stat. Assoc. 74 (368) (1979) 829–836.

[8] U. Devi, R. Polavarapu, M. Chetlur, S. Kalyanaraman, On the partial caching of
streaming video, Proceedings of the IEEE IWQoS, 2012, (2012), pp. 1–9, http://dx.
doi.org/10.1109/IWQoS.2012.6245982.

[9] C. Fricker, P. Robert, J. Roberts, A versatile and accurate approximation for LRU
cache performance, Proceedings of the Twenty-fourth International Teletraffic
Congress (ITC 24), (2012), pp. 1–8.

[10] M. Hefeeda, O. Saleh, Raffic modeling and proportional partial caching for peer-to-
peer systems, IEEE/ACM Trans. Netw. 16 (6) (2008) 1447–1460. ISSN 1063-6692.
doi:10.1109/TNET.2008.918081 .

[11] K.W. Hwang, D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, V. Misra,
K.K. Ramakrishnan, D.F. Swayne, Leveraging video viewing patterns for optimal
content placement, Proceedings of IFIP Conference on Networking, IFIP’12,
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 44–58. ISBN 978-3-642-30053-0.

[12] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, N. Shahmehri, Bandwidth-
aware prefetching for proactive multi-video preloading and improved HAS per-
formance, Proceedings of the Twenty-third ACM international conference on
Multimedia, ACM, 2015, pp. 551–560.

[13] S.-H. Lim, Y.-B. Ko, G.-H. Jung, J. Kim, M.-W. Jang, Inter-chunk popularity-based
edge-first caching in content-centric networking, IEEE Commun. Lett. 18 (8) (2014)
1331–1334. ISSN 1089–7798. doi:10.1109/LCOMM.2014.2329482 .

[14] L. Maggi, L. Gkatzikis, G. Paschos, J. Leguay, Adapting caching to audience re-
tention rate: which video chunk to store? (2015), arXiv preprint arXiv:1512.03274.

[15] J. Roberts, N. Sbihi, Exploring the memory-bandwidth tradeoff in an information-
centric network, Proceedings of ITC, (2013), pp. 1–9.

[16] S. Sen, J. Rexford, D. Towsley, Proxy prefix caching for multimedia streams,
Proceedings of the IEEE INFOCOM’99, 3 (1999) 1310–1319, http://dx.doi.org/10.
1109/INFCOM.1999.752149.

[17] S.M. Stefanov, Separable Programming: Theory and Methods, vol. 53, Springer
Science & Business Media, 2013.

[18] J. Wang, A survey of web caching schemes for the internet, ACM SIGCOMM
Comput. Commun. Rev. 29 (5) (1999) 36–46.

[19] L. Wang, S. Bayhan, J. Kangasharju, Optimal Chunking and partial caching in in-
formation-centric networks, Comput. Commun. 61 (2015) 48–57.

[20] Wistia, 2016, http://wistia.com/doc/audience-engagement-graph.
[21] K.-L. Wu, P. Yu, J. Wolf, Segmentation of multimedia streams for proxy caching,

IEEE Trans. Multimed. 6 (5) (2004) 770–780. ISSN 1520–9210. doi:10.1109/TMM.
2004.834870 .

[22] Q. Yang, M.M. Amiri, D. Gündüz, Audience retention rate aware coded video
caching, Proceedings of the 2017 IEEE International Conference on
Communications Workshops (ICC Workshops), IEEE, 2017, pp. 1189–1194.

[23] Z. Ye, F. De Pellegrini, R. El-Azouzi, L. Maggi, T. Jimenez, Quality-aware dash video
caching schemes at mobile edge, Proceedings of the 2017 Twenty-ninth
International, Teletraffic Congress (ITC 29), 1 IEEE, 2017, pp. 205–213.

[24] YouTube, 2016, http://support.google.com/youtube/answer/1715160?hl=en-GB.
[25] J. Yu, C.T. Chou, Z. Yang, X. Du, T. Wang, A dynamic caching algorithm based on

internal popularity distribution of streaming media, Multimed. Syst. 12 (2) (2006)
135–149.

[26] M. Zeni, D. Miorandi, F. De Pellegrini, YOUStatanalyzer: a tool for analysing the
dynamics of YouTube content popularity, Proceedings of the of VALUETOOLS 13,
ICST, 2013, pp. 286–289.

L. Maggi et al. Computer Communications 116 (2018) 159–171

171

http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0005
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0006
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0006
http://dx.doi.org/10.1109/IWQoS.2012.6245982
http://dx.doi.org/10.1109/IWQoS.2012.6245982
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0008
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0008
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0008
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0009
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0009
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0009
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0012
https://doi.org/1512.03274
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0014
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0014
http://dx.doi.org/10.1109/INFCOM.1999.752149
http://dx.doi.org/10.1109/INFCOM.1999.752149
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0016
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0016
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0017
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0017
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0018
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0018
http://wistia.com/doc/audience-engagement-graph
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0019
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0019
https://doi.org/10.1109/TMM.2004.834870
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0021
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0021
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0021
http://support.google.com/youtube/answer/1715160?hl=en-GB
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0023
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0023
http://refhub.elsevier.com/S0140-3664(17)30644-8/sbref0023

	Adapting caching to audience retention rate
	Introduction
	Related work
	Main contributions

	Youtube video watch-time
	System model
	Viewing behavior model: audience retention rate
	Viewing abandonment model

	Performance limits of partial caching
	Viewing abandonment model
	Computation of optimal performance
	Performance evaluation with real data

	Chunk-LRU: analysis
	Chunk-LRU performance under viewing abandonment
	Benefits of chunk sub-splitting
	Optimal performance of chunk-LRU
	Numerical evaluations of chunk-LRU performance

	Chunk-LRU: principles for parameter design
	Number of chunks N
	Tail drop factor ν

	Conclusions
	Appendix
	Proof of Theorem 1
	Waterfilling algorithm
	Proof of Proposition 1
	Proof of Corollary 2
	Proof of Theorem 2
	Proof of Corollary 4
	Proof of Corollary 5

	References

