
Computer Communications 144 (2019) 175–187

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Clustered robust routing for traffic engineering in software-defined networks
Davide Sanvito a,∗, Ilario Filippini a, Antonio Capone a, Stefano Paris b, Jérémie Leguay b

a Politecnico di Milano, Italy
b France Research Center, Huawei Technologies Co. Ltd, France

A R T I C L E I N F O

Keywords:
Adaptive traffic engineering
Traffic matrix clustering
Software defined networks
Robust routing
Intent monitor and reroute

A B S T R A C T

One of the key advantages of Software-Defined Networks (SDN) is the opportunity to integrate Traffic
Engineering modules able to optimize network configuration according to traffic. Ideally, the network should be
dynamically reconfigured as traffic evolves, so as to achieve remarkable gains in the efficient use of resources
with respect to traditional static approaches. Unfortunately, reconfigurations cannot be too frequent due to a
number of reasons related to route stability, forwarding rules instantiation, individual flows dynamics, traffic
monitoring overhead, etc.

In this paper, we focus on the fundamental problem of deciding whether, when and how to reconfigure
the network during traffic evolution. We propose a new approach to cluster relevant points in the multi-
dimensional traffic space taking into account similarities in multiple domains and not only in traffic values.
Moreover, to provide more flexibility to the decisions on when to apply a reconfiguration, we allow some
overlap between clusters that can guarantee a good-quality routing even in case of smooth transitions.

We compare our algorithm with state-of-the-art approaches in realistic network scenarios. Results show that
our method significantly reduces the number of reconfigurations with a negligible deviation of the network
performance with respect to the continuous update of the network configuration.

Moreover, we present an experimental platform where our solution is implemented in a production-ready
SDN controller.

1. Introduction

Traffic Engineering (TE) [1] plays a crucial role for service providers
since it permits to optimize network performance, reduce operational
costs, and load balance the utilization of network resources. However,
the dynamic nature of the traffic due to ordinary daily fluctuations and
unpredictable events stirs up the trade-off between optimality of the
routing configuration and network reconfiguration rate. The traditional
approach of service providers has been to design the routing consid-
ering the ‘‘worst case’’ traffic condition, thus privileging rare network
reconfigurations. The resulting overprovisioning inevitably leads to a
suboptimal underutilization of network resources.

Software-Defined Networks (SDNs) [2] provide the needed flexibil-
ity to update more frequently TE policies to pursue optimality. Having
a global view of the network status, SDN controllers can integrate
TE algorithms [3–5] to continuously optimize the network with an
online twist. As the system evolves, new configurations are applied to
the network equipment to optimize network performance according to
traffic variations. The solutions that have been devised to cope with
these traffic variations can be broadly classified into three main classes:

∗ Corresponding author.
E-mail addresses: davide.sanvito@polimi.it (D. Sanvito), ilario.filippini@polimi.it (I. Filippini), antonio.capone@polimi.it (A. Capone),

stefano.paris@huawei.com (S. Paris), jeremie.leguay@huawei.com (J. Leguay).

dynamic TE, static TE, and semi-static TE. While different in the way
they calculate network configurations, all techniques require the use of
Traffic Matrices (TMs) periodically collected by a network monitoring
tool.

The example in Fig. 1, where a TM composed of only two demands
is considered, shows the main differences of the two extreme ap-
proaches, namely dynamic TE and static TE, which require, respectively,
to always and never reconfigure the network every time the traffic
fluctuates.

Dynamic TE, like [3,4,6,7], uses past TMs to predict the next system
state and compute the corresponding optimal routing configuration
using linear programming [8] or fast approximation algorithms [9].
As illustrated in Fig. 1, the accuracy of the prediction highly affects
the optimality of the computed solution, since prediction errors can
lead to congestion or infeasible configurations. This inevitably results in
suboptimal solutions for the actual traffic realization. Furthermore, fre-
quent network reconfigurations due to the evolution of the traffic and
corresponding routing configuration result in control plane congestion
due to the low speed of flow programming [4] in hardware. Although

https://doi.org/10.1016/j.comcom.2019.06.002
Received 19 November 2018; Received in revised form 20 April 2019; Accepted 1 June 2019
Available online 4 June 2019
0140-3664/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.comcom.2019.06.002
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2019.06.002&domain=pdf
mailto:davide.sanvito@polimi.it
mailto:ilario.filippini@polimi.it
mailto:antonio.capone@polimi.it
mailto:stefano.paris@huawei.com
mailto:jeremie.leguay@huawei.com
https://doi.org/10.1016/j.comcom.2019.06.002

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Fig. 1. Dynamic TE vs. Static TE. The traffic matrix (TM) consists of only two demands. Dynamic TE computes a routing configuration for each sampled/predicted TM, whereas
Static TE computes a single solution for all sampled/predicted TMs. Points on the solid black line represent the real TMs, while gray dotted line contains the predicted TMs.

several methods have been proposed to reduce this burden by prioritiz-
ing [10] or pre-filtering [11] network updates, they cannot overcome
the intrinsic limit of Dynamic TE : the computation of each routing
solution does not take into account any robustness consideration.

In contrast, static TE, such as oblivious routing [12] and robust
routing [13–15], monitors TMs over a long period of time and computes
the TE configuration that minimizes the worst deviation with respect
to the sequence of all per-TM optimal configurations. Such a deviation,
which is called performance ratio, is defined as the ratio between the
objective function of the static TE configuration applied to a TM and
its optimal solution as illustrated in Fig. 1. It represents the loss due
to a suboptimal configuration. The class of static TE policies keeps
the network configuration stable, but it inevitably suffers from low
optimality during most of the operational time.

Semi-static TE approaches such as [16,17] combine both static and
dynamic TE to approximate the optimal sequence of configurations
with a limited set of routing solutions computed over clusters of TMs.
Clusters of TMs are formed either by statically dividing time in different
intervals or by finding similarities in the traffic domain. However, the
arbitrary splitting of the time domain results in significant performance
loss when sharp traffic variations are temporally close. Similarly, using
the same routing configuration for TMs that are close in the traffic
domain (i.e., their entries have the same magnitude) but far in the
time domain can lead to frequent network reconfigurations. In addition,
TMs different in the traffic domain do not necessarily have a different
optimal routing configuration. A crucial aspect has been neglected so
far: the controller needs to decide whether and when to reconfigure.
Transitory traffic fluctuations should be ignored to avoid system oscil-
lations and the network should be reconfigured only when it is evolving
towards a new state.

In this paper, we study the fundamental problem faced by SDN con-
trollers of deciding whether, when and how to reconfigure the network
after a traffic evolution. To provide an answer we study and address the
problem of building a set of robust routing configurations associated to
clusters of TMs that overlap in time, traffic and routing domains. Time
overlap refers to the amount of time we can use a routing configuration
even for TMs that are just before/after the associated cluster with
minimal efficiency degradation. Traffic overlap denotes the similarity
in the traffic space of TMs within the same cluster, whereas routing
overlap indicates how similarly perform two routing configurations
associated to two different clusters.

Given the interplay between TM clusters and routing solutions, we
decouple the problem into two subproblems, namely TM clustering

and robust routing. To this aim, we propose Clustered Robust Routing
(CRR), an iterative algorithm that achieves three objectives: (1) cov-
ering the entire TM space so that a feasible routing configuration is
available for any traffic condition, (2) reducing the number of routing
changes by creating a small set of robust routing configurations that can
be used for a minimum duration each time one of them is applied, and
(3) maintaining a minimum time overlap between adjacent clusters that
can be exploited to decide whether to reconfigure the network. These
three objectives map to four properties of the optimization model that
will be discussed more in depth at the beginning of Section 4.

This work extends a previous conference paper [18] by introducing
the optimization model which jointly computes the members of the
clusters together with the corresponding robust routing configurations
and extending the evaluation of the effects of overlapped clusters.
We analyze our algorithm on a realistic network scenario and com-
pare its performance against state of the art approaches of the three
TE classes discussed above. Finally, we integrate our algorithm in a
production-ready SDN controller and evaluate it in an experimental
testbed.

This paper is structured as follows: Section 2 presents the related
work. Section 3 describes the system model and the assumptions we
made in the formulation of our problem. Section 4 presents the al-
gorithm to build clustered robust configurations considering the time
continuum, the traffic space and routing similarities. Numerical results
are discussed in Section 6. An experimental testbed is described in
Section 7. Finally, concluding remarks are presented in Section 8.

2. Related work

The simplicity of controlling SDNs has brought back to light miti-
gation and scheduling network reconfiguration [19,20] problems, mo-
tivated by service providers’ concern about possible network outages
caused by failures of route updates or sudden traffic changes. The
networking research community has developed three classes of tech-
niques to handle traffic change: (i) dynamic TE, which reconfigures the
network each time a new event occurs, (ii) static TE, which uses a single
precomputed configuration that minimizes the worst deviation to the
optimum, and (iii) semi-static TE, which reconfigures the network at
predefined time instants (e.g., twice per day at noon and midnight)
to further improve network performance. A comparative analysis of
the performance of these classes of routing policies has been recently
carried out over a SDN prototype in [21].

176

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Examples of dynamic TE includes methods like [3,4,6,7], where
sophisticated techniques are used to compute the best network configu-
ration any time the traffic changes. However, reconfiguring the network
too frequently can affect its stability, since programming hardware
equipment with new flow rules can take longer than the reconfiguration
period [4], thus causing the overflow of flow rules. Methods that
reduce this burden have been proposed by prioritizing [10] or pre-
filtering [11] network updates. Nonetheless, the computation of each
routing solution is not robust against prediction errors on the next TM.

One of the first techniques of static TE is oblivious routing [12,22],
and its recent extension called valiant routing [23], which randomly
selects paths to connect source–destination pairs using a small subset
of preselected intermediate nodes. Being totally oblivious to any traffic
information, oblivious routing shows high performance loss as the
network size grows. Exploring a partial knowledge of the traffic can
reduce the performance loss. For example, COPE [15] considers only
the most likely TMs for computing the optimal configuration and add
a penalty term to avoid large deviation for unlikely TMs. The technique
proposed in [24] expands the most likely polytope by including TMs of
normal operations in the direction of a predicted anomaly. The method
proposed in [13] introduces different models for traffic uncertainness
by expressing the maximum load that can be expected over a link in the
pipe model or an upper bound on the traffic originating from a source
node and directed to a destination node in the hose model.

Semi-static TE [16,17,25,26] provides a limited set of routing config-
urations with guaranteed performance loss. These works divide the TM
polytope in two subsets according to the time dimension and compute
a robust routing for each subset. While representing a first attempt
to split the TM domain in multiple parts, these works present several
limitations: (i) the slicing direction is arbitrary, (ii) the number of
created subsets is limited, and (iii) the partition is performed either
in the traffic domain or in the time domain. Other Semi-static TE
approaches, like affine and multi-polar routing [27,28], have been
more recently proposed to overcome these limitations. In particular,
these techniques compute a set of routing configurations that can be
easily combined together to generate a routing configuration for a new
traffic realization. However, the combination of multiple configurations
can results in the utilization of a large number of paths and a flow split
ratio that might not be handled by network devices.

Although semi-static TE approaches have the potential to optimize
network performance using a limited set of routing configurations, traf-
fic, time, and routing spaces/dimensions should be jointly considered
when building clusters in order to avoid oscillations between routing
configurations when TMs are close in the traffic space but far in the
time dimension. Furthermore, clusters should not be sharply separated,
since instantaneous routing changes are impossible even in SDNs. This
work is the first attempt to address these problems and decide the best
trade-off between reconfiguration rate and routing optimality.

3. System model

In this section, we present the traffic and routing system models that
we consider in the design of our CRR algorithm.

We consider a system composed of two main stages: (i) a cluster-
maintenance stage where we group TMs into clusters and compute
robust routing configurations over these clusters, and (ii) a cluster-
activation stage where we track the traffic evolution and reconfigure
the network accordingly. The target is to minimize the average Max-
imum Link Utilization (MLU) over time, which is motivated in the
domain of datacenter interconnection and enterprise networks, where
the goal is to minimize the network congestion.

We model the network infrastructure as an undirected graph 𝐺 =
(,), where represents the set of network nodes and models
the set of links 𝑒 = (𝑖, 𝑗), connecting network nodes 𝑖, 𝑗 ∈ . Each link
𝑒 ∈ has a limited capacity 𝑐𝑖𝑗 that represents the maximum amount of
traffic that the link can transmit. The set of active demands, also known

Fig. 2. Clustering of TMs. The solid black line represents the evolution of the two OD
flows in the TM. Each blue point represents a sampled TM. Dashed ellipsoids denote the
clusters of TMs, whereas triangles identify the corresponding routing configurations.

as Origin–Destination (OD) flows, that need to be routed through the
network, is represented as a Traffic Matrix (TM): a | |×| | matrix 𝑇 =
[

𝑡𝑖𝑗
]

where each element 𝑡𝑖𝑗 denotes the amount of traffic transmitted
from source node 𝑖 to destination node 𝑗. Since the traffic evolves over
time, we consider a dynamic TM 𝑇 (𝜏) =

[

𝑡𝜏𝑖𝑗
]

, where 𝜏 denotes the
time dimension. We assume that time is discretized and we have 𝑀
samples of the TM (i.e., 𝜏 = 1,… ,𝑀).1 To simplify the notation, TM
are usually represented as a | |

2× 1 demand vector 𝐷(𝜏) =
[

𝑑𝜏ℎ
]

where
each element 𝑑𝜏ℎ unequivocally corresponds to an element 𝑡𝜏𝑖𝑗 of the TM
and represents the set of demands.

Cluster maintenance. Fig. 2 graphically illustrates the time evo-
lution of a TM composed of only two demands, 𝑑1 and 𝑑2. The solid
line represents the continuous evolution of the TM, whereas solid
dots corresponds to periodic samples measured by a traffic monitoring
system. As illustrated in the figure, an offline stage splits the TM
domain into 𝑁 clusters, denoted as 𝐶𝑖, and computes for each subset
of TMs a routing configuration 𝑅𝑖, which is robust against any possible
traffic variation within the cluster 𝐶𝑖: the routing is not customized on a
specific TM, but has to be robust to cope with demands uncertainty (due
to imperfect measurements/predictions or traffic anomalies). To avoid
oscillations between routing configurations, a cluster 𝐶𝑖 is built with
a minimum time length 𝐿 that results in a minimum utilization of the
same routing configuration 𝑅𝑖. Furthermore, a temporal overlap 𝑂 (the
gray intersection in Fig. 2) is imposed between two adjacent clusters
𝐶𝑖 and 𝐶𝑗 to guarantee the feasibility of the corresponding robust
routing configurations 𝑅𝑖 and 𝑅𝑗 outside their clusters. The overlap
𝑂 provides further robustness against inaccurate cluster transition and
can potentially leave some time to the real-time SDN controller decision
on whether to reconfigure the network.

Cluster activation. The different precomputed routing configura-
tions are then activated by the SDN controller, which follows the
evolution of the traffic matrix. By receiving an estimate of actual traffic
conditions (and possibly a short term prediction) from the monitoring
system, it can decide whether to fetch and activate a better robust
routing configuration in switches.

Clearly, the performance of this approach depends on the size and
the number of clusters. Many small clusters result in a high reconfigu-
ration rate, which may harm the network behavior itself. In contrast,
too few clusters will provide a small gain over static-TE solutions
(e.g., oblivious routing). This clustering approach will always lead to
a better performance than the single-route case, as the network is no

1 In the rest of the paper we will interchangeably refer to TM 𝑇 (𝜏) at time
𝜏 with the time instant 𝜏 itself.

177

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Table 1
Input parameters of our algorithms.

Parameter Description

 Set of nodes (network devices)
 Set of edges (network links)
 Set of demands
 Set of time instants
 Set of routing configurations
𝑐𝑖𝑗 Edge capacity (in capacity units) (𝑖, 𝑗) ∈
𝑑𝜏
ℎ Rate of OD demand ℎ ∈ measured at time 𝜏 ∈

𝑁 Number of robust routing configurations
𝑀 Number of traffic matrices
𝐿 Minimum holding time of a routing configuration
𝑂 Temporal overlap between two adjacent clusters

Table 2
Variables of 𝐂𝐑𝐑 model.

Variable Description

𝛾𝑟𝜏 ∈ R Network MLU when 𝑟th RC is applied to TM 𝑇 (𝜏)
𝑓ℎ𝑟
𝑖𝑗 ∈ R Amount of demand ℎ ∈ routed on link (𝑖, 𝑗) ∈ under 𝑟th RC

𝑥𝑟𝜏 ∈ B TM 𝑇 (𝜏) to 𝑟th RC assignment
𝑦𝑟𝜏 ∈ B Forward difference of 𝑥𝑟𝜏 variable
𝑤𝑟

𝜏 ∈ B Backward difference of 𝑥𝑟𝜏 variable
𝛾−,𝑟𝜏 ∈ R Network MLU when a RC is applied to TMs before the beginning of

the cluster
𝛾+,𝑟𝜏 ∈ R Network MLU when a RC is applied to TMs after the end of the

cluster

Table 3
Variables of 𝐒𝐏 model.

Variable Description

𝑥𝑟𝜏 ∈ B TM 𝑇 (𝜏) to 𝑟th RC assignment
𝑦𝑟𝜏 ∈ B Forward difference of 𝑥𝑟𝜏 variable
𝑧𝑟 ∈ B 𝑟th RC selection
𝑤𝑟

𝜏 ∈ B Backward difference of 𝑥𝑟𝜏 variable

Table 4
Variables of 𝐑𝐑 model.

Variable Description

𝛾𝜏 ∈ R Network MLU when routing TM 𝑇 (𝜏)
𝑓ℎ𝑟
𝑖𝑗 ∈ R Amount of demand ℎ ∈ routed on link (𝑖, 𝑗) ∈ under 𝑟th RC

longer forced to always support the worst-case traffic demand. Indeed,
the correct solution will be applied when the corresponding worst-case
(among the possibly many that lie in different regions) appears.

For a smooth network reconfiguration when the TM evolution enters
into a new cluster, we compute clusters with a minimum time overlap,
represented by the intersection of two clusters in Fig. 2. This allows
us to mitigate the effect of a sharp boundary between time contigu-
ous clusters, which requires an instantaneous reconfiguration of the
network.

In the next section, we show how our algorithm, Clustered Robust
Routing (CRR), solves the problem of achieving a good trade-off be-
tween routing stability and optimality by maintaining a set of routing
configurations for overlapping clusters of TMs.

Tables 1–4 summarize the notation used throughout the paper. The
first column of Tables 2–4 also reports the domain of the decision
variables: R and B define a variable with real and binary values,
respectively (B = {0, 1}).

4. Clustered robust routing

The CRR algorithm is implemented as a module of the network
controller. It takes as input a set of TMs representative of the period
in which robust routing configurations have to be designed. These TMs
can be obtained in several ways: they can be measurements from past
network conditions, or the outcome of a TM prediction module, or even
synthetically generated. For the sake of clarity, we neglect the effect

of prediction errors in the description of the algorithm, however, we
investigate the impact of inaccurate TMs within numerical results. The
impact is indeed rather limited for realistic error values because the
clustering intrinsically generates robust solutions.

Each TM describes the expected traffic conditions at specific time
instants. Therefore, TMs can be temporally ordered and the set of
TM IDs can be used as time axis. The result of the algorithm is a
set of Routing Configurations (RCs, denoted as 𝑅𝑖 in Fig. 2) and the
corresponding clusters of TMs (𝐶𝑖 in Fig. 2). Each RC will be activated
in the network as soon as the traffic enters the corresponding cluster.
We have designed the CRR algorithm relying on the following main
features:

(𝐹1) Routing-based clustering : TMs are grouped together not only in
time and traffic domains, but also in the routing performance
domain. Considering only similarities between the OD demands
might be inefficient because TMs with similar demands can
have very different good quality routings. In order to take into
consideration the routing, we need to consider its ultimate effect,
i.e. the network congestion resulting from applying a given RC to
a given TM. Considering just similarities in the routing variables
given by the optimum routings can misuse the number of RCs
(a resource we do not want to waste) because, due to network
scenario symmetries, two RCs can provide a comparable level of
congestion despite having different routing variables. Only TMs
characterized by a small congestion with a same RC must be
grouped together in a cluster;

(𝐹2) In-cluster robust routing : due to imperfect measurements or pre-
dictions, the actual TMs we need to deal with might deviate from
the TM input set. The RC thus cannot be strongly customized
on a specific TM of the cluster and we need a routing solution
which is robust against uncertainty in the traffic matrix subspace
defined by the members of the cluster. One possibility is to
consider the worst case TM in the continuous set defined by
the convex hull of all the discrete TMs. Since the optimization
process is quite complicated [22,29] and the considered TM
might be potentially rare in practice, we rely on the discrete
space described by the set of representative TMs of each cluster
and adopt a multi-TM robust optimization approach, like those
in [30]. The decoupled nature of the CRR allows to easily change
the routing computation building block with other approaches
to robust routing from literature. If, for example, significant
anomalies come into play, we can adopt the approach presented
in [15] which, despite still focusing on the set of representative
TMs, guarantees a bounded penalty gap over the remaining
traffic scenarios without changing the TM clustering logic;

(𝐹3) Routing configuration holding time: a same RC has to be kept for
a guaranteed minimum time. Even if SDN allows to dynamically
change network routes, we cannot change routes too frequently,
to avoid incurring into route flapping problems. Assuming the
TM input set comes from an uniform sampling, this requirement
translates into enforcing a minimum size for each cluster;

(𝐹4) Adjacent clusters overlap: transitions between two RCs are not
instantaneous even in SDN. By considering an overlap among
adjacent clusters we can make the transition smoother. This
means that routing configurations of adjacent clusters will be
reasonably good also with the TMs that are expected to be
close to a route transition. This gives more time to the SDN
controller to decide when the update should occur, enabling a
switching point decision based on the past, current and predicted
traffic, considering anticipatory networking aspect as well. Over-
laps also help consistent update techniques [31,32] that need
multiple steps to guarantee a correct and congestion-free update.

178

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

4.1. CRR problem formulation

The problem we want to solve is to find the best assignment of 𝑀
TMs to 𝑁 robust RCs in order to find 𝑁 clusters of contiguous TMs
having a minimum length of 𝐿 (feature F3) and an overlap of 𝑂 TMs
(feature F4). The TMs grouped into a cluster will be routed with the
RC associated to the cluster. Moreover, since TM IDs are temporally
ordered, the solution also provides the best cluster transition instants,
thus routing reconfiguration points. Note that the TMs of a cluster are
required as input of the intra-cluster robust routing (feature F2), which,
in turn, is required to drive the TM clustering, through the estimated
congestion using that robust routing (feature F1). Therefore, this two
aspects must be jointly addressed to obtain an optimal solution. For the
sake of simplicity, we temporarily neglect the requirement of having an
overlap 𝑂. The problem is described by the following MINLP model:

[𝐂𝐑𝐑] ∶ min.
∑

𝜏∈ ,𝑟∈
𝛾𝑟𝜏 s.t.: (1)

∑

(𝑖,𝑗)∈
𝑓ℎ𝑟
𝑖𝑗 −

∑

(𝑗,𝑖)∈
𝑓ℎ𝑟
𝑗𝑖 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑖 = origin(ℎ)
−1 if 𝑖 = destination(ℎ)
0 otherwise

∀𝑖 ∈ , ℎ ∈ ,∀𝑟 ∈ (2)

𝛾𝑟𝜏 ≥
∑

ℎ∈ 𝑑𝜏ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
⋅ 𝑥𝑟𝜏 ∀𝜏 ∈ ,∀𝑟 ∈ ,∀(𝑖, 𝑗) ∈ (3)

𝑦𝑟𝜏 ≥ 𝑥𝑟(𝜏+1)
| |

− 𝑥𝑟𝜏 ∀𝜏 ∈ , 𝑟 ∈ (4)
∑

𝜏∈
𝑦𝑟𝜏 ≤ 1 ∀𝑟 ∈ (5)

∑

𝑟∈
𝑥𝑟𝜏 = 1 ∀𝜏 ∈ (6)

∑

𝜏∈
𝑥𝑟𝜏 ≥ 𝐿 ∀𝑟 ∈ (7)

𝑥𝑟𝜏 , 𝑦
𝑟
𝜏 ∈ {0, 1} ∀𝜏 ∈ , 𝑟 ∈ (8)

0 ≤ 𝛾𝑟𝜏 ≤ 1 ∀𝜏 ∈ , 𝑟 ∈ (9)

0 ≤ 𝑓ℎ𝑟
𝑖𝑗 ≤ 1 ∀(𝑖, 𝑗) ∈ ,∀ℎ ∈ , 𝑟 ∈ (10)

The Clustered Robust Routing (CRR) takes in input a set of TMs =
{𝑇 (1),… , 𝑇 (𝑀)}, the network graph 𝐺 = (,), and the index set =
{1,… , 𝑁}, which identifies the number of possible clusters/routing
configurations. The TMs in are characterized by the same demand
set , but different demand values, 𝑑𝜏ℎ, varying according to the traffic
time evolution.

The goal of 𝐂𝐑𝐑 model is to minimize the average Maximum Link
Utilization (MLU)2 over time. Variables 𝛾𝑟𝜏 store the MLU experienced in
the network when the 𝑟th RC is applied to TM 𝑇 (𝜏). Routing variables
𝑓ℎ𝑟
𝑖𝑗 express the percentage of demand ℎ routed over link (𝑖, 𝑗) with the

𝑟th RC. We consider here a more general splittable routing because it
can be easily implemented in SDN switches, however the model can
be easily modified to consider unsplittable routing solutions as well by
defining 𝑓ℎ𝑟

𝑖𝑗 in constraints (10) as binary variables.
The set of constraints (2) ensures flow balance is guaranteed for

each 𝑟 of the 𝑁 computed RCs, thus defining each RC, while con-
straints (3) ensure that each 𝛾𝑟𝜏 is set to the maximum utilization among
network links when TM 𝑇 (𝜏) is routed via the 𝑟th RC. Indeed, variables
𝑥𝑟𝜏 are the clustering variables, and define the assignment of TM 𝑇 (𝜏)
to the 𝑟th RC.

2 Note that we decided to use the MLU as it is a commonly-used metric
that directly expresses the network congestion, however the model is general
enough to consider other types of metrics related to traffic. We can for
example minimize the time-averaged Average Link Utilization (ALU), delay
or routing cost. This can be captured by changing the objective function and
the constraints (3).

Fig. 3. Segmentation Problem, 𝑥𝑟𝜏 matrix.

If we visualize the matrix corresponding to variables 𝑥𝑟𝜏 (see Fig. 3a),
the solution of the problem is a set of 𝑁 contiguous column-sequences
of 1’s with minimum length 𝐿. These sequences must be unique in a
column, and correspond to a set of TMs forming a cluster. In order to
identify the beginning of each cluster, we rely on variables 𝑦𝑟𝜏 , defined
as forward differences of variables 𝑥𝑟𝜏 . With 𝑦𝑟𝜏 = 1, the model identifies
the initial TM of the cluster 𝑟: 𝑇 (𝜏 + 1).

The set of constraints (4)3 force variables 𝑦𝑟𝜏 to be 1 whenever the
forward differences of variables 𝑥𝑟𝜏 are 1. Constraints (5) guarantee a
unique cluster beginning for each column.4 The set of constraints (6)
imposes each TM 𝑇 (𝜏) to be assigned to one and only one cluster.
Constraints (7) force a minimum number of TMs assigned to a cluster 𝑟,
which, combined with the previous constraints, imposes a unique and
compact sequence of 1’s of minimum length 𝐿. Finally, constraint (9),
together with (3), ensures that link capacities are not exceeded, when
considering the most congested links for every TM 𝑇 (𝜏) under the 𝑟th
RC. This implicitly guarantees the same for all network links.

The solution of the model defines the optimal network configu-
ration: variables 𝑥𝑟𝜏 define the TMs of each cluster 𝑟, whose RC is
represented by variables 𝑓ℎ𝑟

𝑖𝑗 . Finally, variables 𝑦𝑟𝜏 provide the routing
activation time, 𝜏 + 1, of each 𝑟th RC.

In order to consider an overlap between adjacent clusters, formu-
lation 𝐂𝐑𝐑 must be amended to capture the fact that 𝑂 TMs beyond
the boundaries of the clusters could be routed with the RC associated
to the cluster. We model this by stating that each of the 𝑂 TMs in
overlap (gray cells in Fig. 3b) provides a MLU cost that is the average
between the one of the assigned cluster and the one using the RC of
the overlapping cluster.5 The following constraints must be added:

𝑤𝑟
𝜏 ≥ 𝑥𝑟(𝜏−1)

| |

− 𝑥𝑟𝜏 ∀𝜏 ∈ , 𝑟 ∈ (11)
∑

𝜏∈
𝑤𝑟

𝜏 ≤ 1 ∀𝑟 ∈ (12)

3 The notation (⋅)𝑚 indicates the modulo-𝑚 operator.
4 Note that clustering can be made non-circular (i.e. with the first cluster

starting exactly at the beginning of the day, without spanning the end) by
simply adding ∑

𝑟∈ 𝑦𝑟
| |

= 1 and ∑

𝑟∈ 𝑤𝑟
1 = 1 to the set of constraints.

5 The model can capture other assumptions by simply changing some of the
coefficients in the formulation.

179

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

𝛾−,𝑟𝑘 ≥
∑

ℎ∈ 𝑑𝑘ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
⋅ 𝑦𝑟𝜏

∀𝜏 ∈ ,∀𝑟 ∈ ,∀(𝑖, 𝑗) ∈ ,∀𝑘 ∶ (𝜏 − 𝑂 < 𝑘 ≤ 𝜏)
| |

(13)

𝛾+,𝑟𝑘 ≥
∑

ℎ∈ 𝑑𝑘ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
⋅𝑤𝑟

𝜏

∀𝜏 ∈ ,∀𝑟 ∈ ,∀(𝑖, 𝑗) ∈ ,∀𝑘 ∶ (𝜏 ≤ 𝑘 < 𝜏 + 𝑂)
| |

(14)

𝑤𝑟
𝜏 ∈ {0, 1} ∀𝜏 ∈ , 𝑟 ∈ (15)

0 ≤ 𝛾−,𝑟𝜏 ≤ 1 ∀𝜏 ∈ , 𝑟 ∈ (16)

0 ≤ 𝛾+,𝑟𝜏 ≤ 1 ∀𝜏 ∈ , 𝑟 ∈ (17)

and a new objective function must be introduced in 𝐂𝐑𝐑:

min
∑

𝜏∈ ,𝑟∈
𝑥𝑟𝜏𝛾

𝑟
𝜏 +

1
2

∑

𝜏∈ ,𝑟∈
𝑦𝑟𝜏

⎛

⎜

⎜

⎝

∑

(𝜏−𝑂<𝑘≤𝜏)
| |

𝛾−,𝑟𝑘 −
∑

(𝜏+1≤𝑘≤𝜏+𝑂)
| |

𝛾𝑟𝑘
⎞

⎟

⎟

⎠

+

1
2

∑

𝜏∈ ,𝑟∈
𝑤𝑟

𝜏

⎛

⎜

⎜

⎝

∑

(𝜏≤𝑘<𝜏+𝑂)
| |

𝛾+,𝑟𝑘 −
∑

(𝜏−𝑂≤𝑘<𝜏)
| |

𝛾𝑟𝑘
⎞

⎟

⎟

⎠

(18)

Constraints (11) define variables 𝑤𝑟
𝜏 as backward differences of 𝑥𝑟𝜏 and,

similarly to constraints (4)–(5), guarantee a unique cluster for each
column, when combined with constraints (12). Defining the end of the
compact column-sequences of 1’s in Fig. 3, 𝑤𝑟

𝜏 must satisfy the same
uniqueness requirements as 𝑦𝑟𝜏 .

We introduce two additional variables 𝛾−,𝑟𝜏 and 𝛾+,𝑟𝜏 , similar to 𝛾𝑟𝜏 in
(13)–(14), to compute the MLU caused by the application of cluster 𝑟’s
RC to 𝑂 TMs, respectively, before the beginning and after the end of
cluster 𝑟. They are used to consider congestion contribution of adjacent
clusters and ensure, thanks to constraints (16)–(17), that the RC of
overlapping clusters is feasible for the TMs in the overlap region as
well.

The new objective function (18) computes the MLU of TMs in
overlap by removing half of the MLU cost with the assigned cluster’s RC
and adding half of the MLU cost resulting from the application of the
overlapping cluster’s RC. For sake of completeness, the linear version
of the full model with overlap is detailed in Appendix.

Unfortunately, the problem described by 𝐂𝐑𝐑 model is strongly
combinatorial and it has revealed to be very hard to solve. State-of-the-
art integer programming solvers, like Gurobi Solver6 or IBM CPLEX,7
could not provide a solution in reasonable times: small instances of tens
of TMs require several days to get the optimum.

5. Two-steps CRR heuristic

The hardness of the joint problem calls for the development of a
heuristic approach to split the overall complexity in more affordable
subproblems. In this perspective, we propose the two-steps Clustered
Robust Routing (CRR) algorithm, whose scheme is drawn in Fig. 4. In
the first step, a Segmentation Problem is solved: provided an initial set
of 𝑊 RCs, the best assignment of 𝑀 TMs to up to 𝑁 of the given RCs
is computed, considering the minimum holding time constraint and the
overlap. In the second step, a Robust Routing Problem is computed for
each of the 𝑁 clusters, in order to create new RCs more suitable for the
selected TMs. The new RCs are introduced in the set of 𝑊 available RCs
of the Segmentation Problem and the two steps are repeated for a given
number of iterations.

6 www.gurobi.com.
7 www.ibm.com/software/commerce/optimization/cplex-optimizer/.

Fig. 4. High-level view of the proposed two-steps CRR algorithm.

5.1. STEP 1 - Segmentation Problem

The Segmentation Problem takes in input a set of TMs = {𝑇 (1),… ,
𝑇 (𝑀)} and a set of 𝑊 RCs = {𝑅1,… , 𝑅𝑊 }. Its goal is to assign
each TM 𝑇 (𝜏) to a RC 𝑅𝑟 such that the overall association cost is
minimized and the number of used RCs is not larger than 𝑁 . The TM–
RC association cost 𝛿𝑟𝜏 can be precomputed and corresponds to the
network Maximum Link Utilization (MLU) when TM 𝑇 (𝜏) is routed
through RC 𝑅𝑟, which is given. The solution of the Segmentation
Problem provides a set of 𝑁 TM clusters and RCs satisfying minimum
length and overlap constraints.

We model the Segmentation Problem as an ILP model that considers
a subset of variables and constraints of 𝐂𝐑𝐑 model presented in the
previous section, where variables 𝛾𝑟𝜏 have been replaced by input
parameters 𝛿𝑟𝜏 . Indeed, since the 𝑊 RCs are precomputed, and thus
input parameters, constraints (2), (3), (9), (10), and variables 𝑓ℎ𝑟

𝑖𝑗 and 𝛾𝑟𝜏
must not be included. Again, for the sake of simplicity we temporarily
neglect the overlap 𝑂.

The Segmentation Problem has the following formulation:

[𝐒𝐏] ∶ min.
∑

𝜏∈ ,𝑟∈
𝑥𝑟𝜏𝛿

𝑟
𝜏 s.t.: (19)

𝑦𝑟𝜏 ≥ 𝑥𝑟(𝜏+1)
| |

− 𝑥𝑟𝜏 ∀𝜏 ∈ , 𝑟 ∈ (20)
∑

𝜏∈
𝑦𝑟𝜏 ≤ 𝑧𝑟 ∀𝑟 ∈ (21)

∑

𝑟∈
𝑥𝑟𝜏 = 1 ∀𝜏 ∈ (22)

∑

𝜏∈
𝑥𝑟𝜏 ≥ 𝐿 ⋅ 𝑧𝑟 ∀𝑟 ∈ (23)

∑

𝑟∈
𝑧𝑟 ≤ 𝑁 (24)

𝑥𝑟𝜏 , 𝑦
𝑟
𝜏 , 𝑧

𝑟 ∈ {0, 1} ∀𝜏 ∈ , 𝑟 ∈ (25)

Variables 𝑥𝑟𝜏 and 𝑦𝑟𝜏 have the same meaning as in 𝐂𝐑𝐑 formulation,
while a new set of variables 𝑧𝑟 has been introduced. Since considered
RCs are typically more than the required 𝑁 , 𝑧𝑟 set to 1 means that RC
𝑅𝑟 has been selected, and constraint (24) ensures that no more than
𝑁 can be selected overall. Constraints (20)–(23) have the same goal of
(4)–(7), but considering only selected RCs.

In order to consider an overlap between adjacent clusters, formu-
lation 𝐒𝐏 has to be modified in a similar way as discussed for the
formulation 𝐂𝐑𝐑. The following constraints:

𝑤𝑟
𝜏 ≥ 𝑥𝑟(𝜏−1)

| |

− 𝑥𝑟𝜏 ∀𝜏 ∈ , 𝑟 ∈ (26)

180

http://www.gurobi.com
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

∑

𝜏∈
𝑤𝑟

𝜏 ≤ 𝑧𝑟 ∀𝑟 ∈ (27)

𝑤𝑟
𝜏 ∈ {0, 1} ∀𝜏 ∈ , 𝑟 ∈ (28)

and a new objective function must be introduced in 𝐒𝐏:

min
∑

𝜏∈ ,𝑟∈
𝑥𝑟𝜏𝛿

𝑟
𝜏 +

1
2

∑

𝜏∈ ,𝑟∈
𝑦𝑟𝜏

⎛

⎜

⎜

⎝

∑

(𝜏−𝑂<𝑘≤𝜏)
| |

𝛿𝑟𝑘 −
∑

(𝜏+1≤𝑘≤𝜏+𝑂)
| |

𝛿𝑟𝑘
⎞

⎟

⎟

⎠

+

1
2

∑

𝜏∈ ,𝑟∈
𝑤𝑟

𝜏

⎛

⎜

⎜

⎝

∑

(𝜏≤𝑘<𝜏+𝑂)
| |

𝛿𝑟𝑘 −
∑

(𝜏−𝑂≤𝑘<𝜏)
| |

𝛿𝑟𝑘
⎞

⎟

⎟

⎠

(29)

Constraints (26)–(27) are exactly the same as (11)–(12). The new ob-
jective function (29) and the objective function (18) seem to resemble
each other, however there is an important difference: since 𝛿𝑟𝜏 are
now precomputed parameters, no new variables, like 𝛾−,𝑟𝜏 and 𝛾+,𝑟𝜏 , are
required.

5.2. STEP 2 - Robust Routing Problem

Once TMs have been clustered around a RC in STEP 1, STEP 2
computes a new robust RC 𝑅𝑐 considering the TMs in the cluster.
This will likely provide a better tailored routing. In addition, being
a robust routing, it makes CRR intrinsically robust against noisy TM
measurements.

For each cluster 𝑐, we compute RC 𝑅𝑐 as robust routing that mini-
mizes the average MLU over time when the set of TMs in the cluster,
denoted as 𝑐 , is routed via 𝑅𝑐 . The TMs in 𝑐 are characterized by the
same demand set , but different demand values, 𝑑𝜏ℎ, varying according
to the traffic time evolution. 𝑅𝑐 will be defined by flow variables 𝑓ℎ

𝑖𝑗 ,
which indicate the percentage of demand ℎ’s flow of every TM in 𝑐
must be routed along the link (𝑖, 𝑗).

The formulation of the Robust Routing Problem is:

[𝐑𝐑] ∶ min.
∑

𝜏∈𝑐

𝛾𝜏 s.t.: (30)

∑

(𝑖,𝑗)∈
𝑓ℎ
𝑖𝑗 −

∑

(𝑗,𝑖)∈
𝑓ℎ
𝑗𝑖 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑖 = origin(ℎ)
−1 if 𝑖 = destination(ℎ)
0 otherwise

∀𝑖 ∈ , ℎ ∈ (31)

𝛾𝜏 ≥
∑

ℎ∈ 𝑑𝜏ℎ𝑓
ℎ
𝑖𝑗

𝑐𝑖𝑗
∀𝜏 ∈ 𝑐 , (𝑖, 𝑗) ∈ (32)

0 ≤ 𝑓ℎ
𝑖𝑗 ≤ 1 ∀ℎ ∈ , (𝑖, 𝑗) ∈ (33)

0 ≤ 𝛾𝜏 ≤ 1 ∀𝜏 ∈ 𝑐 (34)

The model shares part of the constraints of the 𝐂𝐑𝐑 model, but it
computes a single RC for a single cluster of TMs. Constraints (31)
are standard flow conservation constraints for splittable routing. Con-
straints (32) makes 𝛾𝜏 the MLU when routing TM 𝑇 (𝜏) and, together
with constraints (34), guarantee that the routing of each demand does
not exceed the link capacity 𝑐𝑖𝑗 for any TM.

As a final remark, the set used in STEP 1 is initialized by
considering 𝑊 RCs obtained by the solution of the Robust Routing
problem over 𝑊 sequential groups of TMs spanning the entire set . At
the end of STEP 1, STEP 2 computes a set of RCs over the 𝑁 generated
clusters, which will be included in the initial set . This provides
with more refined RCs, which could be selected in the solution of the
Segmentation Problem of the next iteration.

Fig. 5. Performance comparison of different TM clustering approaches.

6. Numerical results

In order to assess the performance of the proposed algorithm, we
consider a daily scenario in which we compare our two-steps CRR al-
gorithm to different routing solutions within the Abilene Network [33],
whose traffic requests are described by a set of TMs with granularity
5 min (288 TMs for the entire day). Abilene network was one of the
first high-performance backbone networks, connecting 11 cities across
United States with 14 links. Nowadays, Abilene is one of the very few
real data sets in which network TMs and routing are publicly available.
We imagine a scenario in which the optimization of clusters and RCs
for the day after is run during the night, on the basis of daily TM pre-
dictions. Unless differently indicated, we average obtained results over
a week and run the algorithm for 10 iterations. The CRR algorithm has
been implemented in Python, using Gurobi Solver language interface.

Given the values of the set of routing variables 𝑓ℎ𝑟
𝑖𝑗 of a particular

routing configuration RC, we compute for each 𝜏 in the Maximum
Link Utilization (MLU) as

𝑀𝐿𝑈𝑅𝐶 [𝜏] = max
(𝑖,𝑗)∈

∑

ℎ∈ 𝑑𝑘ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
(35)

The performance ratio is then defined as

𝑃𝑅 =
∑

𝜏∈ 𝑀𝐿𝑈𝑅𝐶 [𝜏]
∑

𝜏∈ 𝑀𝐿𝑈𝐷𝑦𝑛𝑇𝐸 [𝜏]
(36)

where 𝑀𝐿𝑈𝐷𝑦𝑛𝑇𝐸 [𝜏] is the MLU obtained considering as routing policy
the Dynamic TE, which solves a min-MLU Multi-Commodity Flow
(MCF) problem for each TM. The performance ratio allows to compare
different routing policies over a same network topology and set of
traffic matrices. Its value is always greater or equal to 1 and it lets us
evaluate how far a solution is from the performance of the ideal routing,
i.e. the one allowing to change the routing configuration at every TM.

6.1. Clustering approaches comparison

Fig. 5 shows the comparison of different clustering techniques. In
the first set of experiments we neglect the minimum cluster length 𝐿
and the overlap 𝑂 to assess the maximum achievable gain with respect
to state-of-the-art approaches, which do not consider these constraints.
We measure the performance in terms of ratio between the time-
average MLU of a particular routing policy (included our CRR scheme)
and the ideal value achievable using Dynamic TE. On the 𝑥-axis, the
number of generated clusters is shown. We tested our CRR algorithm
against different alternative approaches:

181

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Fig. 6. Number of routing changes when different clustering approaches are applied.
Example of solutions with 8 clusters..

• sTE : A static TE solution where a robust routing is computed over
the entire TM set. The result is a single daily RC and no reconfig-
uration is required, like in the case of oblivious routing [12].

• CritMat : This approach, presented in [17], consists in clustering
TMs according to dominating cluster heads, which are synthetic
TMs including the maximum of each demand among the TMs
grouped into the cluster. The RC associated to the cluster is the
MLU-optimum routing for the cluster head.

• K-means clustering : Most of the TM clustering approaches in lit-
erature are based on a variant of the well-known k-means tech-
nique [34]. We consider the following two alternative clustering
schemes based on k-means

– kmeans-td: TMs are clustered considering their similarity in
the traffic domain. The distance function used by k-means to
compute the centroids is the Euclidean distance of the traffic
values of the OD flows in the TMs. The distance between
TMs 𝜏1 and 𝜏2 is defined as 𝑑𝑖𝑠𝑡(𝜏1, 𝜏2) =

√

∑

ℎ∈ (𝑑𝜏1ℎ − 𝑑𝜏2ℎ)2.
– kmeans-rd: TMs are clustered according to their similarity

in the routing domain. In this case the Euclidean distance
is computed using as entries the routing variables obtained
solving the min-MLU Multi-commodity Flow (MCF) problem
for each TM. The distance between TMs 𝜏1 and 𝜏2 is defined
as 𝑑𝑖𝑠𝑡(𝜏1, 𝜏2) =

√

∑

(𝑖,𝑗)∈
∑

ℎ∈ (𝑓ℎ𝜏1
𝑖𝑗 − 𝑓ℎ𝜏2

𝑖𝑗)2.

In both cases, once clusters are eventually created, we compute a
MLU-optimum routing over the dominating TM of each cluster.

We can note how the proposed CRR algorithm outperforms all other
alternatives. The curves’ trend shows that CritMat dominating TM ap-
pears to be over-conservative, as the resulting congestion is even worse
than that of sTE. Indeed, the outcome RCs can address such a large
set of potential TMs that their working points are largely suboptimal
when RCs are applied to specific TMs. Even the TM clustering approach
based on the similarity among the optimal routing (as kmeans-rd) does
not provide the best result: due to scenario symmetries, different RCs
can provide the same congestion, therefore clustering on the mere
basis of RC topology may waste clusters to separate TMs with different
optimum routings, which could be equivalently well routed by another
unique RC. In order to better include the routing effects in the cluster
selection, we need to consider the ultimate effect of the routing, that is
the network congestion resulting from applying a given RC to a given
TM. Only TMs that are characterized by a small congestion with the

same RC must be grouped together into the cluster associated to the
specific RC.

Fig. 6 shows the reconfiguration intensity of the clustering ap-
proaches compared in Fig. 5. For the sake of clarity, we plot just the
case in which 𝑁 = 8 clusters are generated. The figure considers a
typical day, the time is expressed in terms of ordered TM IDs and
each ID corresponds to a 5-minute interval. Each point in the plot
indicates the number of links that change their routing coefficients
(𝑓ℎ

𝑖𝑗 variables in formulation 𝐑𝐑) with respect to the routing in the
previous TM. If this value is 0, it means that the previous RC is
maintained. This roughly corresponds to measure the overall number
of rule updates across all network switches. We can notice that CritMat
and the k-means with routing-domain clustering (kmeans-rd) produce
many reconfigurations, frequently changing activated RCs. K-means
with TM-domain clustering (kmeans-td), instead, results more stable,
however it still exhibits two main drawbacks. First, although being
designed to use 8 clusters, it produces more reconfigurations (up to
10–11), as the 8 associated RCs are reused. Second, there are some
reconfiguration bursts where RCs change after few minutes (e.g. around
TM 180). The CRR algorithm with 𝐿 = 0, which provides the best
performance in terms of congestion, is characterized by an unstable
routing behavior as well. Therefore, we need to explicitly provide a
minimum cluster length guarantee to avoid route flapping problems,
which, as we will see, comes at the cost of a small congestion increase.
This guarantees results in a fixed number of transitions, each separated
by the desired length 𝐿. In the figure, results for 𝐿 = 12 and 𝐿 = 36 are
shown.

Fig. 7 reports routing change instants of Fig. 6: a bar at time 𝜏 indi-
cates that at least one routing variable has changed from the previous
instant 𝜏 − 1. Even if all the five approaches produce no more than
𝑁 = 8 distinct routing configurations, CritMat and kmeans produce a
set of clusters that does not satisfy the constraints of minimum length
(minimum holding time) and time contiguity (no routing repetitions),
while CRR guarantees these two properties. We can observe that CRR,
depending on 𝐿,𝑀,𝑁 parameters, might produce clusters of non-
uniform size if 𝑁 < 𝑀∕𝐿 and this allows to better tailor RCs to
particular TM sequences. For example, for a same value of 𝑁 = 8,
𝐶𝑅𝑅(𝐿 = 12) produces smaller clusters than 𝐶𝑅𝑅(𝐿 = 36) and gets
better performance (cfr. Fig. 8).

6.2. Impact of minimum cluster length

In Fig. 8, we assess the performance of CRR algorithm when the
minimum cluster length constraint is activated with different values of
𝐿. The 𝑥-axis shows the number 𝑁 of clusters in a day, while different
curves represent different values of 𝐿. Note that the values of 𝐿 and 𝑁
are not independent: as 𝑁 clusters are generated in one day, 𝑁 cannot
be larger than the ratio 24 h / 𝐿 (in hours). Therefore curves with
larger 𝐿 stops at smaller 𝑁 values. We can see that the minimum length
constraint impacts on the performance of the clustering algorithm.
With realistic 𝑁 values, the MLU performance ratio increases by 4%
approaching 1.06, which is still very close to the ideal dynamic TE.
This performance is obtained with 𝑁 = 8 and 𝐿 = 36 results in keeping
the same routing configuration for at least 3 consecutive hours and
changing only 8 times the RC during the next day.

In order to check the consistency of the obtained results, we also
considered a second topology from SNDlib dataset [35]. The Nobel
Network is the German research network operated by the DFN-Verein.
It includes 17 nodes interconnected by 26 links and routes traffic for
257 demands. Since the size of the model is driven by the number
of links and demands, this topology provides a much bigger instance
to validate our approach. Compared to Abilene, it indeed comprises
almost 2 times links and more than 2 times demands. Results refer to
the single day (288 TMs in total) available in the dataset. Fig. 9 reports
the results of the same analysis of the clustering techniques and of the
impact of minimum cluster length performed on the Abilene Network

182

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Fig. 7. Routing change instants. A vertical bar represents a routing reconfiguration and the space between two vertical lines represents a cluster, which maintains the same routing.
CRR guarantees that the minimum cluster size is ≥ 𝐿.

Fig. 8. Impact of different minimum cluster lengths on the CRR performance.

and reported in Figs. 5 and 8. The figure on the top right corner is the
zoomed-in version of the one on the left. Since the results over these
two topologies present a comparable trend, in the rest of the paper we
focus just on Abilene Network.

6.3. Cluster overlap and robustness to switching time errors

In Fig. 10, we analyze the performance of the CRR algorithm
varying the degree of overlap 𝑂. The figure shows on the 𝑥-axis the
minimum length 𝐿 imposed to the cluster, while different curves are
plotted for multiple values of 𝑂. We can see the impact of the overlap
is significant only for short clusters, while it becomes quickly negligible
when the minimum cluster length increases. Moreover, note that each
TM included in the overlap provides an overlap extension of 5 min on
each side. Therefore, considering 𝑂 = 1,… , 6 corresponds to transition
periods from 10 min to 1 h, which can reasonably include both the

uncertainty on the transition instant and the signaling delay needed
to anticipate reconfigurations.

The output of the CRR provides the set of routing configurations
with corresponding cluster activation times. We define an activation
time to be correct if the transition point lies in the middle of the
overlapped regions. Fig. 11 evaluates the effect of a wrong (i.e. shifted)
activation time. We selected a random activation time within the
overlap region for each cluster transition: for example, evaluating the
effect of a wrong activation time for overlap 𝑂 = 3 implies trying to
advance/delay the cluster activation time of up to 3 TMs (i.e. the time
shift amounts to 0,±1,±2 and ±3 time instants). With respect to the
objective function optimized by the 𝐒𝐏 model (and reported in Fig. 10),
which considers an averaged congestion for the TMs in the overlapped
region, here we take a decision on the specific activation time and
evaluate the resulting objective function assigning each TM to exactly
one of the two overlapping clusters, according to the shifted activation
time under analysis. The red bars in Fig. 11 report the boxplot of the
objective function for different shifted activation times and for different
values of overlap 𝑂 and minimum cluster length 𝐿 on a typical day.
The number of possible sequences of shifted activation times grows
like (2 ⋅ 𝑂 + 1)(𝐾𝑚𝑎𝑥−1) where 𝐾𝑚𝑎𝑥 = 𝑀∕𝐿. Since we cannot afford to
completely explore them, the boxplots results from 5000 instances of
randomly picked activation times sequences. We perform the same kind
of evaluation also for the routing configurations obtained by solving
the CRR without overlap and report the results in the blue bars. The
green line reports instead the 𝑠𝑇𝐸 solution. If we focus on the bars
as a whole, performance decreases as the overlap amount increases,
confirming the results of the previous figure. Focusing instead of a
single pair of red/blue bars for a given value of overlap 𝑂 and minimum
cluster length 𝐿, we can appreciate that including non-zero overlap
in the CRR can effectively help in limiting the worst performance
degradation in case of a wrong activation time. Put it in another way,
the overlap makes the reconfiguration decision less critical, since the
performance deviation measured as the gap between the largest and
smallest Performance Ratio of the box-plots in the figure is rather
limited.

183

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Fig. 9. Performance comparison of different TM clustering approaches and impact of different minimum cluster lengths on the CRR performance for Nobel Topology.

Fig. 10. Impact of different degrees of overlap on the CRR performance.

6.4. Impact of prediction error

In the previous sections, we have analyzed the performance of the
CRR algorithm when the clustering and the related RCs are computed
over a set of TMs and applied to the same set. This corresponds to
assume perfect TM prediction and provide the potential performance
achievable by the algorithm. In this section, we relax this assumption
and analyze the impact of prediction errors.

In order to reproduce the effect of unideal predictions, we run the
CRR algorithm over a noisy version of the daily set of TMs to compute
clusters and RCs. Then, we apply the RCs to the original set of TMs,
which represent the real traffic behavior. Therefore, the TM sets used
to compute and evaluate the clustering approach differ. Each noisy
TM has been obtained from the original one by adding a uniform
relative error [−𝛼, 𝛼] % to every OD demand 𝑑𝜏ℎ. The results of these
experiments are shown in Fig. 12, where the performance achievable
with different cluster lengths 𝐿 and prediction errors 𝛼 is reported.
Similarly to previous analyses, the performance is computed as the
ratio between the average network MLU over the ideal case of applying
dynamic TE in perfect prediction conditions.

We can clearly note that the absolute performance of CRR is neg-
atively affected by the presence of prediction errors. However the

184

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Fig. 11. Impact of wrong cluster activation times. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. CRR performance when prediction error is considered. Results are expressed
as performance ratio with respect to the ideal optimum routing.

intrinsic robustness of the clustered approach limits the performance
decrease. Even with large errors, the gap with respect to the ideal
Dynamic TE is within 10%–11%.

It can be further observed that the gain of CRR with small clusters
fades away as the noise increases. Indeed, when the prediction accuracy
of TMs decreases, considering robust RCs computed over larger sets of
TMs provides the best performance ratio. Taking this to the extreme,
when we have very low-quality predictions, no clustering can be help-
ful, because the representative set of TMs and the actual traffic will
have little correlation. Therefore, a trade-off between cluster length and
prediction accuracy exists. In case of good predictions, the size of the
clusters drives the performance. In contrast, if predictions are affected
by large errors, the impact of TM uncertainness completely overwhelms
the effect of cluster sizes.

7. Experimental testbed

In order to assess the feasibility of our approach in a Software-
Defined Network, we have integrated the CRR algorithm in Open Net-
work Operating System (ONOS) [36], a production-ready open source
SDN network operating system built for Service Provider networks.

ONOS provides high performance, scalability and availability thanks
to its distributed core and proper abstractions to configure the network.

Intents represent the highest level of abstraction: developers can focus
on what should be done, rather than how it should be done, by express-
ing their ‘‘intentions’’ via high-level policies. For example, users can
request connectivity between a pair of elements in the network. ONOS
supports different types of intents, each one supplied with a compiler
which enables ONOS core to translate the high-level policy to low-
level rules to be installed in network devices. The component of ONOS
responsible of handling intents is the Intent Framework. We selected
intents as the most suitable mean to integrate CRR in ONOS because
they allow to decouple the definition of connectivity requests (in terms
of endpoints, i.e. TM endpoints) from the actual routing decision (in
terms of specific path realizing the communication). In this way the
application submitting intents is independent from the algorithm (CRR)
deciding when and how to update the paths. In addition, our routing
logic can be reused by any ONOS application based on intents.

The CRR algorithm determines the paths used by the Intent Frame-
work when compiling the intents. Integrating such a computationally
heavy component in the same machine which runs the controller can
deeply affect the high performance requirements of ONOS. We thus de-
veloped a new service to complement ONOS with an external plug&play
routing logic: ONOS Intent Monitor and Reroute (IMR) service8 [37].
This service orchestrates the monitoring (flow statistics collection) and
the rerouting (path changes) of the intents and communicates with an
off-platform application (OPA), running the CRR, via a set of REST
APIs. The details of the interactions between the different components,
as depicted in Fig. 13, can be found in [37].

We selected SDN-IP [38] as an example of intent-based ONOS
application whose performance can be enhanced by exploiting CRR
through our IMR service. SDN-IP is an ONOS application which enables
SDN network to connect to legacy IP networks using Border Gateway
Protocol (BGP) while appearing externally as a traditional Autonomous
System (AS).

We modified the SDN-IP application to require the IMR service
to monitor the intents related to AS-to-AS traffic and to expose their
statistics to an OPA running our CRR algorithm. We refer to this modi-
fied application as Extended SDN-IP. We implemented an experimental
testbed based on Mininet [39], replicating the Abilene topology and
attaching to each node an external BGP speaker with a single host. We
replayed a subset of a 3-day TM set generating data using iperf traffic
tool.

The CRR framework learns the traffic pattern from previous days
and adapts the routing strategy by creating multiple clusters for the

8 IMR has been included in ONOS Nightingale version 1.13 as an official
contribution.

185

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

Fig. 13. IMR interactions with ONOS and with the OPA.

Fig. 14. SDN-IP application enhanced by CRR – Average MLU comparison.

next day. More specifically, during the first day, intents are compiled by
the standard Intent Framework and statistics are collected and exposed
to the OPA. At the end of the first training period (first day of data),
collected TMs are fed to the CRR algorithm presented in Section 4 to
compute a set of three robust routing configurations for the following
day. During the second day, the OPA schedules the activation of the
routing configurations and at the same time keeps collecting statistics
in order to potentially refine the clusters and routing configurations
for the following periods. Fig. 14 shows the MLU during the 3 days and
compares the daily-average MLU (dashed line) obtained with the Legacy
SDN-IP (in blue) against the one obtained using our Extended SDN-IP
application enhanced by the CRR algorithm. During the first day the
trend of the MLU is identical because the two applications both rely on
the standard Intent Framework. After the first day of training, we can
appreciate a 5% decrease in the average MLU for the Extended SDN-
IP. We can also observe that, even if routing configurations have been
computed over TM measurements from the previous day, the robust
nature of each routing configuration can limit MLU peaks.

8. Conclusion

In this paper we investigated how robust routing approaches can
be made adaptive in the SDN context. Assuming the availability of
traffic predictions, we designed an off-line method to split the traffic

space into smaller partitions and build routing configurations that
are robust against any real-time traffic variation within the partition.
Differently from previous solutions proposed in the literature, our
clustering approach considers both technical and practical constraints
in the modeling, like the minimum holding time of a routing configu-
ration and a temporal overlap that makes routing changes smooth. The
results showed that routing configurations based on TM clustering can
achieve a performance very close to the optimal routing only if a good
clustering domain is chosen. Our proposal based on the estimation of
the congestion caused by the activation of a given routing outperforms
the other candidate solutions.

We then investigated the behavior of our solution when the ac-
curacy of traffic predictions varies. It showed an interesting trade-off
between cluster sizes and prediction errors that opens a new research
direction for the dynamic orchestration of routing configurations.

We finally showed how the proposed solution can be readily imple-
mented in a production-ready SDN controller.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix. Linear CRR model

The linearized version of 𝐂𝐑𝐑 problem, including overlap, is de-
scribed by the following MILP model:

[𝐋𝐢𝐧𝐞𝐚𝐫𝐂𝐑𝐑] ∶ min.
∑

𝜏∈ ,𝑟∈
𝛾𝑟𝜏 +

1
2

∑

𝜏∈ ,𝑟∈

⎛

⎜

⎜

⎝

∑

(𝜏−𝑂<𝑘≤𝜏)
| |

𝛾−,𝑟𝜏 −
∑

(𝜏+1≤𝑘≤𝜏+𝑂)
| |

𝛾𝑟𝑘
⎞

⎟

⎟

⎠

+

1
2

∑

𝜏∈ ,𝑟∈

⎛

⎜

⎜

⎝

∑

(𝜏≤𝑘<𝜏+𝑂)
| |

𝛾+,𝑟𝜏 −
∑

(𝜏−𝑂≤𝑘<𝜏)
| |

𝛾𝑟𝑘
⎞

⎟

⎟

⎠

(A.1)

∑

(𝑖,𝑗)∈
𝑓ℎ𝑟
𝑖𝑗 −

∑

(𝑗,𝑖)∈
𝑓ℎ𝑟
𝑗𝑖 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑖 = 𝑂ℎ

−1 if 𝑖 = 𝐷ℎ

0 otherwise

186

D. Sanvito, I. Filippini, A. Capone et al. Computer Communications 144 (2019) 175–187

∀𝑖 ∈ , ℎ ∈ ,∀𝑟 ∈ (A.2)

𝛾𝑟𝜏 ≥
∑

ℎ∈ 𝑑𝜏ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
− 𝐴 ⋅ (1 − 𝑥𝑟𝜏)

∀𝜏 ∈ ,∀𝑟 ∈ ,∀(𝑖, 𝑗) ∈ (A.3)

𝛾−,𝑟𝜏 ≥
∑

ℎ∈ 𝑑𝑘ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
− 𝐵 ⋅ (1 − 𝑦𝑟𝜏)

∀𝜏 ∈ ,∀𝑟 ∈ ,∀(𝑖, 𝑗) ∈ ,∀𝑘 ∶ (𝜏 − 𝑂 < 𝑘 ≤ 𝜏)
| |

(A.4)

𝛾+,𝑟𝜏 ≥
∑

ℎ∈ 𝑑𝑘ℎ𝑓
ℎ𝑟
𝑖𝑗

𝑐𝑖𝑗
− 𝐶 ⋅ (1 −𝑤𝑟

𝜏)

∀𝜏 ∈ ,∀𝑟 ∈ ,∀(𝑖, 𝑗) ∈ ,∀𝑘 ∶ (𝜏 ≤ 𝑘 < 𝜏 + 𝑂)
| |

(A.5)

𝑦𝑟𝜏 ≥ 𝑥𝑟(𝜏+1)
| |

− 𝑥𝑟𝜏 ∀𝜏 ∈ , 𝑟 ∈ (A.6)

𝑤𝑟
𝜏 ≥ 𝑥𝑟(𝜏−1)

| |

− 𝑥𝑟𝜏 ∀𝜏 ∈ , 𝑟 ∈ (A.7)
∑

𝜏∈
𝑦𝑟𝜏 ≤ 1 ∀𝑟 ∈ (A.8)

∑

𝜏∈
𝑤𝑟

𝜏 ≤ 1 ∀𝑟 ∈ (A.9)

∑

𝑟∈
𝑥𝑟𝜏 = 1 ∀𝜏 ∈ (A.10)

∑

𝜏∈
𝑥𝑟𝜏 ≥ 𝐿 ∀𝑟 ∈ (A.11)

𝑥𝑟𝜏 , 𝑦
𝑟
𝜏 , 𝑤

𝑟
𝜏 ∈ {0, 1} ∀𝜏 ∈ , 𝑟 ∈ (A.12)

0 ≤ 𝛾𝑟𝜏 ≤ 1 ∀𝜏 ∈ , 𝑟 ∈ (A.13)

0 ≤ 𝛾−,𝑟𝜏 ≤ 1 ∀𝜏 ∈ , 𝑟 ∈ (A.14)

0 ≤ 𝛾+,𝑟𝜏 ≤ 1 ∀𝜏 ∈ , 𝑟 ∈ (A.15)

0 ≤ 𝑓ℎ𝑟
𝑖𝑗 ≤ 1 ∀(𝑖, 𝑗) ∈ ,∀ℎ ∈ , 𝑟 ∈ (A.16)

𝐴, 𝐵 and 𝐶 are needed to deactivate constraints (A.4)–(A.6) when
𝑥𝑟𝜏 , 𝑦𝑟𝜏 and 𝑤𝑟

𝜏 are respectively set to 0. We can simply select

𝐴 = 𝐵 = 𝐶 =
max𝜏∈

∑

ℎ∈ 𝑑𝜏ℎ
min(𝑖,𝑗)∈ 𝑐𝑖𝑗

References

[1] N. Wang, K. Ho, G. Pavlou, M. Howarth, An overview of routing optimization
for internet traffic engineering, IEEE Commun. Surv. Tutor. 10 (1) (2008) 36–56.

[2] D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S.
Uhlig, Software-defined networking: A comprehensive survey, Proc. IEEE 103
(1) (2015) 14–76.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Wat-
tenhofer, Achieving high utilization with software-driven wan, ACM SIGCOMM
Comput. Commun. Rev. 43 (4) (2013) 15–26.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.
Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed
software defined wan, ACM SIGCOMM Comput. Commun. Rev. 43 (4) (2013)
3–14.

[5] M. Malboubi, L. Wang, C.N. Chuah, P. Sharma, Intelligent sdn based traffic
(de)aggregation and measurement paradigm (istamp), in: Proc. IEEE INFOCOM,
2014.

[6] T. Benson, A. Anand, A. Akella, M. Zhang, Microte: Fine grained traffic
engineering for data centers, in: Proc. ACM CoNext, 2011, p. 8.

[7] M. Roughan, M. Thorup, Y. Zhang, Traffic engineering with estimated traffic
matrices, in: Proc. ACM IMC, 2003.

[8] K. Murakami, H.S. Kim, Optimal capacity and flow assignment for self-healing
atm networks based on line and end-to-end restoration, IEEE/ACM Trans. Netw.
6 (2) (1998) 207–221.

[9] C. Albrecht, Global routing by new approximation algorithms for multicommod-
ity flow, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20 (5) (2001)
622–632.

[10] X. Jin, H.H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, R.
Wattenhofer, Dynamic scheduling of network updates, ACM SIGCOMM Comput.
Commun. Rev. 44 (4) (2014) 539–550.

[11] S. Paris, A. Destounis, L. Maggi, G.S. Paschos, J. Leguay, Controlling flow
reconfigurations in sdn, in: Proc. IEEE INFOCOM, 2016.

[12] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, H. Racke, Optimal oblivious routing in
polynomial time, in: ACM Symp. on Theory of Computing, 2003, pp. 383–388.

[13] V. Tabatabaee, A. Kashyap, B. Bhattacharjee, R.J. La, M.A. Shayman, Robust
routing with unknown traffic matrices, in: Proc. IEEE INFOCOM, 2007, pp.
2436–2440.

[14] M. Kodialam, T. Lakshman, S. Sengupta, Efficient and robust routing of highly
variable traffic, in: Proc. HotNets, 2004.

[15] H. Wang, H. Xie, L. Qiu, Y.R. Yang, Y. Zhang, A. Greenberg, Cope: traffic
engineering in dynamic networks, ACM SIGCOMM Comput. Commun. Rev. 36
(4) (2006) 99–110.

[16] P. Casas, L. Fillatre, S. Vaton, Multi hour robust routing and fast load change
detection for traffic engineering, in: Proc. IEEE ICC, 2008, pp. 5777–5782.

[17] Y. Zhang, Z. Ge, Finding critical traffic matrices, in: Proc. IEEE DSN, 2005.
[18] D. Sanvito, I. Filippini, A. Capone, S. Paris, J. Leguay, Adaptive robust traffic

engineering in software defined networks, in: Proc. IFIP Networking, 2018.
[19] T. Holterbach, S. Vissicchio, A. Dainotti, L. Vanbever, Swift: Predictive fast

reroute, in: Proc. ACM SIGCOMM, 2017.
[20] S. Brandt, K.-T. Förster, R. Wattenhofer, On consistent migration of flows in sdns,

in: Proc. IEEE INFOCOM, 2016, pp. 1–9.
[21] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C.L. Lim, R.

Soulé, Semi-oblivious traffic engineering: The road not taken, in: USENIX NSDI,
2018.

[22] D. Applegate, E. Cohen, Making intra-domain routing robust to changing and
uncertain traffic demands: Understanding fundamental tradeoffs, in: Proc. ACM
SIGCOMM, 2003.

[23] R. Zhang-Shen, Valiant load-balancing: Building networks that can support all
traffic matrices, in: Algorithms for Next Generation Networks, Springer London,
2010, pp. 19–30.

[24] P. Casas, F. Larroca, S. Vaton, Robust routing mechanisms for intradomain traffic
engineering in dynamic networks, in: Proc. IEEE LANOMS, 2009, pp. 1–10.

[25] W. Ben-Ameur, M. Żotkiewicz, Robust routing and optimal partitioning of a
traffic demand polytope, Intl. Trans. Oper. Res. 18 (3) (2011) 307–333.

[26] M. Silva, M. Poss, N. Maculan, Solving the bifurcated and nonbifurcated robust
network loading problem with k-adaptive routing, Networks 72 (1) (2018)
151–170.

[27] M. Poss, C. Raack, Affine recourse for the robust network design problem:
Between static and dynamic routing, Networks 61 (2) (2013) 180–198.

[28] W. Ben-Ameur, M. Żotkiewicz, Multipolar routing: where dynamic and static
routing meet, Electron. Notes Discrete Math. 41 (2013) 61–68.

[29] W. Ben-Ameur, H. Kerivin, Routing of uncertain traffic demands, Opt. Eng. 6 (3)
(2005) 283–313.

[30] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, D. Towsley, On optimal routing
with multiple traffic matrices, in: Proc. IEEE INFOCOM, Vol. 1, 2005, pp.
607–618.

[31] M. Reitblatt, N. Foster, J. Rexford, D. Walker, Consistent updates for software-
defined networks: Change you can believe in!, in: Proc. Work. on Hot Topics in
Networks, ACM, 2011, p. 7.

[32] W. Wang, W. He, J. Su, Y. Chen, Cupid: Congestion-free consistent data plane
update in software defined networks, in: Proc. IEEE INFOCOM, 2016, pp. 1–9.

[33] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E.D. Kolaczyk, N. Taft,
Structural analysis of network traffic flows, ACM SIGMETRICS PER 32 (1) (2004)
61–72.

[34] J. MacQueen, et al., Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Vol. 1, Oakland, CA, USA, 1967, pp. 281–297.

[35] S. Orlowski, M. Pióro, A. Tomaszewski, R. Wessäly, SNDlib 1.0–survivable
network design library, in: Proceedings of the 3rd International Network
Optimization Conference (INOC 2007), Spa, Belgium, 2007.

[36] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, G. Parulkar, Onos: Towards an open,
distributed sdn os, in: Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, in: HotSDN ’14, ACM, New York, NY, USA, 2014,
pp. 1–6.

[37] D. Sanvito, D. Moro, M. Gulli, I. Filippini, A. Capone, A. Campanella, Onos intent
monitor and reroute service: enabling plug&play routing logic, in: IEEE NetSoft,
2018, pp. 272–276.

[38] P. Lin, et al., Seamless interworking of sdn and ip, in: ACM SIGCOMM Computer
Communication Review, 2013, pp. 475–476.

[39] B. Lantz, et al., A network in a laptop: Rapid prototyping for software-defined
networks, in: ACM Hotnets-IX, 2010, p. 19.

187

http://refhub.elsevier.com/S0140-3664(18)30987-3/sb1
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb1
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb1
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb2
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb2
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb2
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb2
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb2
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb3
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb3
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb3
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb3
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb3
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb4
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb5
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb5
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb5
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb5
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb5
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb6
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb6
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb6
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb7
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb7
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb7
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb8
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb8
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb8
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb8
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb8
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb9
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb9
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb9
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb9
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb9
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb10
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb10
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb10
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb10
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb10
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb11
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb11
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb11
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb12
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb12
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb12
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb13
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb13
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb13
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb13
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb13
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb14
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb14
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb14
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb15
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb15
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb15
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb15
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb15
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb16
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb16
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb16
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb17
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb18
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb18
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb18
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb19
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb19
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb19
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb20
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb20
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb20
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb21
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb21
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb21
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb21
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb21
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb22
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb22
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb22
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb22
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb22
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb23
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb23
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb23
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb23
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb23
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb24
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb24
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb24
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb25
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb25
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb25
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb26
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb26
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb26
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb26
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb26
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb27
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb27
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb27
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb28
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb28
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb28
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb29
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb29
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb29
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb30
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb30
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb30
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb30
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb30
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb31
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb31
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb31
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb31
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb31
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb32
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb32
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb32
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb33
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb33
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb33
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb33
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb33
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb34
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb34
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb34
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb34
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb34
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb35
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb35
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb35
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb35
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb35
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb36
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb37
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb37
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb37
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb37
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb37
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb38
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb38
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb38
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb39
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb39
http://refhub.elsevier.com/S0140-3664(18)30987-3/sb39

	Clustered robust routing for traffic engineering in software-defined networks
	Introduction
	Related work
	System model
	Clustered robust routing
	CRR problem formulation

	Two-steps CRR heuristic
	STEP 1 - Segmentation Problem
	STEP 2 - Robust Routing Problem

	Numerical results
	Clustering approaches comparison
	Impact of minimum cluster length
	Cluster overlap and robustness to switching time errors
	Impact of prediction error

	Experimental testbed
	Conclusion
	Declaration of competing interest
	Appendix. Linear CRR model
	References

