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Abstract— We propose in this work a single copy and multi-hop
opportunistic routing scheme for sparse delay tolerant networks
(DTNs). The scheme uses as only input the estimates of the
average inter-contact times between the nodes in the network.
Defined as the fixed point of a recursive process, it aims at mini-
mizing delivery time in case of independent exponential pairwise
inter-contacts. The two properties of loop-free forwarding and
polynomial convergence make the scheme workable for routing
in DTNs. The routing performances of the scheme are evaluated
on three publicly available reference data sets. Comparisons with
well known single-copy schemes, including MED and thetwo hop
relay strategy, consistently demonstrate improvements for both
delivery ratio and delay.

I. I NTRODUCTION

In delay tolerant networks (DTNs) [9] nodes are typically
mobile and have wireless networking capabilities. They are
able to communicate with each other only when they are
within transmission range. The network suffers from frequent
connectivity disruptions, making the topology only intermit-
tently and partially connected. This means that there is no
guarantee that an end-to-end path exists between a given
pair of nodes at a given time. Examples from the recent
literature include the DieselNet project [24], which features
communication devices deployed in a regional bus system,
and Pocket Switched Networks (PSNs) [6], which are formed
by devices that people carry every day, such as cell phones,
PDAs, and music players.

The main contribution of this work is the introduction and
evaluation of a novel opportunistic routing scheme for sparse
DTNs built upon the fixed point of a recursive process. The
scheme is single copy, thus keeping the load in the network
low. It uses as only input the estimates of the average inter-
contact times between the nodes in the network. The scheme
provides an opportunistic version of theMinimum Expected
Delay (MED) routing introduced by Jain et al. [13], whereby
a node relays a message to a neighbor that is closer, in terms
of total expected delivery time, to the destination. It is loop-
free and convergences polynomially, which make the scheme
workable for routing in DTNs. We formally derive the scheme
for the case of heterogeneous independent exponential inter-
contacts and evaluate it through simulation on three reference
data sets publicly available in the CRAWDAD archive [1].

Following the taxonomy introduced by Jones et al. [16],
routing propositions for DTNs can be divided into three main
categories:replication based,knowledgebased andhybrid
strategies. Replication based approaches take advantage of

node diversity. They address ways several copies of the mes-
sage can be disseminated among several carriers to increase
the chance that it would reach the destination. Knowledge
based strategies make use of information that nodes obtain
about connectivity or network conditions to make efficient for-
warding decisions that improve routing performance. Hybrid
approaches, as suggested, combine both the replication and
knowledge based strategies.

The knowledge and hybrid based routing schemes aim at
reaching high delivery ratio, low average delivery delays and
limited overhead. The general principle of these approaches
is the following: a node routing a given message applies
forwarding rules that tell it, for each other node it encounters,
whether it should give it the message (or copies of the
message) or whether it should keep it. The rules are heuristics
that estimate whether the encountered node is closer to the
destination. Different proposals use different suchdistanceor
utility measures.

Chen and Murphy [7] define a utility function that locates
the relay node within a connected cluster that is closest to a
disconnected destination. Lindgren et al. [20] rely on nodes
having a community mobility pattern. Their scheme uses
history of encounters and the transitivity of the estimated
delivery probability to distinguish between candidate relays.
Nodes mainly remain inside their community and sometimes
visit the others. As a consequence, a node may transfer a
message to a node that belongs to the same community
as the destination. Burns et al. [4] use both information of
contacts between nodes and of visits to locations for routing.
The movement patterns are structured and each node learns
the probability that another node can successfully delivera
message to the destination. Burgess et al. [3] have proposedthe
protocol MaxProp in the context of a real DTN deployment on
40 buses. This protocol uses meeting probabilities to find paths
in association to complementary mechanisms for improving
performance in terms of delivery ratio and latency such as
buffer management and transmission scheduling. Leguay et
al. [18] define a high-dimensional Euclidean space, called
MobySpace, constructed upon nodes mobility patterns. The
specific MobySpace evaluated is based on the frequency of
visits of nodes to each possible location.

The present work fully exploits the transitivity that the
distance or utility measures introduce. Lindgren et al. [20]
take into account transitivity as one of the three components
of the heuristics used to compute thedelivery predictability
of any node to any destination that informs routing decisions.
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Burns et al. [4] discussed the impact of several relaying steps
on their scheme but used only the single relay formula for
routing. We propose a workable solution and algorithm that
generalises these previous works. It is based on estimating
expected message delivery time and faithfully accounts for
the effects of transitivity in the case of any number of relaying
steps.

The distance that the algorithm computes is thus capable
of anticipating the effects of future relaying opportunities to
improve routing performances. To derive the scheme, we start
from the two hop relaystrategy introduced by Grossglauser
and Tse [11] in which one relay is used to reach the destina-
tion. Then, we use the expected delivery time to the destination
as the distance to be minimized to define the best set of
candidate relays. As we recursively increase the number of
relaying steps, the expected delivery time diminishes, and
the estimated distance to the destination gets refined. This
procedure is shown to converge and provides a fixed point
routing strategy that decreases the overall expected delivery
time.

The scheme uses the average meeting times between any
two nodes to distinguish among candidate relay nodes. As
we will see by looking at real life data sets (see Sec. III),
these average meeting times span a large spectrum of values in
the DTN. To anticipate the effect of successive relaying steps
on delivery time, the scheme makes use of a formal model
of inter-contact patterns between nodes. Many of the models
used for evaluating DTN routing protocols do not explicitly
address the inter-contact variability that we observed in the
data sets. For example, Spyropoulos et al. model mobility of
nodes as independent random walks on a torus, and use it
to analyze the performance of different routing schemes [22].
Their model considers all pairs of nodes to follow the same
law, with the same parameters. Thishomogeneityhypothesis
is common to many DTN models. Groenevelt et al. [10]
study a multicopy version of thetwo hop relay strategy
for the homogeneous model that captures the characteristics
of the network through a single parameter representing the
expected inter-contact time between any two pairs of nodes.
Chaintreau et al. [6] model the sequence of contacts as a
discrete renewal process, and study power-law distributed
inter-contacts. Karagiannis et al. [17] analyze mobility traces
and explain the observed exponential tail behavior of inter-
contact times with a simple random walk on a two dimensional
torus followed by all nodes in the network. In the present work,
we model pairwise contacts as independent Poisson processes
with different parameters. Contrary to previous work, we put
the focus on capturing the differences in average inter-contact
times between any node and its neighbors. The model is crude
and we do not claim it matches all real-life inter-contact
behaviors, in particular complex ones that would involve a
mixture of different pairwise laws (e.g., a mix of light-tail and
heavy-tail distributions). Our solution is built upon a memory-
less model which is supported by some recent theoretical
and experimental results [17], [14]. Its purpose is to capture
average inter-contact time heterogeneity and remain tractable
for the derivation of the multi-hop routing scheme. We also
validate the overall DTN routing scheme on three real life data

sets showing that the scheme, although derived formally on the
model, provides enhanced performance beyond the original
mobility hypothesis.

The rest of this paper is structured as follows. Sec. II
introduces our novel opportunistic routing scheme, and Sec. III
provides its evaluation. Sec. IV discusses the routing schemes
that we proposed. Sec. V concludes the paper.

II. F IXED POINT OPPORTUNISTIC ROUTING

In this section we present a single copy and multi-hop
routing strategy that is obtained as a fixed point of a recursive
algorithm that minimizes the delivery delay of messages across
the DTN. Central to the establishment of this result and
to the derivation of the routing scheme and algorithm is a
memoryless hypothesis akin to the well known properties of
independent exponential variables. This inter-contact model
hypothesis is introduced in Sec. II-A. Sec. II-B derives the
formula for expected delivery delay for thetwo hop relay
scheme of Grossglauser and Tse [11]. Sec. II-C introduces
a variation of thetwo hop relayscheme leading to minimum
delay and Sec. II-D extends the later to the multi-hop case
using a recursion.

A. Inter-contact pattern model

For the purpose of our study we model the inter-contact
patterns between any two nodes in the network as a set of
independent Poisson processes. In other words inter-contact
times between any two nodesi and j are independent identi-
cally distributed(iid) random variables and the(iid) variables
follow exponential distributions with parametersλi j .

The average inter-contact time is given by 1/λi j , so different
values of the parameter account for the heterogeneity of inter-
contacts in the network. In real data sets, a nodei only
encounters a subset of all other nodes in the network. We call
these nodes theneighborsof i, and each of these neighbors
is encountered with a different average time. In the model, if
nodesi and j never meet we setλi j = 0 and the corresponding
average meeting time 1/λi j is infinite.

The model is used in the derivation of the opportunistic
minimum delay scheme to evaluate the first encounter time
between any node and any subset of its neighbors. This
is where the exponential and independence hypotheses are
used (see Sec. II-B). The equations that define the routing
scheme only make use of the average meeting times between
the nodes. This makes it possible to estimate the required
average meeting time inputs from real data, and to analyze
the performances of the scheme in cases that do not fully
comply with the hypotheses that were used to derive it.

The formal derivations and results below still hold if we
replace the model above by what Carreras et al. designate the
Marks Memoryless model [5]. In that case the exponential
distribution hypothesis can be dropped and replaced by any
distribution with finite expectation. One could then consider
truncated power laws (e.g., power laws with an exponential
cut-off as in [17]) for pairwise inter-contact distributions. Note
that the scheme would nevertheless not apply to pure power-
laws with shape parameter lower than 2 as they do not have
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finite expectations. The Marks Memoryless model keeps a
strong independence hypothesis since the identity of the node
pair that meets at each encounter instant is independent of
the encounter time. Carreras et al. show on several simulation
examples that this is verified by some instances of the most
common mobility models used in the MANET community,
namely Random Walk, Random Direction and Random Way-
point. But this is probably still too strong to cover all realdata
sets as we will discuss in Sec. IV.

B. two hop relaystrategy

The two hop relaystrategy works in two phases [11]. In
the first phase, the source node waits for its first encountered
neighbor. If this neighbor is not the destination, the source
uses it as a relay, gives it the message and does not keep
a copy. In the second phase, the relay node waits until it
meets the destination to deliver the message. In the rest of this
paper, by convenience of notation, thetwo hop relayscheme
is denoted 2-MH (two-hop version of a potentially Muti-Hop
routing scheme).

Let us first consider the first phase. The message is injected
at sources at time instantt. The first noder it encounters
may be any of then−1 other nodesd, r1, r2, ..., rn−2 and the
time X it takes to meet this first node is the infinum of the
inter-contact times with all other nodes:

X = in f (Rt
sd,R

t
sr1, ...,R

t
srn−2

) (1)

whereRt
sr is the remaining inter-contact time, aftert, before

the next contact between nodess and r. By the memoryless
property of the exponential distribution,Rt

sr is also exponential
with parameterλsr.

Since allRt
sri are independent exponentials with parameters

λsri , we have (see [2, p.328]):
• The random indexr of the first node encountered is

independent of the first encounter timeX
• X is exponentially distributed, with parameter:

Λs = λsd+ ∑n−2
i=1 (λsri )

• Pr(First node encountered is r) = λsr
Λs

This means that we can represent the first phase as inde-
pendently identifying the encountered node (with probability
λsr
Λs

) and adding an exponential waiting time with parameter
Λs. 1

Two cases may arise: either the first node encounteredr
equalsd, ands delivers the message with expected time1

Λs
, or

r 6= d and noder waits to meet noded to deliver the message.
Let’s evaluate the time it takes forr to meetd and deliver

the message. If the message is received by noder at time
t (let’s say), its delivery time is equal toRt

rd , the remaining
inter-contact time before the next contact between nodesr and
d. The memoryless nature of exponentials implies thatRt

rd
follows an exponential distribution with the same parameter
λrd as the inter-contact time. The mean expected delivery time
for a message at noder awaiting delivery tod is thus given
by:

1The decoupling of mean waiting time and identity of the encountered
node is the key to the derivation of the scheme. In the case of the Marks
Memorylessclass, this result is provided by Wald’s Lemma.

E[Dw
rd ] = 1/λrd (2)

The total delivery timeZr along pathr, i.e., conditioned on
using noder as a relay, is thus the sum of the first encounter
time X andE[Dw

rd ] the remaining delivery time between nodes
r andd and thus:

E[Zr ] =
1

Λs
+

1
λrd

(3)

The total delivery timeZ is computed by conditioning on all
possible first encountered nodesd, r1, r2, ..., rn−2, events whose
probabilities are given byλsr

Λs
.

After simplification, this leads to the following mean deliv-
ery time for 2-MH:

E[D2−MH
sd ] =

(1+ ∑r 6=s,r 6=d
λsr
λrd

)

∑r 6=sλsr
(4)

C. Optimal two hop relaystrategy

The minimum delay routing strategy is based on the pre-
vious 2-MH scheme. We derive 2-MH∗ which transfers the
message only to asubsetof neighbors of the source that
minimizes the expected delivery time in case of independent
pairwise exponential inter-contacts.

Instead of considering all neighbors of source node s as
candidate relays, as in the 2-MH scheme, let’s consider that
the source nodes forwards the message only to nodes in a
subsetR. We call this a 2-MHR scheme. Following the same
line of reasoning as in Sec. II-B, and defining 1/λdd = 0, one
finds that the expected delivery time is given by:

E[D2−MHR

sd ] =
(1+ ∑r∈R

λsr
λrd

)

∑r∈Rλsr
(5)

We define 2-MH∗ to be a 2-MHR scheme which uses a
subsetR that minimizesE[D2−MHR

sd ].
Brute force minimization amounts to testing all subsetsR of

neighbors of source nodes. The complexity of the algorithm
is exponential in the degreeds of node s. The structure of
Eq. 5 allows for the definition of an algorithm which is linear
in ds (see Sec. VI-A). To find the subsetsR of neighbors of
source nodes that minimizeE[D2−MHR

sd ] (Eq. 5), we propose
the following algorithm:

for every destination ddo
Sort its neighbors in increasing mean inter-contact times,in
which case we have: 0≤ 1

λ1d
≤ 1

λ2d
≤ ... ≤ 1

λnd
Initialise the result setI = ⊘ and corresponding minimal
mean delivery time (using setI ) cI = 1

λ1d
for i = 1, ...,n do

Add nodei to setI and computeE[D2−MH I

sd ] (as in
Eq. 5)
If this value is strictly larger thancI , remove nodei
from I and stop
Otherwise, place this value incI

end
end

At the end, the optimal set of nodes is found inI and the
corresponding minimal delay incI . Proof of the algorithm is
provided in Sec. VI-A.
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D. Multi-hop relay strategy

In this section, we show that recursively applying the 2-
MH∗ scheme leads to a fixed point that minimizes the delay
in the case of an arbitrary number of intermediate relay nodes.

Let’s introduce one more hop in the single relay scheme 2-
MH∗. Nodes now chooses the best first encountered neighbors
based on the assumption that they will relay the messages
following the 2-MH relay scheme. For a given set of first
encountered neighborsR, the total expected delay is given by:

E[D3−MHR

sd ] =
(1+ ∑r∈RλsrE[D2−MH

rd ])

∑r∈Rλsr
(6)

minimizing Eq. 6 for all setsR of neighbors ofs is obtained
by applying the same algorithm as for 2-MH, since Eq. 6
is deduced from Eq. 5 by replacing1λrd

by E[D2−MH
rd ]. The

latter value represents an improved expected delivery timeto
the destination. Intuitively this increases the attractiveness of
routes going through noder, thus increasing its chances of
being added to the list of relaying neighbors.

Gradually introducing further relaying steps amounts to
recursively applying the process. The sequence of values
E[D2−MH

sd ], E[D3−MH
sd ], ...,E[Dn−MH

sd ] thus created is decreasing
and positive (see Sec. VI-B), so it converges to, let’s say,
E[DMH∗

sd ]. E[DMH∗
sd ] is necessarily attained in a finite number

of steps (since there are only a finite number of possible inter-
mediate nodes) and is a fixed point for the recursive process.
Because the setR∗

sd realises the fixed point, the forwarding
strategy simply amounts, for noder, to relaying any message
with destinationd to any first encountered neighbor inR∗

rd .
One can establish the following two properties of loop-free

forwarding and polynomially bounded convergence that make
the scheme workable for routing in DTNs.

First forwarding a message with MH∗ is loop free. Re-
member that a message with destinationd is transfered by
any node i to the first node j in set R∗

id it meets. The
reason why there is no loop is because transfers always go
to nodes that are strictly closer to the destination. All next
relay nodesj have an expected delivery time tod strictly
lower than that of the current relay nodei (see Sec. VI-C).
This implies that for any route a bundle takes, the sequence
of nodes it visits,i, i1, i2, ..., ip, necessarily verifiesE[DMH∗

id ] <
E[DMH∗

i1d ] < ... < E[DMH∗
ipd ]. If there were a loop, it would mean

that one of the visited nodesi1, ..., ip is i, so we would have
E[DMH∗

id ] < ... < E[DMH∗
i ], which is a contradiction.

Secondthe routing algorithm of Sec. II-C has complexity of
O(L.n2.D). L is the diameter of thebinary connectivity graph
in which two nodes share a link whenever they have been in
contact,n is the total number of nodes andD is the average
node degree. On the data sets we considered,L is equal to
10 for Dartmouth, 5 for MIT, and 3 for iMote. The average
node degreeD is 60.5 in Dartmouth, 22.3 in MIT and 22.8 in
iMote. As we can seeD andL are very small compared ton2

in the three data sets. More generally, worst case complexity is
O(n4), but if connectivity graphs have scale free properties, as
one can expect in large networks, we would haveL = log(n)
andD ≪ n, and the complexity would scale asO(n2.log(n)).

III. C OMPARING ROUTING PROTOCOLS

This section looks at the routing behavior and performances
of the protocols described above and presents the results of
simulations we performed using mobility traces to study how
they compare with some well known approaches.

A. Experimental data sets

We describe here the contexts in which the data sets we
used have been collected. All of these data sets are publicly
available in the CRAWDAD archive [1].

Dartmouth data

This connectivity data set has been inferred from traces col-
lected in the Wi-Fi access network of Dartmouth College [12].
These traces were pre-processed by Song et al. [21]. They
track users’ sessions in the wireless network, noting the time
at which nodes associate and dissociate from access points.
Although the Dartmouth data is not from a DTN network,
they are perhaps the richest data set publicly available that
tracks users in a campus setting. Jones et al. [15], Leguay et
al. [18], and Chaintreau et al. [6] have recently used these
traces in a similar way.

We only consider the subset of users who were present in
the network every day between January 26th 2004 and March
11th 2004, an academic period during which we expect nodes’
activity to be fairly stationary. This data set contains 834users,
or nodes. A few judicious assumptions are required to adapt
the Dartmouth data for DTN studies. First, we assume that
two nodes are in contact if they are attached at the same time
to the same access point (AP). Then, we filter the data to
remove the well knownping-pongeffect. Wireless nodes, even
non-mobile ones, can oscillate at a high frequency between
two APs. To counter this, we filter all the inter-contact times
below 1,800 seconds (30 minutes). Note that defining better
filtering methods, although challenging, would be of interest
for the community. As this is not the purpose of this work, we
choose here the threshold that Yoon et al. [25] used for the
same purpose. We use this inferred data set for the remainder
of this paper.

iMote data

Chaintreau et al. [6] used iMotes (Bluetooth contact log-
gers from Intel) to acquire proximity contacts that occurred
between participants in the student workshop at theInfocom
2005research conference. Students were asked to carry one of
these sensors in their pocket at all times. Due to Bluetooth’s
short range, authors logged instances when people were close
to each other (typically within 10 meters). They collected data
from 41 iMotes over 3 days. The devices performed Bluetooth
inquiry scans every 2 minutes. For each pair of nodes(i, j),
we considered thati and j were in contact if either one saw
the other.

MIT data

The Reality Mining experiment [8] conducted at MIT cap-
tured proximity, location, and activity information from 97
subjects (mainly students) over the course of an academic
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year. Each participant had an application running on their
mobile phone to record proximity with others through periodic
Bluetooth scans (every 5 minutes) in a similar fashion to that
of the iMote experiment. Locality information comes from
knowing which GSM network cell the phone is attached to. We
only make use of the Bluetooth proximity data to determine
whether two nodes were in contact. We selected 95 days of
data corresponding to the first semester of the academic year
2004-2005 where activity was high in the traces in terms of
the number of phones that collected data and the number of
contacts that were recorded.

We will refer to these data sets asDartmouth, iMote and
MIT.

B. Routing protocols considered

We simulate the following protocols:

• Wait: The source node waits to encounter the destination
to transfer the message. The main advantage of the
scheme, also known as direct transmission, is to perform
only one transmission per message.

• 2-MH: this is thetwo hop relayscheme of Grossglauser
and Tse [11]. The source gives the message to the first
encountered node. If it is not the destination, this node
is used as a relay and it keeps the message until it
encounters the destination.

• 2-MH∗: this scheme is similar to 2-MH but relays are
only chosen among the set of nodesR that minimizes
Eq. 5, as seen in Sec. II-C.

• MED (Minimum Expected Delay): this scheme was intro-
duced by Jain et al. [13]. The strategy, similar to source
routing, defines which path the message will follow from
s to d, that is, the ordered list of intermediate relay nodes
it will have to go through. The list is chosen to provide
minimum expected end-to-end delay. Each relay node,
upon receiving the message, will not be free to choose the
next relay: it will have to follow the initial plan. Finding
the optimal path thus amounts to finding a lowest-weight
path between nodessandd in a graph in which the weight
on each link(i, j) is defined as 1/λi j . Dijkstra’s algorithm
is used.

• MH∗: this is the fixed point opportunistic routing strategy
that we introduced in Sec. II-D.

• Epidemic: each time two nodes meet, they exchange their
messages. The algorithm provides the optimal path and
thus the minimum delay.

We slightly modified 2-MH, to better compare it with 2-
MH∗: a node i is a potential relay only ifλid > 0, i.e.,
if it has a chance of meeting the destination. In MED, we
authorized intermediary relays to directly transfer messages to
the destination whenever met.

In each of the simulation series, we choose at random
100 different source destination pairs(s,d) and replay the
contacts between nodes present in the data to see how, for
each pair, a message, generated at the beginning of the two
months period, is delivered. For each data set, because of
computational issues, we used a different constant message
generation rate between source destination pairs.

We have implemented a stand alone simulator to evalu-
ate the routing scheme. This simulator only implements the
transport and network layers and it makes simple assumptions
regarding lower layers, allowing infinite bandwidth between
nodes and contention free access to the medium. Nodes are
also supposed to have infinite buffers and to have inherent
knowledge of all other nodes’ mobility patterns. Because in
ambient networks, nodes may have limited resources and
capabilities, routing solutions should also be evaluated with
limited buffers and more realistic models for the MAC and
physical layers. One way in which we address the problem of
limited resources is to examine, in Sec. IV-D, the possibility
of limiting the amount of information that is sent regard-
ing nodes’ connectivity patterns. However, our aim here is
principally to validate our routing proposition. We leave to
future work a detailed study of the modifications that would
be required to accommodate resource limitations.

The λ values used for route selection in 2-MH∗, MH∗ and
MED, and to determine theoretical delays for Wait, 2-MH∗,
MH∗ and MED are computed over the whole data set in a
preliminary step. The inter-contact time averages are estimated
from the data for alln(n− 1)/2 pairs of nodes, and theλ
values are set to the inverse of these averages.

C. Simulation results

This section presents results for the different routing strate-
gies on each of the data sets.

Dartmouth

In Dartmouth, theλ values are computed over the filtered
data set to avoid the bias introduced by the ping-pong effect
(see Sec. III-A). The simulations replayed the original con-
tacts and the messages between source-destination pairs were
generated every 20 days.

Del. A. delay M. delay Th. delay A. hops Overhead
(%) (days) (days) (days) (#) (trans.)

Wait 8.6 ±1.0 12.2 ±2.7 7.2 ±4.4 11.9 ±3.1 1.0 ±0.0 25.8 ±3.1

2-MH 57.4 ±2.0 16.5 ±0.7 14.0 ±1.6 - 1.9 ±0.0 427.8±15.3

2-MH ∗ 61.4 ±1.1 13.5 ±0.6 10.0 ±0.9 8.4 ±0.6 1.9 ±0.1 416.8±12.8

MED 34.2 ±1.2 17.9 ±1.0 15.2 ±1.8 1.0 ±0.1 6.1 ±0.2 724.8±20.4

MH ∗ 82.4 ±1.4 7.8 ±0.4 4.3 ±0.3 1.4 ±0.1 5.7 ±0.1 1993.6±793.4

Epidemic 99.0 ±0.8 1.0 ±0.2 0.9 ±0.0 - 9.8 ±0.2 123851±3687.8

TABLE I

SIMULATION RESULTS WITH DARTMOUTH DATA .

Table I presents the simulation results averaged over 5 runs
with 90% confidence levels that are obtained using the Student
t distribution. It presents, for each of the protocols, the average
delivery ratio, the average delay (“A delay”) and the median
delay (“M delay”) computed over the delivered messages, the
average theoretical delay over all the messages generated (infi-
nite delay is assumed to be the length of the simulated period,
i.e., 45 days), and the average hop count, also obtained on
delivered messages. We also measured the protocol overhead,
considering the total number of transmissions that occurred
before message delivery (or nondelivery for those that never
reached their destination).



6

Wait and Epidemic are the two extreme schemes that
we simulated. They respectively deliver 8.6% and 99.0% of
messages with a mean delay of 12.2 and 1.0 days and with a
median delay of 7.2 and 0.9 days. Wait only delivers 8.6%
of messages because most of the source-destination pairs,
selected at random, satisfyλsd = 0 (i.e., they never met).
Wait only involves 1.0 hop while Epidemic attains a high
average hop-count of 9.8. Naturally, Epidemic plots the highest
overhead with 123,851 transmissions in total while Wait only
realizes 25.8 transmissions.

2-MH and 2-MH∗, which are the two one-relay algorithms
that we simulated, deliver respectively 57.4% and 61.4% of
messages with an average delay of 16.5 and 13.5 days. 2-MH∗

outperforms 2-MH while only requiring 416.8 transmissions
instead of 427.8 on average. 2-MH gives the message to the
first node it encounters while 2-MH∗ may be more selective, as
it uses only a subset of its neighbors as relays. The comparison
shows that the strategy used by 2-MH∗ of minimizing Eq. 5
allows to reduce delivery delay and to increase delivery ratio.

MH∗ delivers more messages than MED (82.4% of mes-
sages are delivered against 34.2%), and does it faster (average
delay of 7.8 days against 17.9 days). MH∗ has performance
close to that of Epidemic in delivery ratio while only involving
1,993 transmissions. The hop-by-hop opportunistic natureof
MH∗ is the main reason for its superiority over MED, in which
messages follow a strict sequence of relays. A node cannot
take advantage of an opportunistic contact with a node that
has a lower cost path than does the predesignated next hop
node. This weakness has already been mentioned by Jain et
al. [13] and MH∗ overcomes it.

Table I shows a discrepancy between the theoretical and the
experimental delays. This can be explained by the presence
of node pairs that do not have an exponential behavior.
Inter-contacts following distributions with fatter tailsthan the
exponential, a likely event, result in increased average delay
and contribute to explaining the underestimates we observe.
This is particularly true for 2-MH∗, MH∗ and MED that should
show average theoretical delays of respectively 8.4, 1.4 and
1.0 days while they achieve 13.5, 7.8 and 17.9 days. In
this case the computation of expected delays on mean inter-
contact times can also miss possible inter-dependencies of
node contacts.

iMote

In simulations with the iMote data set, we generated mes-
sages between source destination pairs every 5 hours. TableII
shows the simulation results.

Del. A. delay M. delay T. delay Hops Overhead
(%) (h) (h) (h) (#) (trans.)

Wait 81.9 ±2.8 10.5 ±0.6 7.2 ±0.3 5.3 ±0.5 1.0 ±0.0 1146.6±39.6

2-MH 83.5 ±1.2 10.6 ±0.6 7.5 ±0.6 - 1.9 ±0.0 2476.4±16.6

2-MH ∗ 87.2 ±1.3 9.0 ±0.6 6.3 ±0.5 2.0 ±0.1 1.7 ±0.0 2255.0±34.8

MED 82.1 ±3.4 10.3 ±0.5 7.3 ±0.1 2.8 ±0.1 1.3 ±0.0 1669.6±31.2

MH ∗ 88.3 ±1.4 8.6 ±0.6 6.1 ±0.7 1.7 ±0.1 2.7 ±0.1 3644.2±96.6

Epidemic 91.8 ±1.3 6.5 ±0.4 4.2 ±0.3 - 4.1 ±0.1 27470.6±950.8

TABLE II

SIMULATION RESULTS WITH IMOTE DATA.

We first observe that the delivery ratios are closer to each
other varying from 81.9% for Wait and to 91.8% for Epidemic.
The fact that Wait delivers a large number of messages
is another illustration of the high level of interactions that
occurred between participants. We observe similar resultsto
those with Dartmouth in ranking of protocol performance.

MIT

In the simulations we performed on MIT, messages between
sources and destinations were generated every 15 days. Ta-
ble III shows the simulation results.

Del. A. delay M. delay T. delay Hops Overhead
(%) (days) (days) (days) (#) (trans.)

Wait 35.6 ±3.6 15.0 ±2.0 4.9 ±1.6 9.15 ±1.2 1.0 ±0.0 249.4±25.4

2-MH 67.7 ±2.4 11.2 ±0.5 0.8 ±0.6 - 1.8 ±0.1 1185.6±15.5

2-MH ∗ 88.0 ±1.1 10.0 ±0.7 2.3 ±0.6 3.6 ±0.2 1.8 ±0.1 1080.2±14.5

MED 46.6 ±4.0 14.6 ±1.0 3.2 ±0.8 3.0 ±0.1 1.5 ±0.1 633.8±39.7

MH ∗ 96.4 ±0.3 5.0 ±0.4 0.1 ±0.1 2.2 ±0.1 2.8 ±0.1 1994.6±65.5

Epidemic 99.0 ±0.2 1.4 ±0.4 0.1 ±0.1 - 2.5 ±0.1 50344.6±897.7

TABLE III

SIMULATION RESULTS WITH MIT DATA .

Results are closer to the ones we obtained with Dartmouth.
Furthermore, we observe similar ranking of protocol perfor-
mance to those with Dartmouth and iMote.

Through all these simulations, we validate the natural sense
that we should take into account the heterogeneity of average
inter-contact times in the design of routing solutions for DTNs
and we show thatMH∗ achieves good performance in terms
of delivery ratio, delay and overhead.

Generally speakingMH∗ provides the most significant
performance improvements for the Dartmouth and MIT data
sets indicating that the scheme appears to be better suited for
scenarios where connectivity is sparse.

IV. D ISCUSSION

This section discusses the specific factors that could have
impacted the results, the assumptions on which is builtMH∗

and some implementation choices.

A. Impact of traffic generation

The results that we presented show performance that we
believe to be underestimated because of the way we generated
traffic. In our simulations, as we did not have any knowledge
of social relationships between participants, we selectedsource
destination pairs at random and generated traffic with a con-
stant rate. However, in a real deployment of DTN applications,
we conjecture that those two parameters would be highly
driven by social relationships (most of people would only
communicate with friends with who they might also have a
high level of interactions) and environmental factors suchas
specific events or periodic schedules.

Furthermore, as in the Internet, we expect congestions in
DTNs. While we did not address this issue in this work,
congestion control could be integrated to MH∗ in two ways.
First, one could change the weights (e.g.,λ values) so that they
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would be correlated to inter-contact times and to the levels
of congestion of links. The second way would be to slightly
change the forwarding algorithm. Instead of selecting the first
eligible node met as a relay, one could decide to proceed or not
with message transfers depending on traffic conditions. This
way, MH∗ would be used as a means to obtain an interesting
subset of paths that the data will follow or not depending on
contact opportunities and traffic load. In the first approach, we
could still calculate an estimation of the time needed to deliver
messages but one should note that weights would have to be
updated in the network which might not be practical.

B. Data sets used

The data sets may represent partial or biased real life inter-
actions as sampling methods were used for their collection.
The iMote and MIT data sets have been collected using
periodic Bluetooth scans which may have underestimated the
overall number of contacts or the contact times between
nodes. In Dartmouth, we infer that two persons are in contact
whenever they are connected to the same AP which might
create unrealistic interactions, and more generally mobility of
laptops is not really representative of human mobility. More
accurate data sets are needed for DTN protocol evaluations.

In real systems, we also expect that these inaccuracies
in the sampling of real life interactions could be due to
usage of handheld devices (e.g., phones that are turned off,
lack of batteries). Such biases in the calculation ofλ values
might mislead MH∗ in making the right routing decisions.
However, we conjecture that MH∗ can tolerate a certain level
of inaccuracies but we leave this study for future work.

C. Keeping copies at source nodes

An application that might send data over DTN networks
would probably keep a copy of a sent message until it gets an
acknowledgment asserting that the message has been correctly
delivered. In that case, if the source node meets the destination,
it would be able to transfer the message directly.

In order to study the impact of such a behavior, we
performed simulations using exactly the same parameters and
source destination pairs as in Sec. III-C. Table. IV presents the
results with the three connectivity data sets. We can see that
keeping one copy at the source almost preserves the relative
order observed previously. As expected, it improves overall
performances, but only slightly. For instance, in Dartmouth,
2-MH, 2-MH∗, MED and MH∗ deliver respectively 58.3%,
61.6%, 34.8% and 82.7% of messages instead of 57.4%,
61.4%, 34.2% and 82.4%.

D. Overhead reduction

Handling information on contact patterns for MH∗ could
lead to high processing and network overhead even if only
summary information such as theλ values is used. Nodes
would have to perform tasks such as monitoring the inter-
contact times they have with the others, disseminating this
information to the other nodes (using a centralized architecture
or not) and computing periodically the sets of relays that have

Dartmouth iMote MIT
Del. A. delay Del. A. delay Del. A. delay
(%) (days) (%) (h) (%) (h)

2-MH 58.3 ±1.9 16.0 ±0.8 88.9 ±1.4 8.8 ±0.5 73.8 ±2.6 10.5 ±0.6

2-MH ∗ 61.6 ±1.1 13.5 ±0.6 88.7 ±1.3 8.7 ±0.6 88.3 ±1.3 9.7 ±0.8

MED 34.8 ±1.2 17.9 ±1.0 84.5 ±3.0 10.0 ±0.4 48.7 ±3.7 15.1 ±1.2

MH ∗ 82.7 ±1.7 7.8 ±0.2 89.5 ±1.3 8.1 ±0.5 96.6 ±0.3 4.8 ±0.4

TABLE IV

SIMULATION RESULTS WHEN A COPY IS KEPT AT THE SOURCE.

to be used for forwarding. We let this detailed analysis for
future work, but study here the impact of reducing the amount
of information distributed among nodes. In the scenario nodes
only disseminateλ values satisfying 1/λ < L. Table V shows
the simulation results obtained with the same parameters and
source destination pairs as in Sec. III-C on iMote and MIT
data sets.

iMote MIT
L Del. A. delay M. delay L Del. A. delay M. delay
(h) (%) (h) (h) (h) (%) (days) (days)
1 81.9 ±2.8 10.5 ±0.6 7.2 ±0.4 1 35.6 ±3.6 15.0 ±2.0 4.8 ±1.6

2 86.2 ±1.5 8.9 ±0.5 6.4 ±0.4 24 48.1 ±3.4 10.3 ±0.9 2.6 ±0.6

5 87.3 ±1.6 8.5 ±0.5 6.1 ±0.6 36 68.4 ±2.2 6.2 ±0.7 1.3 ±0.3

8 87.5 ±1.7 8.6 ±0.5 6.2 ±0.6 72 84.2 ±0.9 5.1 ±0.3 0.6 ±0.3

10 88.3 ±1.4 8.7 ±0.6 6.3 ±0.6 168 95.3 ±0.1 5.7 ±0.3 0.4 ±0.1

∞ 88.3 ±1.4 8.6 ±0.6 6.1 ±0.7 ∞ 96.4 ±0.3 5.0 ±0.4 0.1 ±0.1

TABLE V

SIMULATION RESULTS OF MH∗ WITH PARTIAL KNOWLEDGE.

We can see that, as expected, as we increase the thresholdL,
performance are closer to those observed in Sec. III-C denoted
by L = ∞ here. The value ofL for which performances are
reasonably degraded is 10 hours in iMote and 168 hours in
MIT leading to a reduction of the shared routing information
of respectively 9.8% and 35.2%. These figures depend on
the overall density of interactions. Because in iMote node
interactions are more homogeneous we are not able to reduce
the overhead as we could do in MIT. We expect this reduction
to be much higher in Dartmouth data but we were not able to
perform simulations for computational reasons. This result is
promising regarding the scalability of routing algorithmsthat
would involve summary information on pairwise contacts such
as average inter-contact times.

E. Complexity of inter-contact times processes

Furthermore, evaluating schemes that use summary informa-
tion such as the average inter-contact times on real data have
to deal with two factors: the presumed stationarity of inter-
contact processes and the short and long terms dependenciesin
interactions between nodes. As a consequence, average values
might not be sufficiently precise because processes are not
stable over time and their burstiness is not well accounted for.
As an illustration, we have seen that the theoretical value of
delivery delay for MH∗ underestimates the values observed
from the simulations on real data sets. This indicates that the
hypothesis of pairwise independent exponential inter-contacts
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processes is not sufficiently faithful to model accurately the
actual behaviors of the nodes.

Simulation artifacts also come into play. The routing simu-
lation is carried out on a limited time scale. Theλ values are
computed over the entire data set in a prior pass, so a relay
node may meet the destination for the last time before having
met the source for the first time. A more realistic estimation
could use on-line predictive or learning methods. However,
as they are challenging to define, we let this study for future
work and intend here to provide early validation results to
motivate research in the domain. MED clearly suffers from this
simulation artefact, it would deliver more messages otherwise.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new single copy and
multi-hop routing strategy, MH∗, which waits for only a subset
of relays at each hop to improve routing performance, mea-
sured in terms of average delay. The scheme uses as only input
the estimates of the average inter-contact times between the
nodes in the network. Defined as the fixed point of a recursive
process, it provides the minimum delivery time in case of
independent exponential pairwise inter-contacts. It is loop-
free and convergences polynomially, which make the scheme
workable for routing in DTNs. We show, by replaying real
connectivity traces, that MH∗ achieves good performance, in
terms of delivery ratio and delay, while keeping the overhead
low. We also discussed factors and implementation issues that
might have impacted the results.

Future work along these lines might include formal and
simulation studies to elaborate more complex schemes in terms
of number of copies distributed and knowledge considered to
make routing decisions. Indeed, single-copy protocols suffer
clearly in DTNs from reliability issues as nodes can disappear
altogether at any time for various reasons. Redundancy ap-
proaches have then to be considered. There are several ways
in which MH∗ could work with multiple copies. One could
for instance use a utility function in the forwarding process to
decide how many copies should be transmitted and to which
nodes in the eligible set. Also of interest, similar to multi-copy
approaches introduced by Leguay et al. [19] and Spyropoulos
et al. [23], messages could be first spread to some nodes and
then routed independently.

Furthermore, more realistic evaluations and modelling
would be needed to better take into account interactions
between nodes (e.g., considering realistic contact durations)
and the limitations inherent to real systems such as buffers
size and available bandwidth. This work would allow studying
a number of associated mechanisms to improve performance
such as transmission scheduling, buffer management and con-
gestion control.
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VI. A NNEX

A. Result 1

For an exponential DTN ofn nodes and with parameters
(λi j ), and for any matrix(εi j ) which represents the estimated
message travel time between nodei and nodej (given a certain
routing policy), introducing an intermediate relay selected
among a subsetI of first encountered neighbor nodes of the
sources, generates, for the delivery of a message to noded,
an expected travel timeC(I), given by (see Sec.II-D):

C(I) =
(1+ ∑r∈I λsrεrd)

∑r∈I λsr
(7)
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Let Imin be one subset that minimizesC(I) for all subsetsI
of neighbors ofs. We consider without loss of generality that
ε1d ≤ ε2d... ≤ εnd.

We are going to establish the following, quite remarkable,
result on the structure of the minimal setImin:

THEOREM. If Imin is a subset of neighbor nodes ofs that
minimize Eq. 7, then eitherImin =⊘ or there is ap,1≤ p≤ n,
for which Imin = [1,2, ..., p].

This result is derived from the special shape of criterion of
Eq. 7. More precisely, we will need the following lemma:

LEMMA φ . Let’s introduce the bivariate functionφ(x,y) =
b+xy
a+x (compare it to Eq. 7 to see how it comes into play), we

have:

∀b > 0, a > 0 and∀x,y≥ 0, φ(x,y) ≤
b
a

⇐⇒ y≤
b
a

(8)

PROOF. This is straightforward to check.
Let’s now proceed to the proof the main result.
PROOF. Consider neighbor nodes ofs and whether they ever

meet destinationd or not:

i) if none of the neighbors ofs ever see destinationd,
this means that using any of them as a relay introduces
infinite delivery time, criterion (Eq. 7) becomes infinite. In
other words none of the neighbors ofs are valid relaying
candidates, soImin = ⊘

ii) if at least one of the neighbors ofs seesd, there exists a
node with indexm such thatεmd < ∞ so Imin 6= ⊘.

Let p be the index of the largestεid for nodesi in set Imin.
We are going to show that all nodesi which satisfyεid ≤ εpd

also belong toImin.

Let’s note ratioC(Imin) by b
a =

(d+λspεpd)

c+λsp
. SinceImin mini-

mizes criterion in Eq. 7,ba ≤
d
c : the second term represents the

value of the criterion forImin minus p, which is by definition
of Imin suboptimal.

Rewriting the inequality
(d+λspεpd)

c+λsp
≤ d

c , and from the prop-

erty of φ in Eq. 8, we then haveεpd ≤
d
c . Now:

εpd ≤
b
a

⇐⇒ εpd ≤
(d+ λspεpd)

c+ λsp
(9)

⇐⇒ (c+ λsp)εpd ≤ d+ λspεpd ⇐⇒ εpd ≤
d
c

Suppose there exists a nodem such thatεmd ≤ εpd and
m /∈ Imin. Let’s add it to setImin, and consider the value of
the criterion for this new set of neighbors ofs, I ′ = Imin∪m,
C(I ′) =

(b+λspεmd)
a+λsm

which is lower than or equal toba (from
the property ofφ in Eq. 8 and the fact thatεmd ≤ εpd ≤

b
a);

I ′ would then perform better thanImin in minimizing the
criterion, which is in contradiction with the definition ofImin.

In other words, all (reordered) nodes 1 throughp belong
to setImin, which provides the announced result. This further
leads to the linear time algorithm for minimizing the criterion:
once sorted in the appropriate order, it suffices to add each
node one after the other and stop when the criterion does not
diminish anymore.

B. Result 2

We are going to show that for a given source destination pair
s,d, the sequence of expected delivery timesE[Dn−MH∗

sd ] for
the strategy withn relays decreases as the number of relaying
stepsn increases.

Let’s first introduce some notations. For a given destination
d, let’s consider, for all source nodess, the sequence of values
E[Dn−MH∗

sd ], defined recursively by:

∀s 6= d, E[D1−MH∗

sd ] =
1

λsd
andE[D1−MH∗

dd ] = 0 and (10)

∀s,∀n > 1,E[Dn−MH∗

sd ] = MinR⊂P(n)(
(1+ ∑r∈RλsrE[D(n−1)−MH∗

rd ])

∑r∈Rλsr
)

THEOREM. The sequenceE[Dn−MH∗

sd ] defined in Eq. 10 is
decreasing, i.e.:

∀n≥ 0, ∀s, E[D(n+1)−MH∗

sd ] ≤ E[D[n−MH∗

sd ] (11)

PROOF. We proceed by induction on the number of relays
n.

For n = 0, we have:∀s,E[D1−MH∗

sd ] = 1
λsd

∈ ℜ∪∞
Two cases may occur, depending on whethers meetsd or

not:
• If λsd = 0, E[D2−MH∗

sd ] ≤ E[D1−M∗

sd ] = ∞.
• If λsd 6= 0, let’s consider the one relay strategy for which

R reduces to singletond. Its delivery delay is given by
1

λsd
. By definitionE[D2−MH∗

sd ] gives a lower delay, so we

haveE[D2−MH∗

sd ] ≤ 1
λsd

= E[D1−MH∗

sd ].

So this proves the result in the case ofn = 1.
Let’s suppose that the result holds at rankn − 1,

∀s,E[Dn−MH∗

sd ] ≤ E[D[n−1)−MH∗

sd ].

Let’s considerE[D(n+1)−MH∗

sd ] for a givens,
By definition we have: E[Dn−MH∗

sd ] =
(1+∑r∈Inmin

λsrE[D
(n−1)−MH∗

rd ])

∑r∈Inmin
λsr

, for a given setIn
min of neighbors of

s.
If one uses this set of nodes when introducing another relay

node (i.e., at rankn+ 1), the expected delay is higher than
E[D(n+1)−MH∗

sd ] (by definition), so we have:

E[D(n+1)−MH∗

sd ] ≤
(1+ ∑r∈In

min
λsrE[Dn−MH∗

rd ])

∑r∈In
min

λsr
(12)

But we have by hypothesis,∀i,E[Dn−MH∗

id ] ≤ E[D[n−1)−MH∗

id ],
so this leads to:

E[D(n+1)−MH∗

sd ]≤
(1+ ∑r∈In

min
λsrE[D(n−1)−MH∗

rd ])

∑r∈In
min

λsr
= E[Dn−MH∗

sd ]

(13)
and this is true for all nodess, i.e., ∀s,E[D(n+1)−MH∗

sd ] ≤

E[D[n−MH∗

sd ]. This is the induction hypothesis at rankn+ 1.
So the result follows by induction.

C. Result 3

We are going to show that a message with destinationd is
relayed by MH∗ to a node with lower expected delivery time
to d, i.e., we have the following.
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THEOREM. For any nodes following the routing strategy
MH∗, we have:

∀r ∈ R∗
sdE[DMH∗

rd ] < E[DMH∗

sd ] (14)

PROOF. E[DMH∗

sd ] is the fixed point of theE[Dn−MH
sd ] se-

quence, so it satisfies:

E[DMH∗

sd ] =
(1+ ∑r∈R∗

sd
λsrE[DMH∗

rd ])

∑r∈R∗
sd

λsr
(15)

Singling out a giving relay noder, and applying Lemmaφ
of Eq. 8, we have:

E[DMH∗

rd ] ≤ E[DMH∗

sd ] (16)

We now have to check that the inequality is strict. Singling
out noder in Eq.15, we have:

E[DMH∗

sd ] =
(d+ λsrE[DMH∗

rd ])

c+ λsr
(17)

It is straightforward to check thatE[DMH∗

sd ] = E[DMH∗

rd ] if
and only if E[DMH∗

sd ] = d
c . But d

c corresponds to the criterion
with set of neighbor nodes ofs R∗sd minus r, which is in
contradiction with the definition ofR∗

sd. So the inequality is
strict.
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