
Constrained Policy Optimization for Load Balancing
Ahmed Yassine Kamri, Pham Tran Anh Quang, Nicolas Huin, Jérémie Leguay

Huawei Technologies Ltd., Paris Research Center, France.

Abstract—To improve the bandwidth utilization in IP net-
works, a centralized controller splits flow aggregates over mul-
tiple paths and decides load balancing weights. Ideally, load
balancing policies should anticipate the impact of their decisions
on the Quality of Service (QoS). However, the embedding of
accurate performance models into load balancing optimization
algorithms is a challenge. In this context, we propose a Deep
Reinforcement Learning (DRL) based solution that is able to
learn the relationship between traffic and QoS, while providing
safety to maximize throughput and avoid violating link capacity
constraints. Our safe solution for QoS-aware load balancing
integrates DRL algorithms with the Reward Constrained Policy
Optimization algorithm. In a scenario where link delays follow
the M/M/1 queuing model, we demonstrate, using a non-linear
integer program, that our solution can reach a close to optimal
end-to-end delay. We also show that our solution automatically
learns reward parameters to meet capacity constraints.

I. INTRODUCTION

Traffic engineering (TE) plays a crucial role in load bal-
ancing network traffic over time as it helps optimize the
use of network bandwidth [1]. Indeed, Quality of Service
(QoS) in terms of end-to-end delay and packet loss can be
enhanced when network resources are efficiently utilized. The
most popular load balancing mechanism, equal-cost multi-
path routing (ECMP) [2], uniformly divides traffic across
multiple paths between the origin and the destination. Uneven
flow splitting mechanisms [3] can even further improve load
balancing by using weights to control the amount of traffic
sent over each path. However, none of the current approaches
consider QoS measurements to adjust load balancing policies.

The emergence of Software-Defined Networking (SDN) [4]
paradigm unveiled new capabilities for the global optimization
of load balancing. In SDN, a centralized controller is re-
sponsible for computing routing and load balancing decisions.
Moreover, it is able to monitor the traffic and the availability
of resources. Therefore, it is capable of optimizing bandwidth
utilization over time. In the literature, centralized methods such
as Niagara [5] or IRSR [6] have been proposed to control load
balancing weights so as to minimize a linear routing cost or the
Maximum Link Utilization (MLU). However, these proposals
are not explicitly trying to improve QoS metrics such as the
end-to-end latency.

Accurate analytical models for end-to-end QoS performance
metrics can be difficult to derive and integrate into routing
optimization problems, as they are often intractable. Simple
models have been embedded into routing algorithms, but
in practice, they cannot properly estimate the latency. For
instance, Ben-Ameur and Ouorou [7] considered the Kleinrock
function [8] and gave a convex relaxation to compute a
lower bound of the fractional routing problem. In a previous

work [9], we integrated an M/M/1 model into a single path
routing algorithm. The difficulty to embed accurate analytical
models makes QoS routing an interesting opportunity for
model-free solutions.

Reinforcement Learning (RL) is a sub-field of machine
learning well suited for this kind of problems. Instead of
having a predefined model, the reinforcement learning agent
interacts with the environment and evaluates the consequences
of its actions thanks to a reward function; it learns the
characteristics of the environment by trial and error. Deep
Reinforcement Learning (DRL) [10] combines deep learning
and reinforcement learning principles (e.g., parametrize poli-
cies with neural networks). It has been applied to solve routing
under the umbrella of experience-driven networking [10].

Applying Reinforcement Learning (RL) is generally difficult
in practice. At each iteration, the agent performs an action
based on the current state. The action produces a reward and
the goal is to maximize the accumulated reward. Hence, the
reward signal implicitly defines the behavior of the agent; mis-
specifications in the reward can lead to unwanted behaviors.
A load balancing policy minimizing the average latency may
violate link capacity constraints. Source-nodes may trigger, by
overloading some paths, transport layer adaptions that reduces
the overall throughput to obtain network states with lower
latency. Therefore, we need to craft an appropriated reward
signal that trades off latency against accepted traffic.

To deal with such behaviours, the LearnQueue reward [11]
has been introduced to minimize the end-to-end delay while
penalizing traffic rejections. However, it requires to weight
properly the two objectives in the reward function. And tuning
reward parameters can be tedious in practice as they heavily
depend on the environment. To deal with these limitations
and avoid tuning parameters by hand, we propose to use the
Reward Constrained Policy Optimization (RCPO) algorithm
[12], a novel multi-timescale approach for constrained policy
optimization. RCPO guides the policy towards constraint sat-
isfaction using an alternative penalty signal in the reward. The
penalty is scaled using a Lagrangian parameter learnt during
the training: constraints satisfaction becomes automatic.

Our paper makes the following contributions. We first
describe the system architecture and the environment we
developed based on the Python toolkit Gym [13]. We present
our algorithmic solutions based on DDPG [14] as a base for
the actor-critic model and on the RCPO algorithm to automat-
ically enforce link capacity constraints while minimizing the
average end-to-end delay. Finally, we compare our solution to
LearnQueue and a non-linear integer model on an SD-WAN
(Software-Defined Wide Area Network) use case and show

that a close to optimal delay can be achieved.

II. RELATED WORK

Machine Learning (ML)-based techniques have been
adopted for numerous networking applications [15]. The most
remarkable advantages of ML-based techniques is their capa-
bility in coping with complex problems that are difficult to
model with conventional approaches. To control a network,
one can use supervised or unsupervised learning to predict
the network status and give appropriate control decisions
based on the predictions. Another way is to use RL to make
decisions based on observable network states. In the context of
traffic engineering, the latter approach has demonstrated that
it outperforms other ML techniques [16].

There have been already a number of attempts to use RL
algorithms to solve routing problems. Boyan and Moore [17]
were one of the firsts and used tabular reinforcement learning
to learn the best routing policy, by maintaining a table of all the
current estimations of each node delay. However, the algorithm
must be run online to be adaptive because it only stores the
policy that is used while it is running, and do not have a
function that maps the state of the network to the policy. Lin
et al. [18] have also tried to solve the routing problem from a
centralized point of view (SDN) with reward engineered from
the QoS. The decisions here are taken each time a flow enters
the network. Finally, Stampa et al. [19] have focused on the
same problem considering the delay as the reward, but taking
hop-by-hop routing decisions. Contrary to these works, we
consider the load balancing of flow aggregates by a network
controller over a set of pre-computed paths.

Only RILNET [20] deals with the load balancing problem
using RL. It uses the Maximum Link Utilization (MLU) as
the reward and an actor-critic model. However, having a lower
MLU may lead to a better QoS, but the algorithm does not
explicitly aims at optimizing the QoS.

III. SYSTEM ARCHITECTURE

In this section, we introduce the load balancing system
architecture we considered and the environment we set up.

As illustrated in Fig. 1, the centralized network controller is
equipped with a load balancing agent that periodically updates
the load balancing policy to minimize the end-to-end latency
for all tunnels. Each source device manages a set of OD flows
for which they are the origin, also called tunnels in the rest of
the paper. Tunnels can be split over multiple paths using target
split ratios (or load-balancing weights) that are continuously
updated by the controller. The set of candidate paths used by
a source for a given tunnel can be provided by a local or a
centralized path computation module. It is meant to be rather
stable over time. The end-to-end delay on each path can be
measured at each source with in-band telemetry for instance.

A. Gym Environment

We created a Gym environment [13] to train and test
our proposed RL solution. In this environment, a network
is represented by a directed graph where each edge e has

Fig. 1: Load balancing architecture.

a capacity ce and an instantaneous load le. A tunnel k is
defined by its source (sk) and destination (tk). The set of
available paths for the tunnel is Pk. The traffic demand of
tunnel k at time t is denoted Dt

k and it can be split over
all available paths Pk. A routing function is implemented to
enforce the load balancing decisions given by the DRL agent
and to compute the resulting load and delay on each link.
When links get overloaded, we adopt a max-min fairness rate
allocation [21] to mimic TCP’s behavior and adjusts the rate
of each tunnel to link capacity constraints with a standard
water-filling algorithm. Consequently, a portion of the traffic
will be rejected and the amount of admitted traffic for tunnel
k is denoted D̂t

k, i.e., D̂t
k ≤ Dt

k.
To measure the amount of dropped traffic at time t,

we define the traffic enqueueing rate as follow ert =∑
k

D̂t
k/
∑
k

Dt
k. Also, based on the link load returned by the

routing function, we compute de, the delay of edge e, using a
simple M/M/1 queuing model as follows: de = dprope + 1

ce−le
with dprope the propagation delay that does not depend on the
load. Thus the latency on a path p for a tunnel k is defined by
dkp =

∑
e∈p de and we consider that the delay dk experienced

by a tunnel corresponds to the maximum delay over all its
paths, i.e., dk = max

p∈Pk
dkp .

B. MDP Formulation and DRL Setting

We can formulate the load balancing problem as a
Markov Decision Process (MDP) defined by the tuple
(S,A,R, P, µ, γ). Where S is the set of states, A the available
actions, R : S × A × S → R is the reward function, P :
S×A×S → [0, 1] is the transition matrix and P (s0|s, a) is the
probability of transitioning from state s to s0 assuming action
a was taken, µ : S → [0, 1] is the initial state distribution and
γ ∈ [0, 1) is the discount factor for future rewards. A policy
π : S → ∆A is a probability distribution over actions and
π(a|s) denotes the probability of taking action a at state s. For
each state s, the value of following policy π is indicated by:
V πR (s) = Eπ[

∑
t γ

tR(st, at)|s0 = s]. An important property
of the value function is that it solves the recursive Bellman
equation: V πR (s) = Eπ[R(s, a) + γV πR (s0)|s].

To find the optimal policy, we consider a DRL agent that
interacts with the environment by monitoring the observable

states st to determine actions. The observation space com-
prises the traffic demands Dt

k of tunnels, i.e., the state size is
the number of tunnels. The action space at is determined by
the split ratios of all tunnels, thus its size is

∑
k

(|Pk| − 1). At

each time step, the DRL agent computes the split ratios, and
the routing function enforces them in the environment.

Our goal here is to minimize the sum of delays for all
tunnels, i.e.,

∑
dk. The challenge is to find a safe policy that

avoids dropping traffic to minimize the delay. We discuss this
issue in the next section and we propose a solution.

IV. CONSTRAINED POLICY OPTIMIZATION

To solve the load balancing problem with safety, we propose
a solution based on the RCPO algorithm.

A. Motivations

To avoid that the policy rejects all traffic to minimize the
delay and to enforce link capacity constraints, a solution called
LearnQueue [11] has been proposed in the context of wireless
networks. The key idea is to define a reward function that
penalizes the actions resulting in large delays without causing
a significant increase in the dropping rate. The reward function
contains two main components: rd, related to delay; and renq ,
related to packet drops. The total reward is defined as the
weighted sum of the two terms as follows:

rd = −δ ×
∑

dtk (1)

renq = (1− δ)× ert (2)

Weights δ ∈ [0, 1] are used to combine the sum of delays and
the enqueuing rate (i.e., the portion of accepted traffic). As
one can see, the main issue with LearnQueue is that δ must
be specified and the optimal value is not trivial to find. The
RCPO algorithm presented next solves this issue.

B. RCPO

The Reward Constrained Policy Optimization (RCPO) [12]
algorithm converts a Constrained Markov Decision Process to
an equivalent unconstrained problem by adopting Lagrangian
relaxation; the reward embeds the constraints, and the DRL
agent learns how to obtain the optimal solution while alleviat-
ing constraint violations. It is proven that RCPO converges, un-
der mild assumptions, to a constraint satisfying solution [12].

To express the constraints in RCPO, the authors intro-
duced a penalty signal c(st, at), a constraint C(st) =
F (c(st, at), ..., c(sN , aN)) and a threshold α ∈ [0, 1]. The
constraint may be for instance a discounted sum like the
reward or an average sum. Here we try to maximize the
discounted reward with respect to the constraint JπC ≤ α
where JπC = Eπs0∼µ[C(s)]. The value of the discounted guiding

penalty is V πC (s) = Eπs0∼µ[
∞∑
t=0

γtc(st, at)]. The penalized

reward function is then defined as r′(λ, st, at) = r(st, at) −
λc(st, at) and the value of the new discounted penalized
reward is equal to V ′π(λ, st) = V πR (st) − λV πC (st). The
critic network can learn this penalized value by using temporal

difference-learning. The RCPO is a three-timescale process, in
which the actor and critic are updated following the penalized
value defined above, and λ is updated using the constraints.

Algorithm 1: RCPO [12]
Input: penalty c (.), constraint C (.), threshold α,

learning rates η1 (k) < η2 (k) < η3 (k)
1 Initialize actor parameters θ = θ0, critic parameters

v = v0, Lagrange multipliers and λ = 0
2 for k=0,1,... do
3 Initialize state s0 ∼ µ
4 for t=0,1,...,T-1 do
5 Sample action at ∼ π, observe next state st+1,

reward rt, and penalties ct
R̂t = rt − λkct + γV̂ (λ, st; vk)

6 Critic update:

vk+1 ← vk − η3 (k)

[
δ(R̂t−V̂ (λ,st;vk))

2

δvk

]
7 Actor update:

θk+1 ← Γθ

[
θk + η2 (k)∇θV̂ (λ, s)

]
8 Lagrange multiplier update:

λk+1 ← Γλ [λk + η1 (k) (JπθC − α)]
9 return policy parameters θ

For our load balancing problem, we set the penalty c(s, a)
to be the sum of the differences between the loads and the
capacities of the links of the network : c(st, at) =

∑
e le− ce,

where le is computed based on the traffic demands (st) and
the split ratios (at). In our scenario, the constraint C(st) is
the average sum of the penalties c(s, a). Since the loads have
to be smaller than the capacity, we also have α = 0.

C. Integration into DRL Algorithms

Both LearnQueue and RCPO can be combined with any
DRL algorithm such as , PPO [22], DDPG [14]. DDPG has
shown good performance in benchmarks [23] as well as in
solving networking problems [24]. Consequently, we adopt
DDPG as a based DRL algorithm to solve the load balancing
problem.

V. PERFORMANCE EVALUATION

In this section, we compare the performance of our load
balancing solution with two benchmarks, i.e., the LearnQueue
reward and a non-linear model.

A. Benchmarks

We first compare our solution to the LearnQueue reward
with different values of δ. We shall see that RCPO can
automatically tune the reward to enforce capacity constraints
and ensure traffic acceptance.

Additionally, we also compare against a model-based ap-
proach. Thanks to the use of the simple and popular non-
linear M/M/1 queuing model to estimate the delay on each
link in our simplified Gym [13] environment, we can directly
use a closed-form expression of the delay to optimize load

Fig. 2: SD-WAN scenario with an headquarters site and three
remote sites connected through broadband Internet and MPLS.
Load Balancing (LB) agents are deployed on access routers
with two ports (Internet, MPLS).

balancing. Indeed, we can formulate a Non-Linear Integer
Problem (NLP) and use it as a theoretical benchmark. To do
so, we study the problem minimizing the delay of routed flows.

We can formulate the problem as follows. Let ypk be a
boolean variable indicating that the flow k has any amount
of bandwidth routed through path p and let variable xpk
represents that amount. The delay of link e is given by variable
ze and dk corresponds to the maximum delay experienced by
flow k.

The objective function is :

min
∑
k∈K

dk

We need to link y and x variables using the following
constraints:

Dkypk ≥ xpk, ∀k ∈ K, p ∈ Pk,

Dkxpk ≥ ypk, ∀k ∈ K, p ∈ Pk

Then, to evaluate the delay of a link, we use the M/M/1
queing model formula that gives us the following constraints:

ze ≥
1

ce −
∑
k∈K

∑
p∈Pk:e∈p xpk

, ∀e ∈ E

that can be rewritten as

ze

ce −∑
k∈K

∑
p∈Pk:e∈p

xpk

 ≥ 1, ∀e ∈ E.

Capacity constraints are given by∑
k∈K

∑
p∈Pk:e∈p

xpk ≤ ce, ∀e ∈ E

Finally, the end-to-end delay constraints are given by∑
e∈p

zeypk ≤ dk, ∀k ∈ K, p ∈ Pk

�

�

�

�

�

��

� ��� ��� ��� ��� ����

�
�
��
�
�
�
�
�
�	

�

�
�
�

��	
��

��� ��� ��� ��� ��� ���

(a) Traffic inside tunnels.

��

��

��

��

� ��� ����

�
�
��
�
�
�
�
�
�	

�

�
�
�

��	
��

(b) Total traffic.

Fig. 3: Traffic scenario in the simulation.

B. SD-WAN Use Case

Fig. 2 illustrates a typical SD-WAN network with one head-
quarters site and three branch sites that are multi-homed with
Multi-Protocol Label Switching (MPLS) and broadband Inter-
net connectivity. Traffic can go between the headquarters and
remote sites, or between sites themselves. Origin-Destination
(OD) tunnels carry traffic aggregates for the different types
of application classes (e.g., real-time critical, elastic critical,
elastic non-critical). For the sake of simplicity, we consider
tunnels with the same priority.

In the simulation, we created six tunnels where three are
from HQ to sites, and three are from sites to HQ. The
aggregate traffic pattern of each tunnel is diurnal. In Fig. 3,
we show a traffic sample of 1000 seconds with the traffic of
each tunnel and the total traffic in the network. The traffic
of each tunnel can be split over two paths based on Internet
and MPLS connectivity. The bandwidth of Internet and MPLS
paths are 15 Mb/s and 6 Mb/s, respectively, to keep simulation
time reasonable.

C. Hyper-parameters

A bad choice for the neural network architecture can impede
the learning procedure in DDPG. For instance, the number of
neurons per layer have to be scaled to the dimension of the
action and observation spaces [25]. If the number of neurons is
too low, it may not be sufficient to detect complicated patterns.
Contrarily, overfitting can occur if the number of neurons is
too high. Furthermore, the discount factor controls how much
importance we give to the future rewards in comparison to the
present reward and affects the convergence of the algorithms.
Finally, the action noise is also an important parameter to
trade-off between exploitation and exploration.

���

���

���

���

���

���

����

� �� 	�
� �� ���

���������

�������������� �������������� ���� ���

(a) Acceptance rate.

���

���

���

���

� �� �� �� �� ���

	
�������

�������������� �������������� ���� ���

(b) Average delay (seconds).

���

���

���

���

���

����

� 	�
� �� �� ���

���������

�������������� �������������� ���� ���

(c) Maximum Link Utilization.

Fig. 4: Test results over the SD-WAN scenario.

For LearnQueue, we selected the following parameters after
testing various configurations. For the architecture of the actor
and critic neural networks, we choose two layers of 128 neu-
rons, each with a relu activation function. We set the discount
factor γ to 0.7 and we train the model over 1 million time
steps. To show two extreme versions, we present results for δ
equals 0.1 and 0.9, to respectively focus either on throughput
maximization or delay minimization. For the RCPO solution,
we also considered actor-critic neural networks with two layers
of 128 neurons, each with a relu activation function. We set
the initial value of the Lagrangian parameter λ to 0.8 and the
learning rate for the Lagrangian parameter to 0.01.

For both algorithms, we used a noise to explore the action
space during the training. It follows an Ornstein-Uhlenbeck
process, with a mean of zero and a standard deviation of 0.5.

D. Numerical Results

We now present results on the SD-WAN scenario. Fig. 4
shows the acceptance rate, the average tunnel delay and the
MLU over a test episode of 100 traffic matrices, each one
averaging traffic over 10 seconds. We can first observe that
traffic is lost when δ = 0.9 in Learnqueue. Indeed, this pa-
rameter scales between latency minimization and enqueueing
rate maximization, and in this case, the policy focuses on delay
minimization. On the contrary, for δ = 0.1, no traffic is lost.
This is also the case for RCPO, which automatically learns
about capacity constraints while minimizing the delay. RCPO
plots a lower delay than LearnQueue with δ = 0.1, leading to
a smaller average delay by 25%. The ideal benchmark solution
from the NLP model gives the optimal delay with 100% traffic
acceptance. As we can see, RCPO finds a delay not too far
from this optimal value. Fig.1 also shows the evolution of
the MLU over time steps. We can see that LearnQueue with
δ = 0.1 reaches twice high MLU, making the spikes of delay
because of the M/M/1 model. Interestingly, we can observe
that the MLU is not correlated with the average delay. The
NLP model for instance generates a high MLU but yields
to the smallest delay. This highlights the need to explicitly
consider the delay in the load balancing optimization, instead
of minimizing the MLU.

We now present the losses of the DDPG actor and critic
networks during the training. We only show the actor and critic
losses from beginning to 300 thousands time step because all
algorithms converges after 300 thousands time steps. As shown
by Fig. 5 for LearnQueue, the losses reveal instabilities during
the training procedure, especially for δ = 0.9, which can
highlight the difficulty to find a satisfactory policy. However,
the algorithms did converge and the best policy is saved.
Fig. 6 presents the actor and critic losses for RCPO. RCPO
performs better than LearnQueue since the algorithm learns
the Lagrangian parameter and simplifies the tuning procedure.
However, the choice of the learning rate and the initial value
of the Lagrangian parameter remains important.

VI. CONCLUSION

We have presented a deep reinforcement learning solution
for load balancing to optimize the end-to-end average latency
of a set of tunnels. To provide safety and avoid throughput
degradation, we have enforced capacity constraints in the
policy optimization using the RCPO algorithm. We have
demonstrated that a close to optimal delay can be achieved
while automatically learning reward parameters to meet ca-
pacity constraints. This approach outperforms the LearnQueue
reward, which is difficult to parametrize.

Other approaches can be considered for safe reinforcement
learning. For instance, in future works, we may combine
control barrier functions and DRL algorithms as proposed by
Cheng et al. [26]. We may also test the algorithm with more
complicated objectives related to QoE in a real actionable
network environment.

����

��

����

��

����

��

����

�

� �� ��� ��� ��� ��� ���

�	
���������������

(a) Actor, δ = 0.1

������

������

������

������

������

������

� �� ��� ��� ��� ��� ���

�	
���������������

(b) Critic, δ = 0.1

����

����

�

���

���

���

� �� ��� ��� ��� ��� ���

�	
���������������

(c) Actor, δ = 0.9

�

�����

����

�����

����

�����

����

� �� ��� ��� ��� ��� ���

��	
��
��������������

(d) Critic, δ = 0.9

Fig. 5: Losses for LearnQueue on the SD-WAN scenario.

���

����

���

����

���

����

���

� �� ��� ��� ��� ��� ���

�	
���������������

(a) Actor loss

�

�����

����

�����

����

�����

����

� �� ��� ��� ��� ��� ���

��	
��
��������������

(b) Critic loss

Fig. 6: Losses for RCPO on the SD-WAN scenario.

REFERENCES

[1] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An
overview of routing optimization for internet traffic en-
gineering,” IEEE Com. Surveys Tutorials, vol. 10, 2008.

[2] D. Thaler and C. Hopps, “RFC 2991: Multipath issues
in unicast and multicast next-hop selection,” 2000.

[3] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski,
A. Singh, and A. Vahdat, “WCMP: Weighted Cost Multi-
pathing for Improved Fairness in Data Centers,” in Proc.
ACM EuroSys, 2014.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” Proceedings of
the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[5] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and
J. Rexford, “Efficient traffic splitting on commodity
switches,” in Proc. ACM CoNEXT.

[6] P. Medagliani, J. Leguay, M. Abdullah, M. Leconte, and
S. Paris, “Global optimization for hash-based splitting,”
in Proc. IEEE GLOBECOM, 2016.

[7] W. Ben-Ameur and A. Ouorou, “Mathematical models
of the delay constrained routing problem,” Algorithmic
Operations Research, vol. 1, no. 2, 2006.

[8] L. Kleinrock, Communication nets: Stochastic message
flow and delay. Courier Corporation, 2007.

[9] N. Huin, J. Leguay, and S. Martin, “Génération de

colonnes pour le problème de routage à délai variable,”
in ALGOTEL, 2020.

[10] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H.
Liu, and D. Yang, “Experience-driven networking: A
deep reinforcement learning based approach,” in IEEE
INFOCOM, 2018.

[11] N. Bouacida and B. Shihada, “Practical and dynamic
buffer sizing using learnqueue,” IEEE Transactions on
Mobile Computing, vol. 18, no. 8, pp. 1885–1897, 2018.

[12] C. Tessler, D. J. Mankowitz, and S. Mannor, “Re-
ward constrained policy optimization,” CoRR, vol.
abs/1805.11074, 2018.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “OpenAI Gym,”
CoRR, vol. abs/1606.01540, 2016.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
wuth deep reinforcement learning,” ICLR, 2016.

[15] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang,
“Machine learning for networking: Workflow, advances
and opportunities,” IEEE Network, vol. 32, 2018.

[16] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar,
“Learning to route,” in ACM HotNets, 2017.

[17] J. A. Boyan and A. W. Moore, “Generalization in re-
inforcement learning: Safely approximating the value
function,” in Advances in neural information processing
systems, 1995, pp. 369–376.

[18] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-
aware adaptive routing in multi-layer hierarchical soft-
ware defined networks: A reinforcement learning ap-
proach,” in IEEE SCC, 2016.

[19] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-
Mulero, and A. Cabellos, “A deep-reinforcement learning
approach for software-defined networking routing opti-
mization,” arXiv preprint arXiv:1709.07080, 2017.

[20] Q. Lin, Z. Gong, Q. Wang, and J. Li, “RILNET: A Re-
inforcement Learning Based Load Balancing Approach
for Datacenter Networks,” in ML for Networking, 2019.

[21] D. Bertsekas, “Gallager., r. 1992. data networks.”
[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017.

[23] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Pre-
cup, and D. Meger, “Deep reinforcement learning that
matters,” CoRR, vol. abs/1709.06560, 2017.

[24] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts,
“A Deep Reinforcement Learning Approach for VNF
Forwarding Graph Embedding,” IEEE TNSM, vol. 16,
no. 4, pp. 1318–1331, 2019.

[25] K. G. Sheela and S. N. Deepa, “Review on methods
to fix number of hidden neurons in neural networks,”
Mathematical Problems in Engineering, vol. 2013, 2013.

[26] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick,
“End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks,” in
Proc. AAAI, vol. 33, 2019, pp. 3387–3395.

