Computer Communications 201 (2023) 72-90

Contents lists available at ScienceDirect

computer

communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Routing and slot allocation in 5G hard slicing n

Check for
updates

Nicolas Huin **, Jérémie Leguay ", Sébastien Martin °, Paolo Medagliani "

2 IMT Atlantique, IRISA UMR CNRS 6074, F-35700 Rennes, France
b Huawei Technologies Ltd., Paris Research Center, France

ARTICLE INFO ABSTRACT

Keywords: Current network slicing solutions suffer from poor inter-slice isolation, as the performance of one slice can be
5G influenced by the traffic in other slices. New technologies such as Flex Ethernet can offer hard isolation via

Hard Slicing dedicated resources at the physical and MAC layers. However, to create cost-efficient hard slices in large 5G
Flex Ethernet access networks, a “routing and slot allocation” must be solved quickly. While the underlying network design
Column generation X -

- problem is not new, two extra constraints need to be considered: a specific order in slot activations and a
Polyhedral analysis

bandwidth allocation policy with statistical multiplexing.

We propose a compact and extended formulation to derive FlexE-CG, an algorithm based on column-
generation to solve large instances. We reinforce the extended formulation to improve the lower bound by
deriving valid inequalities, and we provide necessary and sufficient conditions under which the inequalities
are facet-defining. We show that these inequalities improve the lower bound by more than 20% on various
IP-Radio Access Networks (RAN). We also show that FlexE-CG can provide solutions within an optimality gap

of 10% in a few minutes.

1. Introduction

The deployment of 5G mobile networks is paving the road to custom
network services with a rapid increase of network capacity and the
advent of network automation [1]. It is now possible to envision the
automatic decomposition of the physical network into several virtual
networks to serve a wide range of applications like factory automation,
connected vehicles, and smart grids. Each virtual network, also called a
slice, has dedicated resources and is operated by a different player, often
referred to as tenant (e.g., a customer, an application). A virtual link,
also called a service, between physical nodes can be realized as a multi-
hop path with reserved resources on all physical links constituting the
path. The partitioning of network resources between slices aims at
guaranteeing that tenants’ requirements, in terms of QoS, are met in
all slices. Depending on the slicing technology used, the traffic in one
slice can potentially interfere with the traffic in other slices. Two levels
of isolation exist: soft and hard slicing.

In soft slicing [2,3], traditional QoS and routing mechanisms priori-
tize traffic and allocate bandwidth, but performances are still statistical;
resources are pledged to slices, but the traffic is multiplexed in a
stochastic queuing system. When one slice overloads a physical link,
it induces an extra latency for all other slices sharing that link: it is
impossible to strictly ensure that the traffic in one slice will not impact
other slices. Both IP (Internet Protocol) and MPLS VPNs (MultiProtocol
Label Switching Virtual Private Networks) are examples of soft isolated

* Corresponding author.
E-mail address: nicolasjfhuin@gmail.com (N. Huin).

https://doi.org/10.1016/j.comcom.2023.01.008

virtual networks because the network delivers the traffic only to the
required VPN endpoints. The main difference between IP and MPLS
concerns how packets are routed to the destination, providing QoS
satisfaction.

On the contrary, in hard slicing [4], each slice has dedicated re-
sources at both physical and MAC layers, which leads to deterministic
performance; misbehavior of one slice cannot influence other slices.
Extensions of VPN technologies for hard slicing are under discussion
at IETF and known as Enhanced Virtual Private Networks (VPN+) [5], a
technology to support the needs of new applications (e.g., low latency,
bounded jitter), by utilizing an approach that is based on the VPN and
Traffic Engineering (TE) technologies.

Flex Ethernet (FlexE) is a promising technology that provides hard
isolation in IP networks by reserving dedicated resources at the physical
and the MAC layers in a Time-Division Multiplexing Access (TDMA)
fashion. The capacity of physical ports is allocated to each slice in
the form of capacity slots, i.e., multiples of a fundamental bandwidth
unit, usually expressed in Gigabits. The slots are of different sizes
and need to be activated in a given order. Once a slot is allocated
to a slice, it cannot be shared with another one. In this way, FlexE
can provide a performance guarantee for the customer, especially in
transport networks, where this technology is expected to be deployed.
When a slice is created, FlexE slots must be reserved on physical links
and user traffic must be steered through these slots.

Received 8 December 2020; Received in revised form 14 November 2022; Accepted 7 January 2023

Available online 21 January 2023
0140-3664/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2023.01.008
https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.01.008&domain=pdf
mailto:nicolasjfhuin@gmail.com
https://doi.org/10.1016/j.comcom.2023.01.008

N. Huin, J. Leguay, S. Martin et al.

A network controller is typically taking routing and slot allocation
decisions with the goal of minimizing reserved resources globally. A
common way to avoid over-provisioning in IP-RAN (IP Radio Access
Networks) is to use statistical multiplexing across the different levels of
the network topology (i.e., access, aggregation, core) as not all services
are active at the same time. In this way, the network operator can
still satisfy bandwidth requirements from a customer while minimizing
the required resources assigned to him. In this context, we present the
Routing and Slot Allocation (RSA) problem for hard slicing with FlexE in
5G networks where the goal is to minimize the cost of bandwidth reser-
vations for a single slice, under the constraint that all services of the
slice are accepted. The problem considers the statistical multiplexing
policy and the activation order of slots.

Since we consider only one slice, the RSA problem is similar to the
capacitated network design problem with general step cost functions [6]
or the energy-aware routing with discrete link rates problem [7]. While
neither work studies network slicing, the structure of their respective
studied problem relies on the discrete allocation of resource. However,
key differences prevent us from using their solutions. First, Gabrel
et al. [6] consider splittable flows, unlike our problem where each
service must be routed on a unique path. Second, even though Awad
et al. [7] consider unsplittable flows, we cannot apply their solution as
in this paper the authors do not consider statistical multiplexing, which
is, de-facto, a standard and widely adopted solution in IP-RAN networks
(see Section 2.4).

Only a few works have considered statistical multiplexing for slicing
or network design. Belotti et al. [8] and Capone et al. [9] considered
the case of multi-layer networks where MPLS is considered on top of
transport networks (e.g., SDH or WDM). Statistical multiplexing is used
at the MPLS level in complement to traffic grooming [10] at the optical
layer to better exploit the large capacity available on each wavelength.
Packet-switched networks can indeed aggregate traffic using a pool of
shared resources, and they require much less capacity than what would
be needed from an equivalent aggregation at the optical level with
grooming. The authors use Lagrangian relaxation to derive upper and
lower bounds to the problem and to evaluate greedy and local search
heuristics.

When the traffic demand can be precisely known and statistical
multiplexing is not considered, several approaches have been proposed
to solve the capacitated network design problem using, for instance,
decomposition methods and cutting planes [11-13]. None of these
inequalities are suitable for our problem as different assumptions are
made on the slot allocation policy (e.g., uniform size, uniqueness) and
statistical multiplexing is not considered. Section 4.2 provide a deeper
analysis of these cutting planes compared to the ones we propose.

As in some cases the traffic may not be predictable, robust optimiza-
tion methods under uncertainty sets have been proposed. The robust
network design problem where a linear reservation cost is minimized
was proved to be co-NP hard [14]. This problem is also referred to as
dynamic routing in the literature, since the network is optimized such
that any realization of the traffic matrix in the uncertainty set has its
own routing. As opposed to dynamic routing, static routing or oblivious
routing was introduced in [15-17] to choose a fixed routing for all
services. In this case, polynomial-time algorithms to compute optimal
static routing (with respect to either congestion or linear reservation
cost) have been proposed [15-18] based on either duality or cutting-
plane algorithms. To further improve solutions of static routing and
overcome complexity issues related to dynamic routing, a number of
restrictions on routing have been considered to design polynomial-time
algorithms (see [19,20] for a complete survey). We leave the robust
case for future work and focus on the deterministic case, where a single
and known matrix defines the traffic load of all services. In particular,
for each of them, we must provide an end-to-end path respecting the
requested QoS.

73

Computer Communications 201 (2023) 72-90

Our paper makes the following contributions. First, we formu-
late the RSA problem. Then, we present an efficient heuristic based
on column generation [21] and randomized rounding to quickly ap-
proximate the optimal solution. Thanks to a polyhedral analysis, we
reinforce the original model with cutting planes to improve the lower
bound given by the optimal solution of the relaxed model. We propose
three families of inequalities: cover inequalities, edge-cuts inequalities,
and 1-slot inequalities. We provide necessary and sufficient conditions
under which the edge-cut and 1-slot inequalities are facet-defining,
and sufficient conditions under which the cover inequalities are facet-
defining. Through numerical results on large-scale and realistic IP-RAN
instances, we confirm that these inequalities improve the lower bound,
and we show that the column-generation-based heuristic provides a
high-quality solution to the problem. To the best of our knowledge,
we are the first to propose a column-generation-based heuristic and
cutting planes to efficiently solve the RSA problem with statistical
multiplexing.

The structure of the paper is the following. We explain hard slicing
from a technological point of view and present the RSA problem in Sec-
tion 2. We then formally propose a compact formulation of the problem
and give an extended formulation in Section 3 that we use in a column
generation procedure. Furthermore, we derive valid inequalities and
perform a polyhedral analysis in Section 4 to improve the lower bound.
In Section 6, we show on 5G scenarios, using an IP-RAN network, the
improvement of the lower bound and the performance of the column
generation algorithm when using the different inequalities to reinforce
the master problem. Finally, we conclude this paper in Section 7.

2. Routing and slot allocation in IP-RAN networks

This section provides background information on Flex Ethernet and
explains how bandwidth has to be allocated for hard slicing in IP-RAN
networks with statistical multiplexing. At the end of the section, we
introduce the RSA problem that a slicing controller needs to solve.

2.1. Flex Ethernet

The Optical Internetworking Forum (OIF) has designed a new tech-
nology, referred to as Flex Ethernet (FlexE) [22], which allows network
operators to physically separate the resources of different tenants by
adding specific FlexE shims at both head-ends of transmission links.
While FlexE has been conceived for interfacing IP and transport net-
works, it allows the support of previously unavailable Ethernet rates
and can be used to provide hard isolation between IP network slices.

As shown in Fig. 1(a), several FlexE clients, corresponding to dif-
ferent users (i.e., tenants in the hard slicing case), are handled by a
FlexE shim, a sub-layer that is added between the PHY and the MAC
layers of a standard IEEE 802.3 stack. The FlexE shim is responsible for
mapping and de-mapping the FlexE clients into the bounded physical
FlexE groups, i.e., a set of n clients mapped into m 100 Gbps physical
interfaces and de-mapped after the data is received. The operation
of multiplexing is depicted in Fig. 1(b). Data from the clients are
decomposed into smaller 66 B frames and sent over the link using a
Time Division Multiplexing (TDM) mechanism. The associated TDM
frame is divided into 20 slots, whose size is 5 Gbps each. To let
the receiving FlexE shim demultiplex data received on the link, the
two FlexE devices share a calendar. In this way, the receiving device
becomes aware of the slots used by the transmitting device for each
FlexE client (i.e., tenant in the hard slicing case).

Existing VPN solutions can already provide soft isolation between
tenants, i.e., the different tenants are logically separated. However,
congestion inside a slice may impact all the other slices as they share
resources at the MAC layer. FlexE, instead, ensures hard isolation

N. Huin, J. Leguay, S. Martin et al.

Bonded Ethernet PHY
(FlexE group)

/_/%
network

Flex E client
FlexE Shim
FlexE Shim

(@)

Flex E client

Computer Communications 201 (2023) 72-90

Stream 0 Stream 1 Stream 2

P2 [r2 | P2
Slice P1 [P1] 3
PO PO PO

FlexE Shim

Group

St - --

(A

64/66 Bit block granularity TDM

(b)

Fig. 1. (a) General structure of a FlexE network and (b) TDM division of data transmissions.

between tenants via a TDM frame at the MAC/PHY layer and sub-
interfaces with dedicated resources at the MAC layer. Each FlexE
sub-interface is mapped into a dedicated MAC block to avoid delay
and bandwidth interference with other slices. The FlexE shim then
maps the FlexE client (i.e., hard slicing tenant) with the corresponding
physical resources according to the information in the calendar. And
each FlexE sub-interface implements traditional QoS mechanisms to
handle requirements of the flows of the same FlexE client (i.e., inside
the hard isolated slice). The benefits of hard slicing for isolation with
FlexE have been previously demonstrated [23] in the case some of the
slices become overloaded.

Extension of VPN technologies for hard slicing are under discussion
at IETF and known as Enhanced Virtual Private Networks (VPN+) [5]. In
this proposal, a set of dedicated underlay resources, such as FlexE sub-
interfaces, is advertised to the network layer. These underlay resources
can be exploited using MPLS-TE [24] or Segment Routing [25]. In
the case of Segment Routing, the source node explicitly states, via a
Segment Routing (SR) label stack, in which sub-interface each packet
must be transmitted at each link.

2.2. Bandwidth allocation policy

The TDM frame and the shared calendar between two adjacent
nodes impact the bandwidth granularity that can be allocated to each
FlexE client. In the latest version of the standard, i.e., the 2.0 [22], the
finest granularity of each TDM frame is 5 Gbps. In Huawei’s implemen-
tation of the standard FlexE, the first slot used by each sub-interface can
present a finer granularity, i.e., it can be further subdivided into 5 slots
of 1 Gbps each.

As a slot cannot be shared between different clients (i.e., slices) to
ensure hard isolation, the bandwidth for each FlexE client (i.e., each
slice) is reserved according to the following rules:

1. if a new slot needs to be reserved, its size must be larger than
the demand size;

2. when reserving a new slot, first use the 1 Gbps slots available
and, if none is left, use the 5 Gbps slots;

3. the portion of bandwidth already reserved for a slice can be used
by any services of the slice.

An illustrative example of how bandwidth is reserved according to
the FlexE technology is shown in Fig. 2. Over a 10 Gbps link using
FlexE, two services belonging to the same slice must be routed. The size
of Service 1 (in red) is 7 Gbps, while the one of Service 2 (in blue) is 3
Gbps. Assuming that Service 1 arrives in the network, it is necessary to
reserve bandwidth for it in the link. As it requires 7 Gbps, the first five
1-Gbps slots plus the 5-Gbps slot are used. This means that 10 Gbps are

74

reserved to the slice including Service 1. More precisely, Service 1 will
only use 7 Gbps (marked with solid color) and that 3 Gbps are allocated
but not used by any service of the same slice (marked with diagonal
lines). When Service 2 arrives into the network, it can use the 3 Gbps
available without any extra-reservation, fully occupying the capacity
reserved for the slice.

2.3. IP-RAN topology

According to the 3GPP standard, a telecommunication network can
be divided into Access Network (AN), Transport Network (TN), and
Core Network (CN). FlexE is expected to be used for traffic isolation and
performance guarantee in the Transport Network, often implemented
as an IP-RAN: a packet (IP)-based network designed to implement
fixed-mobile convergence (FMC). The IP-RAN is therefore introduced
to support diversified services, such as mobile, leased line, and fixed
network services using the same network infrastructure.

The IP-RAN network, as shown in Fig. 3, is divided into three layers:
the access, the aggregation, and the core network.

The network topology has a hierarchical structure: there is only one
core layer, to which several aggregation layers are connected, being
themselves connected to several access layers. Each layer corresponds
to one or more domains, i.e., logical subnets composed by routers and
switches, to ease management and ensure scalability.

Base Stations (BS) are connected to the nodes in the access layer,
referred to as Cell Site Gateway (CSG). Each access layer is connected
to the aggregation layer via a pair of Aggregation Site/Service Gateway
(ASG) nodes. Each aggregation layer is connected to the core layer via
a pair of Aggregation Autonomous System Border Routers (A-ASBR),
associated with a pair of Core System Border Routers (C-ASBR) via
direct links. These latter are normally connected to each other with a
full mesh. Finally, the core network is connected to the Evolved Packet
Core (EPC), which corresponds to the core network described above.

2.4. Statistical multiplexing

For the sake of simplicity, the planning of resources is carried out
in the worst-case scenario where all the services, also referred to as
demands in the rest of the paper, are active at the same time. However,
in large-scale and realistic network scenarios, this assumption may
yield to a costly over-provisioning of bandwidth as in reality, some
demands are only present for a limited amount of time every day. For
instance, flows from one base station to another related to data or
communication services are expected to be sporadic. For this reason,
instead of reserving the full capacity over the links, it is possible to
statistically multiplex the bandwidth of services of the same type —

N. Huin, J. Leguay, S. Martin et al.

Service 1

7Gb FlexE link

Service 2
3Gb

Computer Communications 201 (2023) 72-90

Service 1 +
service 2
reservation

FlexE link
capacity
10 Gb

Service 1
reservation

1 x5Gb

5x 1Gb

3 Gb reserved
but not used

Fig. 2. Example of FlexE bandwidth allocation policy on a 10 Gbps link with two services (Service 1 in red requires 7 Gbps, while Service 2 in blue requires 3 Gbps).

MASG

C-ASBR

BS

eNodeB

eNodeB

Fig. 3. Structure of an IP-RAN network.

i.e., assign only a portion of the bandwidth using statistical information
on the coexistence of different services — and reduce the overall
amount of bandwidth necessary to route all the services.

Statistical multiplexing is particularly useful in the aggregation and
core layers, where capacity is higher and a larger number of services
are using this part of the network. Conversely, we can assume that no
multiplexing is needed in the access layer. For this reason, in the net-
work planning of bandwidth reservations, we consider the possibility to
scale down the reserved bandwidth by a multiplicative factor, as shown
in Fig. 4, referred to as Convergence Ratio (CR), which depends on the
considered layer. For the sake of simplicity, we will assume that the CR
factor is the same for all the nodes of a given layer, even if with some
observation of the traffic, it may be possible to fine-tune the factor for
different areas in the network. Note that users may explicitly state that
the CR factor should not be applied to a subset of demands.

As shown in Fig. 4, a service of size B will consume B, B/m, and
B/n units of bandwidth respectively on access, aggregation and core as
the convergence ratios of these levels are u, =1, y, = i, and y, = %

In practice, as the convergence ratio can be applied to a subset
of demands with the same characteristics, it is important to respect
two constraints: (1) there is enough reserved capacity to route all the
services together after we apply the CR factor of the corresponding
layer and (2) there is enough reserved capacity for each service alone
when the CR factor is not applied. For instance, if three demands k; =2
Gbps, k, = 2 Gbps, and k; = 4 Gbps need to be allocated in the

75

network and CR = i, according to rule 1, =2 Gbps are reserved.
However, when the flows are considered independently, the flow ks
would not pass. Thus, the correct amount of bandwidth to be reserved
is the maximum between each flow and the sum of flows scaled by the
CR factor, i.e., max 2+i+4,2, 2,4) =4 Gbps.

Given an arc e and a set of demands K to be allocated, where K and
Ky are the two complementary subsets of demands with and without
convergence ratio, the bandwidth reservation needed is given by

u, (K) = Z D, + max (ye 2 Dk’ltg?}()é Dk>

keKye keKg

242+4
4

@

where 4, is the CR factor for the arc e and D, the bandwidth require-
ment of service k.

In the literature, the convergence ratio can be also referred to as the
over-provisioning ratio or overbooking ratio. For MPLS networks, it has
been defined with regard to the number of tunnels being at peak rate.
For instance, in [8,9], they considered that only one tunnel at a time
can be at its peak rate and that we need to accommodate all tunnels
at their average rate at any time. In practice, as mentioned in [26],
we may generalize this definition to the case where k tunnels can be
simultaneously at their peak rate. In our work, we only consider tunnel
rates which are scaled by a factor determining the probability of tunnels
(e.g., mobile users in IP-RAN) to be active. As we ensure that any active
tunnel must be routed, we can consider the rate D, as a peak rate.
We point out that, even in a scenario multi-slice, the convergence ratio

N. Huin, J. Leguay, S. Martin et al.

Reserved bandwidth
B/1 '
1

@

Service
bandwidth B

He=1

Reserved bandwidth

Computer Communications 201 (2023) 72-90

Reserved bandwidth

B/m B/n

Ue =1/m pe =1/n

Fig. 4. Convergence Ratios (CRs) in an IP-RAN network for a service with bandwidth B. The applied CR depends on the area of the network traversed by the service.

Table 1
Summary of the notations used in the paper.
Symbol Definition
G=V,E) The network
14 Set of routers (indexed by v)
E Set of arcs (indexed by e)
™ (v) Set of incoming arcs of node v
wt (v) Set of outgoing arcs of node v
C, Cost of the arc e
He Convergence ratio of the arc e
b, Capacity of the arc e
Ao Delay of the arc e
u, (K) Bandwidth required to route a set of services K on the arc e
S¢ Set of slot configurations for a given arc e (indexed by s)
&,y Bandwidth size of a slot configuration s on arc e (indexed by s)
A(x) Function giving the minimal slot configuration needed to forward x amount of bandwidth
K Set of services in the slice (indexed by k)
K. Set of services impacted by statistical multiplexing (with Convergence ratio)
Ky Set of services not impacted by statistical multiplexing (Not with Convergence ratio)
D, Bandwidth size of service k
Ay Maximum delay of the service k
Sk Source of the service k
1y Destination of the service k
P Set of paths in the network
Py Set of paths between s, and 7, for service k respecting the maximum delay A,

applies only within each slice independently. In hard isolation, in fact,
traffic fluctuations of one slice do not impact the traffic of the other
slices.

2.5. The RSA problem

We represent a network as a directed graph G = (V, E). An arc
e € E represents a link of the physical network and has a cost per
unit of capacity C,, a transmission delay of 4, and a set .5 of possible
slots allocation configuration. An arc e = (v,w) € E shares the same
bandwidth with its reversed arc (w, v). Each slot configuration s € S°¢
of an arc e has a total bandwidth capacity of &,. For instance, an
arc with 10 Gbps of available bandwidth would have six available
configurations according to FlexE policy: 1 Gbps, 2 Gbps, 3 Gbps, 4
Gbps, 5 Gbps, and 10 Gbps. The set of services to provision for in
the network is denoted K; a service must be routed from a source s,
to a destination 7#;, it requires D, amount of bandwidth, and it must
experience a maximum end-to-end delay of A;. For some services we
can apply statistical multiplexing, while for others we cannot, and we
refer to them K and K, respectively. Table 1 provides a summary of
the notations used in the paper.

The Routing and Slot Allocation (RSA) problem consists of provi-
sioning all services of a single slice while respecting QoS constraints
and minimizing the cost of the allocated slots. For each service, a
routing path must be decided, and for the entire slice, bandwidth
reservations slots must be assigned on all the arcs that are used. This
problem is clearly NP-hard, as it is a generalization of the discrete cost
multicommodity network design problem [27].

76

3. Models and algorithms

This section presents models and algorithms for the RSA problem
with statistical multiplexing. First, we propose an arc-based compact in-
teger linear program that can be solved to optimality using CPLEX [28]
on small scale instances. Then, we derive a path-based extended for-
mulation that contains an exponential number of variables, and we
describe the algorithms used to efficiently solve it using column gener-
ation. In particular, we propose a greedy algorithm and a local search
algorithm to complement the column generation procedure, giving the
global FlexE-CG algorithm.

3.1. Mathematical formulations

Both the compact and the extended formulations that we present are
variants of a multi-commodity flow problem. Their main specificity lies
in the needed linearization of the slot reservation constraint (1) due to
statistical multiplexing and in the ordering of slots.

Recall that the bandwidth usage of an arc e is equal to the sum of
the non-multiplexed demands’ bandwidth and the maximum between

+ the sum of the multiplexed demands’ bandwidth multiplied by the
convergence ratio of the arc

Z Dk+/4e Z Dkv

keKyg keKg

(2)

N. Huin, J. Leguay, S. Martin et al.

» and the maximum peak rate of over all multiplexed demands’
bandwidth

inz[l(x Z Dy + Dy 3

€
C K ekye

We can thus linearize Eq. (1) with |K; + 1| linear equations.

3.1.1. Compact formulation

Let y,, € {0,1} where y,, = 1 if the slot configuration s is active on
the arc e and f;, € {0,1} where f,, = 1 if the service k (also called
demand later in the paper) is routed through the arc e. We formulate
the problem as follows:

min Y C, Y &y ves (42)
eeE SES®
lifv=s,
s.t Z Sre — Z fre=1-1ifv=1, YoeV,VkeK,
e:(v,v))EE e:(v ,v)EE 0 otherwise:
(4b)
Z}‘efkes/‘k Vk € K,
ecE
(40)
Z Yes <1 Ve e E,
sese
(4d)
Z Dkfke"'”e Z DkfkeS Zéesyes VEEE’
keKye keKg SES®
(4e)
Y, Difret Difre S) Eesbes Ve € E,Vk € K,
k€Kyc seSe
“h
fre €1{0.1} Vk € K, Ve € E¥,
(4
Yes €{0.1} Ve € E,Vs € S°.
(4h)

The objective function is the cost of activating the slots on the
network (i.e., the sum of the capacity of activated slots on all arcs)
and we want to minimize it. Inequalities (4b) are the classical flow
conservation constraints, inequalities (4c) limit the delay of each path
and inequalities (4d) ensure that at most one slot configuration is active
per arc. Since we need to consider statistical multiplexing for the arc
capacity, inequalities Eq. (4e) and (4f) translate Eq. (2) and (3) into arc
capacity constraints.

3.1.2. Extended formulation

In the extended formulation, we get rid of the f;, variables and
replace them by considering the set of paths between the source and
destination of the demands. The set of variables y retains the same
meaning as in the compact formulation, and we introduce the set of
variables x,, € {0,1} where x,, = 1 if service k is routed through the
path p. The path-based extended formulation is as follows:

min Z C, Z & Ves (5a)

ecE sese

s.t

O - Z D, Z Xpt

keKyc peEPk ecp
2 ka < z éesyes

He sz

keKg pePk eep sese

oy - Z D, Z Xppt

keKyce pEPk e€p

Ve € E (5a)

Computer Communications 201 (2023) 72-90

Dk 2 xkp < Z 5esyes

Ve € E,Vk € K, (5b)

pePkeep sES®
Vet Y X2 1 Vke K (5¢)
pePk
0,0 Y v <1 Ve e E (5d)
SES®
xpp € {0,1} Vk € K,Vp € P¥ (5e)
Yes € {0,1} Ve € E,Vs € S¢ (5

Similarly to the compact formulation, inequalities (5a) and (5b)
translate Eq. (2) and Eq. (3) into arc capacity constraints. Inequali-
ties (5¢) routes each service on at least one path, and inequalities (5d)
ensure that at most one slot configuration is active per arc. The ob-
jective function is the same as the compact formulation (4). Note that
8¢ Tor> Vi and 6, represent the dual variables associated with each
constraint in the dual problem of the relaxation.

This formulation has |V||K| fewer constraints than the compact
formulation. As path variables x,, are in exponential number, we will
use a column generation algorithm [21] to generate them when solving
the relaxation in Section 3.2. The end-to-end delay constraint (4c) from
the compact formulation, or any relevant path constraint, will be con-
sidered in the path generation, i.e., the pricing problem of the column
generation procedure. After the column generation procedure finds a
relaxed solution, we derive an integer solution using a randomized
rounding algorithm.

3.2. Algorithms

Based on the extended formulation (5), we now present a col-
umn generation algorithm along with two complementary algorithms:
a greedy and a local search algorithms. These algorithms are then
combined to define an efficient heuristic, FlexE-CG.

3.2.1. Column generation algorithm

Column generation starts from a master problem with a subset of
columns, called the Reduced Master Problem (RMP). To generate new
columns, we obtain the dual values associated with the RMP constraints
and feed them to a pricing problem that checks if any improving
column exists for the current RMP. The algorithm goes back and forth
between the resolution of the RMP and the (possibly multiple) pricing
problem, adding improving columns in the process. Once the pricing
problem can no longer find improving columns, the procedure stops
and the relaxation found is optimal.

Pricing problem. To define the pricing problem, we use the dual of
the extended formulation’s relaxation (where we change the domain
of variables x;, from {0, 1} to R and the domain of variables y,, from
{0,1} to [0, 1]). With dual variables §,, r,, v, and 6, corresponding to
their respective constraints, we formulate the dual problem as follows:

max z Yk — z 0, (6a)

keK ecE
s.t.
Vs 100 = &,y <5e +) Ty - Ce> Ve € E,Vs € S° (6b)
keKg
3.1 M EAE Y Vk € Ky, Vp € P¥ (6¢)
eEp k'eKg
Xip e <Dy Y (Meb, = 7or) vk € K¢, Vp € P* (6d)
eep
y>0,6>0,0>0,7>0 (6e)

N. Huin, J. Leguay, S. Martin et al.

Finding an improving column in the Reduced Master Problem is
equivalent to finding any violated inequality in the corresponding dual
problem. In our case, these inequalities correspond to inequalities (6¢)
and (6d), and we need to find, for any service k € Ky if there exists
any path p such that

DkZ 6, — 2 Topr | < 7k
eEep k'eK¢

or, for any service k € K, if there exists any path p such that

Dk Z (Me‘se

eep

—”ek) <7k

We can see, in both cases, that proving the (non-)existence of an
improving column for a demand corresponds to computing its short-
est path. Since demands have delay constraints, the pricing problem
thus corresponds to the resource-constrained shortest path problem.
The weight of an arc e depends on the type of demand: for a CR
demand, it is given by Dy (u.8, — z,;); for a NC demand, it is given
by D, (ée - Zk,EKC Toe). Since we need to satisfy an end-to-end de-
lay constraint, we use the LARAC [29] algorithm. When multiple
additive constraints need to be considered (e.g., delay, jitter, loss),
GEN-LARAC [30] can also be used.

Randomized rounding. Once we obtain an optimal solution for the
extended formulation’s relaxation and a subset of path P, for each
demand, we derive an integer solution using a randomized rounding
algorithm. The algorithm selects, for each demand k, a path p from P,
at random with the probability

x*
. k
P (k is routed on p) = ﬁ

VeEP, Tikp

where xz

of Formulation (5). If selecting a path violates some arc capacity

, is the value of x;, in the optimal solution of the relaxation

constraints, we remove it from the set of available paths and redraw
a path at random until we either find a valid path or there are no re-
maining paths. The final step consists of greedily routing the remaining
demands without a selected path using the greedy algorithm presented
in Algorithm 1. The algorithm can be run several times in parallel, and
we keep the feasible solution with minimum value.

3.2.2. Greedy algorithm

We propose a greedy procedure, described in Algorithm 1, that we
use for warm starting the column generation algorithm, i.e, to give an
initial set of columns, and for finding missing paths in the randomized
rounding algorithm. It successively finds the shortest path constrained
by an end-to-end delay; At each iteration, the weights of the arcs
depend on the slot allocation already performed for the previous paths
selected. More precisely, the weight of an arc e when we calculate the
path for a demand k is given by

M@={

where u, (K) gives the bandwidth used by the set of demand K on the

1if A(u, (K,)) 2 u, (K, U{k}),
1 + C, otherwise.

arc e and A (x) gives the slot allocation needed for x Gbps amount of
bandwidth, i.e.,

A(x) = {

[x/1] if x <5,
[x/5] * 5 otherwise.

78

Computer Communications 201 (2023) 72-90

This weight function favors routing on arcs where allocated resources
can be used for free.

Algorithm 1 Greedy algorithm

Input: A network G = (V, E), arc capacity b,, Ve € E, set of demands
K to route, set of demands K, on each arc e
Output: Set of paths P

1: P<@

2: K, < @,Vee E

3: for demand k € K do

4: Ef —{e:u, (Kcu{k})sbc}

5 whe) = {1 if 4 (u, (Ke)’) 2 u, (K U {k})
1 + C, otherwise

Ve € EF

6 Build weighted graph G = (V, E¥, w*)
7: Find shortest path p from s, to ¢, in G¥
8: P < PU {p}

9 for arc e € p do

K, < K, U {k}
return ;’

3.2.3. Local search algorithm

Finally, we design a local search algorithm, described in Algorithm
2, to improve existing solutions. At each step, the algorithm selects an
arc and decreases its bandwidth to try to improve the current solution.
It removes the demands that were previously using this arc and tries
to reroute them. It reverts to the previous solution if it cannot reroute
them or if the new solution has a higher cost. When the algorithm has
evaluated all the arcs, it stops and returns the best solution found.

We chose to rank the arcs based on the amount of unused bandwidth
multiplied by the arc’s cost (see line (4)) because it is rare for all
allocated slots to be fully filled in a given solution. Thus, we can hope
to redirect traffic and reduce some slot allocation to the previous ones.
For instance, an arc transmitting 5.1 Gpbs requires a 10 Gbps slot
configuration, wasting 4.9 Gbps. By limiting the capacity of the arc to 5
Gbps, we could find new paths for the demands using this arc without
requiring a bigger slot allocation somewhere else: the new solution
would thus be cheaper.

3.3. Overall architecture of the flexe-cg algorithm

Fig. 5 depicts the overall architecture of FlexE-CG, the heuristic
algorithm we propose. As illustrated, the column generation routine
can be warm-started by providing a first initial feasible solution found
by the greedy algorithm. The pricing problems corresponding to all
demands can be solved in parallel. And in the rounding step, several
randomized rounding routines can be executed in parallel. Finally, the
best solution among those provided in the rounding step is selected.
And the local search algorithm is applied to improve the solution.

This algorithm can be implemented inside a powerful SDN con-
troller to calculate FlexE slot reservations over physical arcs to satisfy
the QoS requirements of demands in a given slice.

4. Improving the lower bound

The relaxed solution given by the column generation algorithm
provides a lower bound to the RSA problem. This bound is useful to
measure the quality of any solution to the original problem, especially
on larger instances where the compact formulation cannot be solved in
a reasonable amount of time.

In this section, we reinforce the extended formulation with valid
inequalities to improve the lower bound. First, we propose an extension

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

Warm start (Greedy)

Y

Column Generation routine

Solve Update dual prices for edges 3 Parallel 3
restricted i demand
LP embedding |
(Master) Generate a new 3 (Pricing)
column for demand k' """ ° ‘

" Parallel 1

, rarane RR RR RR RR |

. rounding !

Fig. 5. Architecture of FlexE-CG, a column-generation-based heuristic using parallelization and warm start.

Algorithm 2 Local search algorithm

Input: A network G = (V, E), arc capacity b, Ve € E, set of demands K,
set of paths P = {p, : Vk € K}
Output: Set of paths P

1 Ecawp < E
2: while Egpyp # @ do
eep} VeeE

3 K, {k:

& « argmax, C, X (S(u(e, K,)) — u(e, K,))

4 e€EcanD
5 Ecanp < Ecanp \ €
6: (PoLp, KoLp, boLp) < (P, Kz, b;)
7: bs < [S(ue, Ky)))

8: for demand k € Kg;p do

9 for arc e € p, do

K, < K, \ k
11: P9
12: Pygy < P U Greedy(G, Kgrp. Ko, by
13: if COSI(PNEw) < COSI(POLD) then
14: P < PNEW
15: else
16: P < POLD
17: Restore (Pqrp, Kgrp, borp) @s current solution

18: return P

of the well-known cover inequalities [31] associated with the capacity
constraints. Second, thanks to the max-flow min-cut theorem, we pro-
pose families of inequalities based on the edge-cut in the graph. Third,
we propose the 1-slot inequalities that focus on slot configurations
activation for a given edge-cut. Finally, we analyze the strength of
these valid inequalities using a polyhedral analysis and we propose
algorithms to generate them.

Before presenting the inequalities, let us lay down some notations
summarized in Table 2. For a given arc e, the function S¢(z) (resp.

79

S$(2), S¢(z), S5(2)) provides the set of slot configurations with a
bandwidth reservation greater than z (resp., greater than or equal to,
less than, less than or equal to z). We denote by 8¢ ax (TESD. sﬁm) the
slot configuration with the maximum (resp. minimum) bandwidth size
in §¢. The size of the slot configuration associated with s¢ (resp. sfn in)
is denoted &, ., (resp. &,.:,) and the associated variables y, .. (resp.
Ve min)'

By abuse of language, &, is the size of the slot configuration of
maximum size in a given set of slots S (i.e., &,¢ = argmax g &,,), and
s Is the slot configuration of maximum size in a given set of slots S.
Remark that £, =& max-

Let V' C V be an edge-cut of the network, and we denote by §(V')
the arcs between V' and V \ V' (i.e., E[V',V \ V']). We denote by

i(ll; " the smallest convergence ratio y, of all the arcs in the edge-cut
5(V'), where e € 6(V'). Let K(V') C K be the set of demands such that
both end-points are on the opposite side of the cut. Ko(V') € K(V')
and Ky (V') € K(V') denote the set of demands with and without

convergence ratio, respectively.
4.1. Valid inequalities

In this section, we introduce three families of inequalities. First, we
propose an extension of the well-known cover inequalities associated
with the capacity constraints. Second, thanks to the flow and edge-cut
relationship, we propose inequalities for all possible edge-cuts in the
graph. Third, we propose 1-slot inequalities for all edge-cuts based on
slot configurations.

4.1.1. Extension of cover inequalities

Cover inequalities consider a subset of demands K’ C K such that
all these demands cannot fit on a given arc e € E. We extend these
cover inequalities to consider the different slot configurations on FlexE
arcs.

For a subset of demands K/’ € K and an arc e € E, the slot

configuration s € S is invalid for K’ if and only if

Z Xkp + He Z Dk Z Xpp > ’fesyes

pEPk :e€p keKonK' pEPk e€p

Dk
keKycnK'

(7a)

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

Table 2
Summary of the notations used when improving the lower bound.
Symbol Signification
S¢(2) set of slot configurations with size greater than z
S¢(2) set of slot configurations with size greater than or equal to z
Sg(z) set of slot configurations with size less than z
S¢(2) set of slot configurations with size less than or equal to z
sf;ux slot configuration of maximum size in S¢
Se slot configuration of minimum size in .S¢
5 slot configuration of maximum size in S
&, max size of the slot configuration associated with s¢,
&, min size of the slot configuration associated with s¢ .
& size of the slot configuration of maximum size in §
sV arcs between V' and V \ V'’
i(a:/) smallest value of u¢ where e € 5(V')
KWV’ set of demands such that both end-points are on the opposite side of the cut
K.V set of demands with convergence ratio
Ky (V") set of demands without convergence ratio

or

Dy,
k'€KycnK’

Vke KonK'.

)

peP“’ le€p

XK/ p + Dk Z Xkp > éesyex’
pEPk :e€p

(7b)

For each slot configuration s € S° that is invalid for a given K’, the
following inequality is valid

)

K€K’ pepK :ecp

Xp SIK =14+ Dy
/€S2 (Ey)

4.1.2. Edge-cut inequalities

For a given edge-cut, we derive two families of inequalities based
on the relationship between the edge-cut and the flow. Indeed, for a
given edge-cut in a graph, the minimum amount of traffic that crosses
the cut is equal to the sum of bandwidth for all demands originating
on one side and terminating on the other side. Due to the convergence
ratio, we can derive two kinds of edge-cut inequalities. The first family
considers the convergence ratio in the flow crossing the edge-cut,
whereas the second family considers the convergence ratio on the size
of the allocated slots. We show an example that each of these two
families of inequalities can dominate the other one, depending on the
convergence ratio of each arc. Thus, the two families of inequalities are
useful to strengthen the linear relaxation.

Ratio flow inequalities. Let D"(V') be the minimum amount of traffic
crossing the edge-cut V' considering the convergence ratio, i.e.,

max

royly (V")
D= Z Dy +max | 40 2 D"’k/exc(vr

D]
keKyc(V") keKo(V'))

Due to the relationship between the edge-cut and the flow, we know
that the traffic D"(V') must cross the arcs of the edge-cut V’. We can
deduce the following inequality

Y Eves 2 [D V], ®

ees(V') sese

Indeed, due to the slots’ configuration, if D"(V') is fractional then
it must be rounded up to the smallest slot reservation (in our case,
1 Gbps).

Ratio capacity inequalities. Let now D(V') be the minimum amount of
bandwidth for all demands that cross the edge-cut V' at least once.
Formally, D(V') = ZkeK(V’) D, where K(V') C K is the set of demands
such that their source and destination are not together in V' orin V\V"'.

Due to the relationship between the edge-cut and the flow, we know
that the traffic D(V') must cross the arcs of the edge-cut V’ up to the

80

smallest slot size possible (in our case, 1 Gbps). We can deduce the
following inequality

Y ey = 1D, ©

eca(V'!) s€S¢
Indeed, due to the slot configurations if D(V') is fractional then D(V')
must be rounded up.

Example. Let us consider an edge-cut ¥’ composed of two arcs {e;,e,}
with the same possible slot configurations of 1Gpbs, 2Gpbs, and 3Gpbs;
the arc e, has a convergence ratio of 4, = 1 and the arc e, has a
convergence ratio u,, = % We consider 3 demands crossing the cut:
ky, k, and k3, each requiring 1.1 Gbps.

In the case where all demands require statistical multiplexing, the
amount of traffic crossing the cut D(V’) is equal to 3.3 Gbps while the
amount of scaled traffic D" (V') is equal to 1.65 Gpbs (%X3.3 Gbps). The
ratio flow edge-cut inequality is

1ye 1 +2Ye2+3Ve;3+ eyt +2Vey0 +3Vey3 2 [1.65] =2, (10)
the ratio capacity edge-cut inequality is
lyell + 2ye]2 + 3)7913 + 2yezl +4ye22 + 6.)/923 2 [33] =4 an

The latter dominates the former. Indeed, inequality (10) is equivalent
to

2ye|I +4ye]2+6ye|3 +ZYG2] +4ye22+6yez3 2 4. 12)

In the case where no demand requires statistical multiplexing, the
amount of original traffic and scaled traffic are both equal to 3.3 Gbps.
The ratio flow inequality is

1ye 1 +2Ye2+3Ve;3+ eyt +2Vey0 +3Vey3 2 [3.3] =4, (13)
which dominates the following ratio capacity edge-cut inequality
lyell + 2ye]2 + 3)7913 + 2yezl + 4ye22 + 6.)/923 2 [33] =4 as

Thus, the two families of inequalities can improve the linear relax-
ation.

4.1.3. 1-Slot inequalities

Our last type of inequalities is derived from edge-cut inequalities
and focuses on slot configuration activation. For a given edge-cut, there
exist subsets of slot configurations for its arcs, called I-slot sets, such
that when none of them are active, the capacity of the edge-cut does
not satisfy the flow through the edge-cut.

Following our previous example, if all three demands do not require
statistical multiplexing, 3.3 Gbps cross the edge-cut. Since the two arcs
provide 1 Gbps, 2 Gbps or 3 Gbps configurations, one of the possible
1-slot set contains the 2 and 3 Gbps configurations for both arcs. Indeed,
with only 1 Gbps on each arc, the edge-cut capacity is insufficient.

N. Huin, J. Leguay, S. Martin et al.

More formally, let SII/L, be the set of I-slot set of the edge-cut V'. Any
1-slot set S € S‘]/l, must satisfy either

max &, < [D"(V)], (15)
ecs(v") sese\st
or
— max &, < [D(V)]. 1e6)
ecorry HE sessT
The 1-slot inequality defined by
Vs 21 W cvyvstes), a7

ees(V') sesenst

is a valid inequality of Problem (5).

Example. From the previous example, where the arc e, has a conver-
gence ratio of 1 and the arc e, has a convergence ratio u° = % By
considering K; = {d,,d,.d;} we deduce the following 1-slot inequality

yell +ye12 +Ye]3 +ye22 +ye23 21 18)

and when Ky = {d,.d,,d;} we deduce the following 1-slot inequality

yell+y312+ye]3+ye23 21 (19)

We can remark that this family of inequalities has a lot of symme-
tries. Indeed, the inequality (18) is also valid by shifting the arcs on the
edge-cut.

4.2. Relationship with state of the art

While classical cover inequalities are well studied [31], the con-
straints of the RSA problem, notably the multiplexing, leads to differ-
ence with the proposed inequalities found in the literature. Frangioni
et al. [12] propose an adaptation of the cover inequalities for the
capacitated network design problem that considers the first slot config-
uration. Our extension of cover inequalities handles slot configurations
(not only the first one) and multiplexing.

Our edge-cut inequalities can be seen as generalizations and special-
izations in the case of multiplexing of the inequalities found in [6,13].
Rack et al. [13] propose a particular case of our edge-cut inequalities
where slots have the same size and no multiplexing is considered. The
authors also propose other valid inequalities, mixing ideas from cover
and edge-cut inequalities. But the major drawback of these inequalities,
called residual capacity cuts, is the destruction of the pricing problem
as they involve several arcs in the same inequality. For a model based
on path variables, this kind of inequalities prevents the resolution of
the pricing problem with a pseudo polynomial time path computation
algorithm. Our edge-cut and 1-slot inequalities do not contain path
variables, and thus the pricing problem remains the same. And even
though our cover inequalities contain path variables, they do not
impact the structure of the pricing problem as they are defined for
each arc, which leads to only one additional dual cost. Gabrel et al. [6]
propose a generic family of inequalities using a subset of arcs. A
particular case of this family of inequalities is the edge-cut inequalities
without considering multiplexing.

4.3. Separation problems and algorithms

We now describe the algorithms we used to separate the inequali-
ties.

81

Computer Communications 201 (2023) 72-90

4.3.1. Cover inequalities
As a reminder, for an arc e and a subset K’ of demands satisfying
Egs. (7), a valid cover inequalities of FlexE-CG has the following form

2 2

K'eK’ pepK :ecp

Xpp SIK =14+ 0 3.
s'eS¢ (s)

The goal of this separation problem is to find, from a fractional
solution (x*,y*) of FlexE-CG, a subset of demands K’ violating any
multiplexed capacity constraints for a given slot configuration s. It is
equivalent to finding any subset K’ such that

2 X G- h> X v - L

K'eK' pepk :eep s'eSS(s)

The problem is NP-Hard. We thus propose an ILP formulation to
separate the inequalities exactly, as well as an adaptation of a classic
cover separation heuristic [32] to improve our convergence time.

ILP. We first formulate the separation problem for cover inequalities
for a given arc e and a given slot configuration s as an ILP. We have
three types of variables: the set of variables z,, for k € K that indicates
which demands are selected; the variable « that indicates if the classical
capacity constraint is violated; and the set of variables b, for k € K,
and that indicates which multiplexed capacity constraints are violated.
The formulation is as follows:

min Z Z (1= xzp)zk (20a)
k€K pePk:eep
st) Dyzi+ut Y, Dz >&,a (20b)
keKyc keK/,
Y Dz +Dyz > &by Vk € K (200)
k' €Kyc
a+ Y bzl (20d)
keKg
z, € {0,1} Vk € K (20e)
a€ (0,1} (201)
b, € {0,1} Vk e K (20g)

The objective minimizes the sum of the set of selected demands and
their corresponding relaxed values x*. If this value is strictly less than

D YRR

s'eSE ()
we found a violated cover inequality that we can add to the problem.
Constraints (20b) and constraints (20c) allow us to determine which
capacity constraints are violated. Constraints (20d) ensure that at least
we violated one capacity constraints (classical or multiplexed).

Heuristic. Our separation heuristic, presented in Algorithm 3, for the
cover inequalities is based on a heuristic proposed in [32]. In the
same fashion, we sort the demands in increasing order by the ratio
between their cost (1 — x} and their size D, and greedily select them
by decreasing order until we reach the capacity reservation of the slot
configuration.

However, in our case, due to statistical multiplexing, the size of a
demand depends on other selected statistically multiplexed demands
k € K. We thus need to maintain information about which statistical-
multiplexed demands were already selected (see lines 4-7). Then, we
recompute the size of each statistically multiplexed every time we need
to select the next best demand according to the cost-to-size ratio (see
line 10).

N. Huin, J. Leguay, S. Martin et al.

Algorithm 3 Greedy separation algorithm for cover inequalities

Input: A set of demands K = Ky U K¢, a slot configuration (e, s) and
its convergence ratio y,, a fractional solution (x*, y*)
Output: A subset M C K

L xp < Yoep, X, Vke K

2: Sort Ky by increased order of (1 - x;)/D, into L
3 M

4: CRSUM 0

5: CR‘MAX <0

6: NCqyy < O

7: while NCSUM + max (CR’SUM! CR’MAX) < :es do

8: k¢ — L.pop()

9: ACR(k) « max(CRSUM + HeDk’ max(CRMAX, Dk)) -

maX(CRSUM,CRMAx) -
10: KCR argming e\ m (ACR—X;
11: i (1= x0)/Dpe < (1= szR)/ACR(kCR) then
12: M < M u{k'C}
13: NCSUM «— NCSUM + DkNC
14: else
15: M «— M u {kCR}
16: Kq < Ko \ {kCR}
17: CR’SUM «— CR’SUM + MeDkCR
18: CRMAX «— maX(CRMAx, DkCR)
return M

4.3.2. 1-Slot inequalities
As a reminder, 1-slot inequalities are defined as follows (see Sec-
tion 4.1.3):

Yes 2 LWV CV
e€s(V') s€SL(Syr(e)

The separation problem consists of finding an edge-cut and a subset
of slot configurations (i.e., Sy/(e)) for each arc of the cut such that
downgrading at least one arc to the previous configuration (i.e., the
biggest configuration smaller than the current one) would tip the
edge-cut capacity below the sum of the demand going through it.
Unfortunately, even when the edge-cut is given, the problem is NP-
Hard (one can easily reduce the knapsack problem to our problem).
We thus provide an ILP formulation to solve the separation problem
and a heuristic based on the LARAC algorithm [29] for the constrained
shortest path problem.

Note that we can further divide the separation problem into two
regarding whether Eq. (15) or Eq. (16) are satisfied, i.e., whether we are
in the ratio flow or the ratio capacity variant of the separation problem.

ILP. We formulate the separation problem for a given edge-cut (V).
We define a set of variables z,,,Ve € 6(V'),Vs € S° that indicates if
a slot configuration and its upgrades (i.e., s € S¢(,,)) belong to the
1-slot set. The whole formulation is as follows:

min Z Z Z Vi Zes (21a)
e€6(V") SES¢ 5/ ESE(Eyq)
Y oz 21 Ve e s(V') (21b)
SES®
Z ées—lzes < Dr(V’) (21c)

ees(V') sese

The objective function (21a) minimizes the fractional value of the
selected set: if it goes below 1, we have a violated 1-slot cut to add
to our master problem. Since z,, represents the slot configuration
s and all its upgrades, we need to sum over all of their fractional

82

Computer Communications 201 (2023) 72-90

values. Constraint (21b) sets a slot configuration for each arc of the
cut. Constraint (21c) ensures that the sum of the capacity of the slot
configuration not in the I-slot set is below the flow going through the
edge-cut. In the ratio capacity variant of the separation problem, this
constraint is replaced by

LY iz < DO, (21d)
ecovty He sese

Heuristic. To improve the convergence time, we designed a heuristic
to solve the separation problem as a constrained shortest path problem.
Once the instance of the constrained shortest path problem is built, we
then use the LARAC algorithm [29] to get a solution. For a given edge-
cut V', we build a path-graph with multiple arcs between the nodes.
The total number of nodes is equal to |6(V')| + 1 nodes and the total
number of arcs is equal to ¥’ 5+ |.5¢|. Each node u; is connected to the
node u;,; by as many arcs as the number of slot configurations available
on the ih arc of §(V'). Any path from u, to uj5v1) represents a set of
slot configurations for the edge-cut V'.

To find a 1-slot set, we need to associate with each arc, a cost,
and a resource. The cost of the arc is equal to), 5¢E) Yos which
corresponds to the sum of the fractional values of the slot configura-
tion associated with the arc and its upgrades (i.e., slot configurations
with a higher bandwidth capacity). The resource corresponds to the
bandwidth capacity of the slot configuration, i.e., £,,_;. We limit the re-
source possible to D(V'). Finding a violated 1-slot cut is thus equivalent
to finding a constrained shortest path on this path-graph that consumes
strictly less than D"(V'), or D(V') for ratio 1-slot, resource and costs
strictly less than 1. Fig. 6 shows an example of the path-graph built
from a three-arcs cut.

4.4. Putting it all together

Putting all these separation algorithms together gives us the allCuts
procedure to separate FlexE-CG. When we add the procedure on top
of the FlexE-CG algorithm presented in Section 3.3, we called this
algorithm FlexE-CG(allCuts), which is described in Fig. 7. It alternates
between the column generation algorithm and the separation problems
procedure until no improving columns and no violated inequalities can
be found. If a timeout is needed, we can stop the algorithm in between
the two phases.

Before running the separation procedure, we generate a subset of
edge-cut of the network that we use for all separation problems but the
cover one. IP-RAN networks have a very hierarchical structure, and we
exploit this to select our edge-cuts. First, we select edge-cut between the
different layers of the network (e.g., between access and aggregation).
Then, we select edge-cuts that separate the CSG source node (i.e., a
node from where traffic originates) from the rest of the network. These
nodes have mostly a degree of 1 or 2; we can easily extend these
inequalities by adding the neighbors into the cut. For instance, a source
node v, connected to v, and v; gives the edge-cut (v;,V \ {v,}) that
can be extended to ({vy,0,},V \ {v1,v2}), ({vy, 03}, V \ {v,v3}) and
({v1, 03,031,V \ {v},0;,03}). More formally, from a cut (V',V \ V'),
Vv e V \ V' with a degree less than 3, we create an edge-cut (V' U v).

The procedure searches for violated inequalities in the following
order: ratio flow edge-cut inequalities, ratio capacity edge-cut inequal-
ities, 1-slot inequalities with the ratio flow variant, 1-slot inequalities
with the ratio capacity variant, and finally the cover inequalities. We do
make a distinction between the two variants of the 1-slot inequalities,
namely the ratio flow and ratio capacity 1-slot inequalities. For each
inequality, we alternate between solving the master problem and the
separation algorithm until we no longer find violated inequalities. If
no violated inequalities can be found for a given cut, we go to the next
separation problem in the list. Since our separation problems are NP-
hard, we prioritize the use of the heuristics to solve them. If a heuristic

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

1 Gbps 1 Gbps 1 Gbps
2 Gbps 2 Gbps 2 Gbps
3 Gbps U2 3 Gbps us 3 Gbps @
4 Gbps 4 Gbps 4 Gbps
5 Gbps 5 Gbps 5 Gbps

Fig. 6. Example of the path-graph used for solving the one-slot separation problem on a 3-edge-cut (e, e, e,) with 5 Gbps arcs and thus 5 slot configurations each. Each outgoing
arc of a node s; correspond to a slot configuration available for arc e;. Any path between u, and u, represents a set of configurations for the edge-cut.

Warm start (Greedy)

Column Generation routine
Solve Update dual prices for edges i Parallel i
restricted | demand
LP i embedding !
(Master) Generate a new . (Pricing) |
column for demand & """ 777777777 ‘
Row Generation routine
Solve Update primal values i Separation i
restricted | problems
LP : (ILP +
(Master) Generate new constraints 3 Heuristic) |
: Parallel |
| . RR RR RR RR |!
. rounding !

Fig. 7. FlexE-CG (allCuts) algorithm.

cannot find any violated inequalities, we use the exact methods to find
any. The procedure stops when we cannot find any violated inequalities
with the exact methods. Once both column and cut generation are done,
we run the rounding algorithm and the local search algorithm; if the
row and column generation stop due to a timeout, we still run the
rounding algorithm one time to obtain an integer solution.

5. Polyhedral analysis

We now study the theoretical efficiency of the proposed inequalities
by analyzing the polytope of the extended formulation. We provide
necessary and sufficient conditions under which the 1-slot inequalities
and edge-cut inequalities are facet-defining, and sufficient conditions
under which the ratio capacity edge-cut inequalities are facet-defining.
To ease the readability of the proofs, we restrict the analysis to the
projection of the formulation on a particular edge-cut.

We focus on the following integer linear program.

Y Y G 2 DO 2)
ees(V') seS®

Y Y Ley = D0 @23)
ecs(V!) sESE

D v <1 ees(v’) 24
sese
Vs € {0, 1} ecs(V'),seS® (25)

This integer linear program has a polynomial number of variables,
whereas the original model has a exponential number of variables,
which provides a better readability of our facet proofs.

Let P(V’) be the convex hull of the solutions of the integer linear
program given by (22)—(25), that is,

P(V') = conv (y € {0, 1}Zeeé(v'> 151y satisfy (22)—(24))

N. Huin, J. Leguay, S. Martin et al.

The vector y® is called the incidence vector associated with the
solution S, i.e., y5 = (y3),c507) scse Where y5 =1if s€ Sand y5 =0
otherwise.

5.1. Polytope dimension

Let é be the arc with the biggest capacity (argmax,csy1) &, max)> and
¢ be the arc with the biggest capacity ratio (argmax,¢;(1, ;?'S“ max).

Proposition 1. Polytope P(V') is full-dimensional if

(@) [Dr(V,)] < Zeeé(v’)\é femax
(b) [D(Vl)] < ZeEé(V’)\é #gemux

Proof (=).

* lf [DV(V,)] > Zeeg(V')\é ‘femax then Zsese YVes = 1
. 1
< AF [DIV)] > Xoesne yebemax then Yies, ve; =1

thus the polytope cannot be full dimensional.
(<) we consider that (a) and (b) are true. We suppose that P(V’) is
contained in a hyperplane defined by the linear equation

ay=a (26)

where a = (a,;,e € 6(V'),s € S,) € RZees0) IS¢l and « € R. We show
that a = 0 and P(V') cannot be included in the hyperplane (26), since
the polytope is not empty.

We consider the solutions S, for all e € 5(V’) and s € S, such that
for each arc ¢’ € 6(V') \ {e} the slot configuration is sﬁ:ax and s on the
arc e. Furthermore, we consider the solution S, for all e € 5(V') such
that for each arc ¢/ € §(V') \ {e} the slot configuration is Sfr:ax and no
slot configuration on the arc e. These solutions are clearly valid for the
polytope P(V').

By considering the solutions S, ; and S, forall e € 5(V’) and s € S,
since aySM = aySﬂ~0, we deduce that a,, =0 for all e € §(V') and s € S,.
As there exists a solution, we can conclude that a = 0 and hence P(V')
is full dimensional.

In the following, we consider that (a) and (b) from the previous
proposition is true and thus P(V’) is full dimensional. Indeed, if it is not
the case we can reduce the possible slot configuration on some arcs.

5.2. Inequality (24) facet proof

Proposition 2. Inequality (24) associated with ¢ € (V') defines a facet
of P(V").

Proof. Let us denote by ay < a the inequality (24), associated with
¢ € 5(V"). Let by < f be a facet-defining inequality of P(V’) such that

{(ye PV'):ay=a) C{ye P(V') : by=p}.

We show that b = pa for some p € R.

We consider the solutions S, for all e € §(V') \ {¢} and 5 € S,
such that for each arc ¢’ € §(V’) \ {e} the slot configuration is sf];ax
and s on the arc e. Furthermore, we consider the solution S, for
all e € 6(V’) \ {€} such that for each arc ¢/ € §(V’) \ {e} the slot
configuration is sféax and no slot configuration on the arc e. Remark
that the incidence vectors of S, ; and S, satisfy inequality (24) with
equality.

Since aySes = aySeo, then bySes = bySeo, implying that b,, = 0, for
ee€s(V)\ {e} and s € S,.

Let S, be a solution for all s € S, such that for each arc ¢/ €

5(V")\{e} the slot configuration is sfr:ax and s on the arc é. The incidence

84

Computer Communications 201 (2023) 72-90

vectors of the solutions S, ; verify inequality (24) with equality. Since
= b,

ay et = ay'en, by'est = by'e implying that bs, ¢s, Where
51,5, € S;. We set by = p, then b;; = p for s € S,
Thus, there exists p such that b = pa for some p € R and the proof

is ended.
5.3. Ratio flow edge-cut inequalities facet proof

Proposition 3. Inequality (8) defines a facet of P(V') only if

EeS (Eoma) S [D'(VD], Ve € 6(V").
Proof. Considering that there exists an arc ¢ € &(V’') such that
oS (Eomae) [D"(V")]. In this case, the last slot configuration of ¢ will
never be used, and we can deduce the following valid inequality

D otodest D ave 2 [D'V

ees(V/)\(e} s€S* SESP\{Sfax }

27

This inequality dominates the inequality (8).
5.4. Ratio capacity edge-cut inequalities facet proof

Proposition 4. Inequality (17) defines a facet of P(V') only if

a5 () < [P0 Ve €507,

Proof. Similar to the previous one.
5.5. 1-slot inequalities facet proof

The 1-slot inequality associated with the 1-slot set 53/ is said
maximal if and only if there does not exist ¢ € §(V’) such that

Z 5652(5‘]}/ (e)) < [Dr(V/ﬂ B

Ceste, @t
ces(VI\(e)

or

1
_5552 (53/ @) < [D(V,)]

Z ié e sl +
evesiel @ g

ecs(V\(e) H

where é‘]}, (e) is the size of the smallest slot configuration of arc e for
the 1-slot set.

Proposition 5. Inequality (17) associated with the 1-slot set Slj/l, defines
a facet of P(V') if and only if

(@) SI]}, is maximal,

(b) Ve € 6(V') there exists an edge ¢’ € (V') \ {€} such that

2

!
Eastiel, en T e man 2 [P0,
ees(V/)\{e.e'}

or

1 1
Z _egeSi(‘;’l,(e)) + 7‘§e’ max b [D(V,)]-
eesV\(e.e') M v H

Proof (). (a) If Sﬁ}, is not maximal then there exists an edge ¢ € 5(V')
such that

2

_ r !
Coseiel, en + Sasziel, @ < [PV

ces(V\(e)
or

L et eyt = ara < [DO]
ces e 1S s (¢ @)

We can deduce that the inequality

2 2

ees(V\ (e} seSg(i‘]},(e)) 3655(53,(5))

Yes + (28)

N. Huin, J. Leguay, S. Martin et al.

is valid and the inequality (17) associated with S‘]/‘, is linear combina-
tion of (28) and the inequality Yerl (@) > 0.

(b) If there exists ¢ € 6(V') suth that for all edges ¢/ € §(V') \ {e},
either

ees(V)\{e.e'}
or

ﬁesg(glyl,(e)) + & max < [D"(V],

1 1

_eéeSi(il,(e)) + 76«2’ max < [D(V’)L
cesV\fee'y H v U
then we can deduce

2

ees(V\(ee'} xesg(gf},(e))

Ves+ Y Ves 2 1V €6\ (¢} (29)

sese

are valid. Indeed, for each slot configuration on ¢’, it is necessary to
select at least one slot configuration of S;(éf}, (e)) fore e (V') \ {e,¢}
or one slot configuration of S°. By summing (29) for each Ve’ € 6(V’)\
{&}, the 1-slot inequality associated with a 1-slot set S* and |6(V')| —2
the trivial inequality) . SEEL, @) Ves > 0 and dividing the resulting
inequality by |6(V")| — 1 and rounding up the right-and-side we obtain
the following valid inequality
))

e€5(V\(2) seS¢(E], (@) seS3 &), @) SESS L, @)

Ves +2 Yos + Ves =2 (30)

The 1-slot inequality associated with a 1-slot set S is a linear combi-
nation of the (30) and the inequality

- Z Vs > -1
SES*®
and thus cannot define a facet of P(V').
(=) Let us denote by ay > a the inequality (17), associated with the
function S8, Let by > be a facet-defining inequality of P(V’) such
that

{(yeP(V'):ay=a} C{ye P(V') : by=p}.

We show that b = pa for some p € R.

For each e € (V') and s € S;(.flj}, (e)), we denote by S, a solution
where the configuration slot sg 2L @) is used for each ¢ € 5(V') \ {e}
and the configuration slot s is used for the edge e. Remark that these
solutions are valid since S is maximal.

For each e € 5(V'), we denote by S,,/ i, @ solution where the slot
configuration s°

. . is used for each ¢ € 6(V') \ {e,e'}, and the
DAGHG)

slot configuration s¢ is used for the arc e € 5(V")\ {e} and no slot
configuration is used for the edge e. By the condition (b) there exists
e’ € 5(V')\ {e} such that S, ,;, is valid.

For each e € (V') the incidence vector of the solutions S, i
satisfies the inequality (17) with equality. Since aySemin = aySe's | then
bySec/ min = bySe's' | where s’ € S;’ (53}, (¢’)), which implies that b, = 0
for each s € Si(é‘]}, (e)) since b,y = p for all ¢’ € §(V') and for all
s' € SYEL, ().

For each e, e, € 6(V'), s, € S; &l (e) and s, € S;(gg}, (e2)), the
incidence vectors of the solutions S, ; and S, satisfy the inequal-
ity (17) with equality. Since aySfm = ayS"Z"Z, then bysem = byS“Z"Z,
which implies that b, , = b,,,,. We set b, | = p. Thus, b,; = p for all

e€ 6(V') and for all s € S;(é‘]}, (e)).

6. Numerical results

Before evaluating our algorithms, we present the instances we used.
Then, we extensively compare, on small instances, the efficiency of the
various inequalities presented in Section 4 to improve the lower bound.
Finally, we show the pros and cons of each algorithm on small, middle
and large-scale instances in terms of optimality gap and execution
times.

85

Computer Communications 201 (2023) 72-90

6.1. IP-RAN scenarios

We run our algorithms on realistic IP-RAN network topologies of
various sizes, such as the one pictured in Fig. 3. These networks are
composed of a core network which connects multiple domains together.
Each domain is composed of an access network connected to an aggre-
gation network linked to the core. The core network is a random mesh
graph, the aggregation networks are rings with probabilistic shortcuts
and the nodes of the access networks (CSG nodes) are connected to
the aggregation network in single or dual-homing. Access and core link
capacities are set to 10 Gbps while core links capacities are chosen at
random between 40 and 200 Gbps. Services are generated at random
between two CSG nodes (i.e., access nodes) or between a CSG node
and the EPC (Evolved Packet Core), situated in the core network.
They require between 100Mbps and 1 Gbps amount of bandwidth. We
consider three different sizes of instances: small (50 nodes, 60 links and
60 demands), middle (1250 nodes, 1600 links and 300 demands) and
large (5000 nodes, 6000 links and 600 demands). For each size, we
generate 3 sets of 10 instances: one set of IP-RAN instances where CR
services represent 80% of the traffic; one set with 100% CR services;
and one set with 100% NC services. These different traffic scenarios
allow us to see the impact between inequalities and their ratio variants.

6.2. Evaluation of inequalities

We start by analyzing the strength of each valid inequality described
in Section 4. We consider eight scenarios:

« the allCuts procedure where we separate all inequalities to rein-
force the master problem;

« all inequalities on their own (i.e., cover, ratio flow edge-cuts, ratio
capacity edge-cuts and 1-slot inequalities with both ratio flow and
ratio capacity version);

and two combination of inequalities: all flow which is composed
of the cover inequalities and the ratio flow version of the 1-slot
inequalities and edge-cuts, and all capacity which is composed
of the cover inequalities, ratio capacity edge-cuts and the ratio
capacity version of the 1-slot inequalities.

The goal is to see the effectiveness of inequalities in improving the
lower bound. We limit the evaluation of inequalities to small instances
due to the excessive running time required for the experiment.

Lower bound quality. We show, in Fig. 8, the lower bound pro-
vided by our valid inequalities compared to the lower bound of the
basic extended formulation using column generation (i.e., without
additional cuts). We observe that edge-cut inequalities and 1-slot in-
equalities and their ratio variant provide, in average, around 6% im-
provement on the lower bound. On their own, cover inequalities can
improve the lower bound by almost 7.5%. Separating different inequal-
ities together can further improve the lower bound to almost 9% while
50% of the instances see an improvement between 7 and 10%. The
allCuts procedure only shows a 0.1 to 0.2% improvement compared to
the all ratio and all capacity scenarios, respectively.

Solution quality. Fig. 9 shows the distribution on all instances
of the ratio between the objective value obtained with a given set of
cuts over the one obtained by FlexE-CG. We observe that inequalities
barely impact the quality of the solution obtained. Edge-cut inequali-
ties, 1-slot inequalities and their variants have, in average, almost no
impact, giving solutions close to the one given by the basic FlexE-CG
algorithm. This can be explained by the nature of the inequalities:
they do not contain path variables and thus barely impact on the
number of generated columns. But cover inequalities contain the path
variables, and they can improve the solutions by about 0.5%. Finally,

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

L 11F — —
+~
<
~
1’\ I I I I I I T Y R
£ 2 53858 8% B2 53355 8273
O O 5 7% = =3 O O S T = =
i Lt E 3 =S d & & L8 F 58
& & — = = & & — = —
= T e ® < 3 = 9 R < 3
& o B & 2 ? 3B &
E s = 5 E 8 & 8
° & S &
q:U CE:O
(a) All instances (b) IP-RAN instances
B S R E— T T T T T T 1
S 1.1F . *
+~
<
- K @@@@@@
1’\ I I I I I I [I I I I I I [
5 5 588 ¢ & & T 5 2 558 ¢ E & Z
5 °O 7 = o= & O O 5 5 =z]
I L HE B EE & & 558 Z S
0 & T = = & 8 = =
=g T oz I S = T T B & < =
© 3 B & o 3 B &
E s = 8 E 3 = 8
o & o &
= g = 8

(¢) NC instances

(d) CR instances

Fig. 8. Comparisons of the lower bound ratio for all traffic scenarios and each set of inequalities on small instances. The box plots show the distribution on all instances of the
ratio between the bounds obtained with the given cut over the one obtain with FlexE-CG (higher is better). Whiskers represent the first and last deciles, the box represents the

first quartile, the median and the third quartile, and the marker represents the mean.

combining all inequalities barely change the situation, with a slight im-
provement over the separation only cover inequalities. Since we use a
randomized rounding approach to obtain the integer solution from our
column generation algorithm, using inequalities can lead to worse so-
lutions, with an increase of the objective function by up to 3% in some
cases.

Computational time. Fig. 10 shows the computational time for
each type of inequalities compared to FlexE-CG (i.e., basic version
without inequalities). Over all classes, cover inequalities takes the
longest to separate with an average of 14.9s. Since we only consider
a fixed subset of edge-cuts in the network for edge-cut, 1-slot and their
variants, their separation problems are faster to execute: 1-slot takes
an average of 2.1s and edge-cut takes an average of 1.0s to separate.
Separating all inequalities together leads to a slight increase, with an
average of 20s. We also see that in IP-RAN scenarios with convergence
ratio, the algorithms need more time to converge, due to the mix of
both types of demands.

Even though separating all inequalities does not improve the quality
of the solution, it provides a good improvement of the lower bound,
which we can use to evaluate the optimality gap on large instances
where the ILP cannot be solved using CPLEX (see later in Section 6.3).
The impact on the computational time is reasonable, with an increase
up to 15%, at least on small instances.

86

6.3. Lower bounds comparison

We now compare, in Fig. 11, the bound provided by FlexE-CG(allCuts)
and the ones by FlexE-CG. We also compare them with the bounds
provided by the compact formulation solved using CPLEX, denoted ILP,
on small instances.

FlexE-CG(allCuts) provides good lower bounds and can be used to
assess the quality of an algorithm: on small instances, the bounds are in
average within 3% of the ILP ones, while FlexE-CG one are within 13%.
On middle and large instances, the improvement is even greater with
12% and 27%, respectively. It can even reach an 85% improvement on
large instances.

6.4. Algorithm comparison

We now compare the algorithms proposed in Section 3.2:

 Greedy: the greedy algorithm, described in Algorithm 1;

« ILP: the compact formulation solved using CPLEX 12.6;

+ FlexE-CG: our column generation based heuristic without inequal-
ities separation, described in Section 3.3.;

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

9 1.02 ain .
)
=
g | 1 |
]
ER it f
g
o— [1 1
e
O 0.98 1 3
| | | | | | | | | | | | | | |
2 e 2 e — 28 = B e — B8 =
c o ¢ S 5 ¢
g g = = g S & « g S = = 2 S &
I3 5 %8 =8 & & 5 X8 E S
& & — = o & s — = o
=] g < = =] 2 ® < 3
& B & ® & B &
B & = 8 E 8 = §
o & o &
= 8 = 8
(a) All instances (b) IP-RAN instances
T T T T T T T T T T T T T T
2 102} Is .
-
: é
g | 1 |
]
S
o [P Lefllert)
=
o— [1 1
Qo
O 0.98| 1 .
| | | | | | | | | | | | | | | |
2 2 A2 e — e T e —
5 E 858 ES8TF B ESs 388 & &R
5 O Z o3 o= = O O TH 7 = =
L L E 8 =S & & 5 18I 8
I A = - Cl=
o O % 2, © o O % 3, ®
B & = 8§ E 8 = 8
S g S F
= o = [

(¢) NC instances

(d) CR instances

Fig. 9. Comparisons of the objective value when using different inequalities on small instances. The box plots show the distribution on all instances of the ratio between the
objective value obtained with the given cut over the one obtained by FlexE-CG (lower is better). Whiskers represent the first and last deciles, the box represents the first quartile,

the median and the third quartile, and the marker represents the mean.

+ FlexE-CG(allCuts): our column generation based heuristic ex-
tended with the allCuts separation procedure described in Sec-
tion 4.4.

For all algorithm, we imposed a time limit of one hour.

Gap to the best bound. We first compare the results of the solutions
obtained with the best lower bound available for each instance. On
small instances, this gap is provided by the best lower bound obtained
by CPLEX while solving the compact formulation: if the one-hour time
limit is reached, we use the best bound found during the branch-and-
bound; otherwise, we use the optimal value. On middle and large
instances, we use the lower bound provided by FlexE-CG(allCuts) at
the end of the column generation step. Let z;p be the best lower bound
found for an instance, and Z the value of the algorithm solution, the
gap is given by 1 — %.

Fig. 12 shows the gap to the best lower bound of all four algorithms.
Over all instances, FlexE-CG provides solutions that have a lower gap
than the ones of the Greedy algorithm. On average, they have an
average gap of 6% while Greedy’s solutions have an average gap of
16%, and we observe this trend for all size classes.

On small instances, the ILP cannot always provide optimal solution
(or at least proves optimality) in the imposed time limit. FlexE-CG so-
lutions are, in 90% of the instances, below a 10% gap while 80% of the
greedy solutions are between 5% and 20%. Finally, FlexE-CG(allCuts)
gives slightly better solutions than FlexE-CG.

When looking at middle and large instances, FlexE-CG(allCuts) be-
haves poorly compared to FlexE-CG and, on some large instances,

87

worse than Greedy. This can be explained by the one-hour time limit.
Indeed, with enough time to converge, like for small instances, FlexE-
CG(allCuts) can find better solutions than FlexE-CG. However, without
sufficient time, the cut generation part of the algorithm hurts the
rounding phase by limiting its available running time, which leads to
the worst solutions.

Computation time. Fig. 13 shows the running time of all four algo-
rithms. As previously mentioned, all algorithms are limited to one hour.
Greedy is the fastest algorithm with less than 10 ms on small instances,
less than 100 ms on middle instances and less than 200ms on large
instances. FlexE-CG is the second-fastest algorithm with an average
of 5s on small instances, 50s on middle instances and 150s on large
instances. And as previously stated, the ILP mostly reaches the time
limit of one hour on small instances. FlexE-CG(allCuts) has the second-
worst performance with an average 100s to solve small instances.
Unfortunately, it reaches the one-hour time limit on all middle and
large instances. We point out that creation and the deployment of a slice
are time-consuming operations as it is required to reserve the resources,
deploy the corresponding IP addresses and let the different running
protocols, such as IGP, converge. is Normally, several minutes to hours
are needed to conclude these operations, differently from single service
provisioning in classical networks, where few milliseconds only are a
strict time computation requirement. For this reason, the running time
of the algorithm, which is in the order of tens-hundreds seconds is not
critical.

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

—— === | —— —— == == ,
| | | | | | | | | | | | | | | |
£ 55558 EE3F S E 5355 B L3
O O %= T = < O O %H T = <

& L5 8 ES & & L8 3 E°
8Tz %=z 2EL: E=

g ¢ & & < 5 T E & =

E 3 &= ¥ E 3 &= ¥

o & o &=

= 5§ = g

(a) All instances (b) IP-RAN instances
T T T T T T T T T T T T T T

7—0——0—='==; g% 7—0——0—=‘==‘=£' N
| | | | | | | | | | | | | | | |
2 e 2 2 — — B — —
EESEEE EETR EEZEE LG
T Y %% 8 & § g 1 % B = g

5 op — — < — 5 o — — © —

g T g @ s = g T B @ s =

[} (o} 5 [} o o &

E s & & E g & &

o & o &

= 8 = g

(¢) NC instances

(d) CR instances

Fig. 10. Comparisons of the computational time when using different inequalities on small instances. The box plots show the distribution on all instances of the ratio between
the computational time of using a given cut over the computational time of FlexE-CG (lower is better). Whiskers represent the first and last deciles, the box represents the first
quartile, the median and the third quartile, and the marker represents the mean.

Ratio

1.4

1.3

1.2

1.1

==

R E—

—_— —_—

Small instances

Middle instances

Large instances

—o— FlexE-CG + FlezE-CG (allCuts) —+— ILP

Fig. 11. Comparisons of the bounds obtained by FlexE-CG(allCuts), the FlexE-CG, and ILP. The box plots show the distribution on all instances of the ratio between the bounds
obtained by the given algorithm and the best known bound. The best known bound is given by ILP on small instances and is given by FlexE-CG(allCuts) on middle and large
instances. Whiskers represent the first and last decile, the box represents the first quartile, the median and the third quartile, and the marker represents the mean.

88

N. Huin, J. Leguay, S. Martin et al.

Computer Communications 201 (2023) 72-90

0.2 -

Gap

0.1

=

== ©

A

Small instances

Middle instances

Large instances

|+ Greedy - FlesF-CG —»— Flez-CG (allCuts) —+ ILP |

Fig. 12. Gap of the solution to the best lower bound. Whiskers represent the first and last deciles, the box represents the first quartile, the median and the third quartile, and the

marker represents the mean.

102 -
101 [
100 [

Time (s)

—_——

1073 -

—_——

—*— | time limit

—_——

Small instances

Middle instances

Large instances

¢ Greedy —e— FlexE-CG —*— FlexE-CG (allCuts) —— ILP ‘

Fig. 13. Comparisons of the running time of all four algorithms. Whiskers represent the first and last deciles, the box represents the first quartile, the median, and the third

quartile, and the marker represents the mean.

7. Conclusions

In this paper, we presented the Routing and Slot Allocation (RSA)
problem for 5G hard slicing. We modeled the problem using mathemat-
ical programming and proposed an extended formulation that we solve
using column generation. We derived a column generation heuristic,
FlexE-CG, that combines a greedy and a local search algorithms. We
introduced new cutting planes for the problem to reinforce the ex-
tended formulation and improve the lower bound. We proposed three
families of inequalities: cover inequalities, edge-cuts inequalities and I-
slot inequalities. And we provided necessary and sufficient conditions
under which the edge-cut and 1-slot inequalities are facet-defining
and sufficient conditions under which the edge-cut inequalities are
facet-defining.

Using realistic IP-RAN network instances, we showed that these
inequalities (which give the FlexE-CG(allCuts) when added to FlexE-CG)
are efficient in improving the lower bound by up to 25% compared
to the cut-less version of the extended formulation. However, FlexE-
CG(allCuts) suffers from a high running time as it reaches the one-hour
time limit and from poor solution quality with an average of 15%
optimality gap. Our proposed algorithm, FlexE-CG, provides solutions
within a 10% gap in a couple of minutes on large instances, making it
feasible within the context of 5G networks offline planning of a single
slice..

89

CRediT authorship contribution statement

Nicolas Huin: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Data curation, Writing — original
draft, Writing — review & editing, Visualization. Jérémie Leguay: Su-
pervision, Writing — original draft, Writing — review & editing, Method-
ology. Sébastien Martin: Conceptualization, Methodology, Formal
analysis, Investigation, Writing — original draft. Paolo Medagliani:
Conceptualization, Project administration, Validation, Investigation,
Writing — original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Data availability

The authors do not have permission to share data.

References

[1] X. Foukas, G. Patounas, A. Elmokashfi, M.K. Marina, Network slicing in 5G:
Survey and challenges, IEEE Commun. Mag. (2017).

http://refhub.elsevier.com/S0140-3664(23)00016-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb1
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb1

N. Huin, J. Leguay, S. Martin et al.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

A. Destounis, G. Paschos, S. Paris, J. Leguay, L. Gkatzikis, S. Vassilaras, M.
Leconte, P. Medagliani, Slice-based column generation for network slicing, in:
IEEE INFOCOM 2018 - Poster, 2018, pp. 1-2.

China Mobile Communications Corporation, Huawei Technologies Co., Ltd.,
Deutsche Telekom AG, Volkswagen, 5G Service-Guaranteed Network Slicing
White Paper, Tech. rep., Huawei, 2017.

L. Geng, J. Dong, S. Bryant, K. Makhijani, A. Galis, X. de Foy, S. Kuklinski,
Network Slicing Architecture, (draft-geng-netslices-architecture-02) Internet En-
gineering Task Force, 2017, https://datatracker.ietf.org/doc/draft-geng-netslices-
architecture/02/, Work in Progress.

J. Dong, S. Bryant, Z. Li, T. Miyasaka, Y. Lee, A framework for en-
hanced virtual private networks (VPN+) services, IETF Draft, 2020,
draft-ietf-teas-enhanced-vpn-05.

V. Gabrel, A. Knippel, M. Minoux, Exact solution of multicommodity network
optimization problems with general step cost functions, Oper. Res. Lett. 25 (1)
(1999) 15-23, http://dx.doi.org/10.1016/50167-6377(99)00020-6.

M.K. Awad, Y. Rafique, R.A. M‘Hallah, Energy-aware routing for software-defined
networks with discrete link rates: A benders decomposition-based heuristic
approach, Sustain. Comput. Inform. Syst. (2017).

P. Belotti, A. Capone, G. Carello, F. Malucelli, Multi-layer MPLS network design:
The impact of statistical multiplexing, Comput. Netw. 52 (6) (2008) 1291-1307.
A. Capone, G. Carello, R. Matera, Multi-layer network design with multicast
traffic and statistical multiplexing, in: IEEE GLOBECOM 2007 - IEEE Global
Telecommunications Conference, 2007, pp. 2565-2570.

E. Modiano, Traffic grooming in WDM networks, IEEE Commun. Mag. 39 (7)
(2001) 124-129.

A.M. Costa, A survey on benders decomposition applied to fixed-charge network
design problems, Comput. Oper. Res. 32 (6) (2005) 1429-1450, http://dx.doi.
0rg/10.1016/j.cor.2003.11.012.

A. Frangioni, B. Gendron, 0-1 reformulations of the multicommodity capacitated
network design problem, Discrete Appl. Math. 157 (6) (2009) 1229-1241.

C. Raack, A.M. Koster, S. Orlowski, R. Wessily, On cut-based inequalities for
capacitated network design polyhedra, Networks 57 (2) (2011) 141-156.

C. Chekuri, F. Shepherd, G. Oriolo, M. Scutelld, Hardness of robust network
design, Networks 50 (1) (2007) 50-54.

W. Ben-Ameur, H. Kerivin, Networks new economical virtual private, Commun.
ACM 46 (6) (2003) 69-73.

in:

90

[16]

[17]
[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]
[32]

Computer Communications 201 (2023) 72-90

D. Applegate, E. Cohen, Making intra-domain routing robust to changing and
uncertain traffic demands: Understanding fundamental tradeoffs, in: ACM SIG-
COMM 2003, Association for Computing Machinery, New York, NY, USA, 2003,
pp. 313-324.

Y. Azar, E. Cohen, A. Fiat, H. Kaplan, H. Racke, Optimal oblivious routing in
polynomial time, in: Proc. ACM STOC, 2003, pp. 383-388.

W. Ben-Ameur, H. Kerivin, Routing of uncertain traffic demands, Opt. Eng. 6 (3)
(2005) 283-313.

W. Ben-Ameur, A. Ouorou, M. Zotkiewicz, Robust routing in communication
networks, in: Progress in Combinatorial Optimization, Iste; Wiley, 2011, pp.
353-390.

M. Poss, A comparison of routing sets for robust network design, Optim. Lett. 8
(5) (2014) 1619-1635.

G. Desaulniers, J. Desrosiers, M.M. Solomon, Column Generation, Springer
Science & Business Media, 2006.

OIF, Flex Ethernet 2.0 implementation agreement, 2018.

N. Huin, P. Medagliani, S. Martin, J. Leguay, L. Shi, S. Cai, J. Xu, H. Shi, Hard-
isolation for network slicing, in: IEEE INFOCOM, WORKSHOPS, IEEE, 2019, pp.
955-956.

D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE:
Extensions to RSVP for LSP tunnels, 2001.

C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, R. Shakir, Segment
routing architecture, 2020.

F. Chevalier, J. Krzywicki, M. Pearson, Optical Transport Network (OTN)
And/Or Multi-Protocol Label Switching (MPLS)? That Is the Question. Juniper
Whitepaper. 2012, Juniper, 2011.

D. Bienstock, O. Giinliik, Capacitated network design—Polyhedral structure and
computation, INFORMS J. Comput. 8 (3) (1996) 243-259.

IBM, ILOG CPLEX solver, 2022.

A. Juttner, B. Szviatovski, I. Mecs, Z. Rajko, Lagrange relaxation based method
for the QoS routing problem, in: Proc. IEEE INFOCOM 2001, Vol. 2, 2001, pp.
859-868.

Y. Xiao, K. Thulasiraman, G. Xue, GEN-LARAC: A generalized approach to the
constrained shortest path problem under multiple additive constraints, in: X.
Deng, D.-Z. Du (Eds.), Algorithms and Computation, Springer Berlin Heidelberg,
2005, pp. 92-105.

E. Balas, Facets of the knapsack polytope, Math. Program. 8 (1) (1975) 146-164.
L.A. Wolsey, G.L. Nemhauser, Integer and Combinatorial Optimization, Vol. 55,
John Wiley & Sons, 1999.

http://refhub.elsevier.com/S0140-3664(23)00016-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb2
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb3
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb3
https://datatracker.ietf.org/doc/draft-geng-netslices-architecture/02/
https://datatracker.ietf.org/doc/draft-geng-netslices-architecture/02/
https://datatracker.ietf.org/doc/draft-geng-netslices-architecture/02/
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb5
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb5
http://dx.doi.org/10.1016/S0167-6377(99)00020-6
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb7
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb8
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb9
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb10
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb10
http://dx.doi.org/10.1016/j.cor.2003.11.012
http://dx.doi.org/10.1016/j.cor.2003.11.012
http://dx.doi.org/10.1016/j.cor.2003.11.012
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb12
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb13
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb14
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb15
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb16
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb17
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb18
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb19
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb20
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb20
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb20
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb21
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb21
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb21
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb22
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb23
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb24
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb24
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb24
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb25
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb25
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb25
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb26
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb27
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb27
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb27
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb28
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb29
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb29
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb29
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb29
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb29
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb30
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb31
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb32
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb32
http://refhub.elsevier.com/S0140-3664(23)00016-6/sb32

	Routing and slot allocation in 5G hard slicing
	Introduction
	Routing and Slot allocation in IP-RAN networks
	Flex Ethernet
	Bandwidth allocation policy
	IP-RAN topology
	Statistical multiplexing
	The RSA problem

	Models and algorithms
	Mathematical formulations
	Compact formulation
	Extended formulation

	Algorithms
	Column generation algorithm
	Greedy algorithm
	Local search algorithm

	Overall architecture of the FlexE-CG algorithm

	Improving the lower bound
	Valid inequalities
	Extension of cover inequalities
	Edge-cut inequalities
	1-slot inequalities

	Relationship with state of the art
	Separation problems and algorithms
	Cover inequalities
	1-slot inequalities

	Putting it all together

	Polyhedral analysis
	Polytope dimension
	Inequality ctn1:2 facet proof
	Ratio flow edge-cut inequalities facet proof
	Ratio capacity edge-cut inequalities facet proof
	1-slot inequalities facet proof

	Numerical results
	IP-RAN scenarios
	Evaluation of inequalities
	Lower bounds comparison
	Algorithm comparison

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

