IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Blind, Adaptive and Robust Flow Segmentation
in Datacenters

Francesco De Pellegrini®, Lorenzo Maggi*, Antonio Massaro®,
Damien Saucez', Jérémie Leguay*, and Eitan Altman’.

Abstract—To optimize routing of flows in datacenters, SDN
controllers receive a packet-in message whenever a new flow
appears in the network. Unfortunately, flow arrival rates can
peak to millions per second, impairing the ability of controllers
to treat them on time. Flow scheduling copes with such sheer
numbers by segmenting the traffic between elephant and mice
flows and by treating elephant flows in priority, as they disrupt
short lived TCP flows and create bottlenecks.

We propose a learning algorithm called SOFIA and able to
perform optimal online flow segmentation. Our solution, based
on stochastic approximation techniques, is implemented at the
switch level and updated by the controller, with minimal signaling
over the control channel. SOFIA is blind, i.e., it is oblivious to
the flow size distribution. It is also adaptive, since it can track
traffic variations over time. We prove its convergence properties
and its message complexity. Moreover, we specialize our solution
to be robust to traffic classification errors. Extensive numerical
experiments characterize the performance of our approach in
vitro. Finally, results of the implementation in a real OpenFlow
controller demonstrate the viability of SOFIA as a solution in
production environments.

Index Terms—software defined networks, flow segmentation,
stochastic approximation, adaptive algorithms, traffic classifiers

I. INTRODUCTION

In the last decade, SDN controllers have become a de-
facto production tool for routing traffic in datacenters [1],
[2]. A data center fabric typically counts tens to thousands of
switching units and hundreds of thousands of servers, and the
rate of proactive control events — packet-in messages issued in
OpenFlow at each flow arrival — can peak to several millions
per second [3]. This causes a significant flow setup latency that
can amount to up to 10% of the average flow duration [3], [4].

To this respect, customary Fat-Tree topologies [5] enable the
heavy use of equal-cost multi-path (ECMP) routing [6], with
flow-based hashing, as the default routing procedure. The main
benefit of ECMP is that flows are immediately routed and no
control message is issued toward the controller.

However, ECMP is suitable when there are several small (or
mice) flows but no large (or elephant) flows [7], [8]. Indeed,
the presence of elephant flows impairs the performance of
ECMP for two reasons. First, ECMP does not differentiate be-
tween latency-sensitive mice flows in interactive applications
and bulky transfers in data-intensive computing frameworks,
e.g., Map-Reduce [9] or Spark [10]. Hence, mice flows may
be queued behind elephants, which is to be avoided. Second,
ECMP cannot utilize the available bandwidth effectively, as

°Fondazione Bruno Kessler, Trento (Italy), *Huawei Technologies, France
Research Center, TINRIA, Université Cote d’ Azur, Sophia Antipolis (France).

978-1-5386-4128-6/18/$31.00 ©2018 |IEEE

10

hash collisions between elephant flows create bottlenecks. This
is a crucial issue in datacenters, where even though less than
10% of all flows classify as elephant flows, they carry more
than 80% of the entire traffic [11].

A popular approach to overcome balancing issues with
ECMP is called flow scheduling. Once elephant flows are
detected, custom non-conflicting paths are allocated to them,
thus avoiding long term collisions [7]. Hedera [7] has shown
that managing elephant flows separately can yield as much
as 113% higher aggregate throughput compared to ECMP.
Server-side methods to detect elephant flows and hash them
away from ECMP routing have been proposed and are already
in production [8], [12]. In this case, the number of packet-in
messages is drastically reduced, thus saving control channel
capacity and latency budget for custom paths selection.

In all approaches where ECMP is used in conjunction with
flow scheduling, a static threshold on the size of flows is used
to discriminate elephants from mice flows. This form of flow
segmentation control is our main focus. In fact, this segmen-
tation threshold is typically difficult to determine: ideally, all
active flows should be routed on custom optimized paths. Yet,
the rate at which the controller can dispatch packet-in events
is limited. Moreover, performing custom route installation for
each and every flow consumes forwarding rules in switches:
since they use power hungry and expensive TCAM memories,
they are typically limited to a few thousands entries [13].
These limitations foster the need of continuously optimizing
the threshold to follow evolving traffic conditions.

In this work we propose an adaptive and lightweight tech-
nique to combine flow scheduling decisions and flow segmen-
tation control. First, we formulate an optimization problem on
the size of flows whose route is optimized by the controller,
also called “admitted” flows. We thus devise an optimal flow
segmentation control policy, which is of threshold-type in the
size of flows. The resulting scheme is semi-decentralized: the
segmentation policy is implemented on board of each switch,
thus reducing drastically packet-in events, but the policy itself
is computed by the controller. The controller measures periodi-
cally the aggregated portion of optimized flows, with the aid of
all switches. Then it updates the control policy and assigns at
runtime to all switches the same flow segmentation threshold.
The proposed algorithm, called SOFIA, is rooted in stochastic
approximation. This allows to exploit the inherent threshold
structure of the optimal segmentation policy and, remarkably,
does not require to explicitly estimate the flow size distribu-
tion. Our algorithm works in the dark, i.e., irrespective of flow

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

size distribution, and it can adapt when flow size distributions
change over time. Finally, in production networks, the size
of incoming flows may be unknown at packet-in generation
time. To this respect, flow identification is typically performed
via classification algorithms [14], [15], [16], [17], [18], [19],
[20]. However, classification errors may severely degrade the
performance of online flow scheduling, thus driving the system
to inefficient operating points. A simple adaptation based on a
delayed learning technique makes our scheme robust against
classification errors.

Main contributions. i) Flow segmentation under signaling
constraint: we formulate a flow segmentation problem that
differentiates elephant and mice flows; the aim is to schedule
a maximum amount of traffic under a constraint on the
maximum rate of packet-in events;

ii) Online and asynchronous learning of the optimal segmen-
tation policy: we design SOFIA algorithm which is blind, i.e.,
it ignores the flow size distribution, and adaptive, because it
adjusts automatically to variations in the flow size distribution;
also, it does not require any synchronization among switches;

iii) Flow size misclassification: we account for the case of
flow-size classification errors; SOFIA is adapted using simple
delayed learning of expected flow sizes.

To the best of the authors’ knowledge, this work is the first

one to provide a learning mechanism for flow segmentation
able to work in the dark irrespective of flow size distribution
and robust to flow classification errors.
Paper structure. In Sec. II we review the literature on flow
scheduling for SDN and we outline the main contributions
of this work. The system model and the flow segmentation
control problem are described in Sec. III. The stochastic
approximation algorithm is designed in Sec. IV. Robustness
to classification errors is discussed in Sec. V. Numerical and
network experiment results are presented in Sec. VL.

II. RELATED WORKS AND CONTRIBUTIONS

In the SDN literature, dynamic flow allocation to overcome
hot spots is a core topic, ranging from multi-commodity flow
(MCF) problems [21] to switch assignment schemes [22],
where switches are assigned dynamically to multiple con-
trollers. This paper addresses adaptive flow segmentation, in
the case of a single controller. Also, it naturally extends to the
case of multiple controllers and can work on top of existing
MCEF solutions. Scalability of centralized controller architec-
tures in data centers and related issues has been debated in
literature [4], [3]. Our scheme is meant to enforce existing con-
trol channel constraints to match traffic patterns dynamically.
Several works have addressed coexistence of elephant flows
and mice flows in SDN-enabled datacenter networks. In [7] the
standard path reservation technique — scheduling the relatively
low number of elephant flows over high throughput paths
— has been proposed. Our scheme adopts a similar strategy
in flow segmentation, since the controller utility prioritizes
flows with larger size. Packet splitting techniques for elephant
flows [23], on the other hand, are subject to packet out-of-
order delivery, and thus require customized solutions for data-

11

Table 1
MAIN NOTATION USED THROUGHOUT THE PAPER
Symbol Meaning
R = {Tj}éy:1 set of flow sizes, with ry > 72 > - > 1N
s set of switches ruled by the controller, S = |§|
tk time instant of k-th flow arrival
Aj rate of arrival of flows of size r;
total flow arrival rate 3, A;
e (c € [0;1]) maximum rate (portion) of flows served by the controller

u={u; }j-vzl threshold-type flow segmentation policy

flow segmentation threshold, o = > j Uj
expected fraction of admitted flows, 0 = 3= p;u;
probability that flow size r; is classified as size r;
SOFIA observation window size (round duration)
SOFIA stepsize at round n

SOFIA random backoff time of switch ¢

SOF IA relative error at round n

SOFIA tolerance on the relative error

HHI SR
<.

3

3

= D

plane packet reordering. In [24] path differentiation is obtained
by partitioning high-throughput links and low-latency links; it
aims at efficient trade-off between delay constraints of short-
lived mice flows and throughput requirements of elephant
flows. [25] proposes heuristics to optimize the allocation
of paths with respect to switch memory occupation. Path
differentiation techniques are out of the scope of this work.
However, our flow segmentation scheme is compatible with all
the aforementioned techniques. The authors of [14] proved that
for frameworks such as Hadoop and Spark accurate predictions
of source, destination, and flow size are possible. Also, such
information can help to reduce job completion time. Similarly,
the work in [26] studies how to predict the flow size of
incoming flows; elephant flows are then sent on the least
congested path in order to minimize the completion time.
The authors of [8] propose to monitor end-host socket buffers
in order to improve the detection of elephant flows. Flow
classification has been performed in connection with the notion
of co-flows [15], [16], namely, sets of flows representing traffic
patterns of certain tasks, e.g., of Map-Reduce instances. The
work in [15] performs co-flow scheduling without full prior
knowledge, demonstrating remarkable performance gains. In
[16], machine learning is added on top of a flow scheduling
system. In our work, we do not make any specific assumption
on the classifiers employed. Rather, our objective is to render
our semi-decentralized flow segmentation scheme robust to
classification errors.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a datacenter network with assigned topology,
a set & of leaf (origin and/or destination) switches and one
controller that switches are associated to. Flows originate from
racks attached to their respective origin switch.

We assume that network flows are classified with respect to
their volume, which we call flow size. % = {r;}}_, is the
set of possible flow sizes, sorted in decreasing order (r; >
rg > --- > ry). We suppose that flows with size r; appear
in the system according to a Poisson stochastic process with

IEEE INFOCOM 2018 -

intensity A; flows per second, and we call A = 3
overall intensity of flow arrivals.

When a flow not already installed appears in the system, a
flow classifier associates a flow size to the tagged flow'. We
will first assume that the classifier is ideal and never misclassi-
fies flows. We shall relax this assumption in Section V where
we will account for classification errors.

Flows may have destination in a different rack, attached
to a destination leaf switch. In such a case, they can be
served either via an optimized route or via a default route.
Default routes correspond to pre-installed wildcard entries
in the switch flow table, enabling hash-based load balancing
when multiple parallel routes exist. Installing an incoming flow
on a default route does not require signaling, as no new rule
has to be installed and no packet-in signal is sent to the SDN
controller. However, routing all flows on default routes is not
desirable for classic QoS (or routing cost) considerations, as it
causes collisions among elephant flows and disruption of mice
flows by elephants in customary ECMP installations [8], [12].

Instead, optimized routes are computed on-the-fly by the
SDN controller with a QoS objective, e.g., to reduce conges-
tion by avoiding collisions with the rest of the traffic.

However, the frequency at which the switches can inter-
rogate the controller — by sending a packet-in for the new
incoming flow — is limited by three factors. First, packet-
in messages generate traffic on the control channel between
switches and the controller. Second, the request for a new path
calculation creates a computational burden for the controller.
Third, routes have to be installed on all switches along the
optimized route. These factors introduce additional delay in
the installation of each new flow, which is to be avoided.
For this reason, we assume that the controller can handle
at most cA packet-in requests per unit of time on average,
where ¢ € [0;1]. For simplicity of analysis, in this paper we
will assume that c is predefined and constant. In the practice
though, ¢ should depend on the overall flow arrival rate, as
well as on the congestion and computation capabilities of the
controller, which vary over time.

More formally, let us assume that at time t* (k € N) an
origin switch, that we call i* € &, detects the arrival of a new
flow with destination d* € & and size r* € Z%. We denote
by u* = {0,1} the action taken by switch i* at time t*. The
switch can decide whether to interrogate the SDN controller
for the computation of an optimized route (u* = 1) or to
install the new flow on the default, pre-computed route from

k¥ to d* (u* = 0). In the former case we say that the packet-in

request for the incoming flow has been admitted, in the latter
it has been rejected. The constraint on the packet-in signaling
translates into the following expression'

limsup — Z IE

K—o0

je%)\j the

ey
We describe hereafter the main assumptions underlying our

'E.g., it can be implemented by updating monitoring rules on a specific
flow table [17], [18] or using dedicated flow sampling methods [19], [20]

12

IEEE Conference on Computer Communications

network model: 1) the SDN controller can be reached from
every switch in the network via a control channel, 2) packets
that do not match any custom forwarding rule are forwarded on
pre-installed default paths via wildcard rules, and 3) memory
constraints on the flow table in the switch are less stringent
than the control channel constraints. Hence, flows can always
be installed in the switches by the controller; we shall study
the effect of memory constraints in future works.

We study the case where the switch decision to generate
a packet-in for the controller depends on the size of the
incoming flow as we want to reserve specific routes to the
largest flows [7]. Our objective is to maximize the overall
volume of traffic that runs over the optimized routes that are
computed by the SDN controller at run-time, namely

max lim sup — Z E

u K—o0 k 1]

under the signaling budget constraint in (1). This modeling
choice is backed up by the well known fact that scheduling the
relatively low number of elephant flows over high throughput
paths sensibly improves flows completion times [7].

2

The problem (2) subject to (1) can be formulated as a
constrained Markov Decision Process (MDP) where the state is
simply represented by the size of the incoming flow. By MDP
theory [27] we know that an optimal strategy can be found
among stationary ones, that only depend on the current state.
We then denote a segmentation policy u by the probability u;
that a switch interrogates the controller when a flow of size
r; is detected, ie., u; = P{u” =1} where k is such that
rk = r;. Note that this implies that the same strategy u is
implemented by all switches. It then follows that (2,1) can be
reformulated as a standard continuous knapsack problem of

the kind:
u»g[%)aﬁf\’ Z U;P;iT; 3)
s.t. Z u;p; < ¢ %)

j€x
where p; = A;/) is the probability that an incoming flow is of

class j. The optimal segmentation strategy u(«*) for (3,4) is
provided by the classic threshold-type Dantzig solution [28]:

1 j<L "]
uj(a®) =qa*—la*] j=la*"]+ (5)
0 > | J+2

and the optimal segmentation threshold a* solves the equation
0(.) = ¢, where:

L]

= pt

However, the SDN controller and the switches are oblivious
to the flow size distribution {p;};, hence they cannot compute
the optimal strategy as in (5). Therefore, our paper proposes a
learning algorithm that converges to the optimal threshold o*
and finally solves problem (2,1).

(a—la)) Plaj+1- (6)

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Desiderata and possible approaches. Our aim is to design
an algorithm solving problem (2,1) under the assumption that
the SDN controller and the switches are oblivious to the
flow size distribution {p;};. A few techniques are available
to tackle our problem. The simplest one prescribes to let
each switch count the number of arrivals per flow class and
transmit periodically the histogram to the controller, which
can estimate the aggregate distribution p™. Then, the controller
computes the corresponding approximate threshold &™, that is
sent back to the switches which apply over the next round
the threshold policy u(a™). Although convergence to the
optimal threshold o* is guaranteed, the main drawback of
this approach consists in generating high overhead traffic,
being in the order of ~ |§||%| flow counters per round. A
second alternative is based on a classic Lyapunov technique,
called drift-plus-penalty (DPP) [29]. Each switch simulates
a virtual queue whose length is reduced by an amount c
whenever a new flow appears and is increased by one unit
only if the flow is accepted. In other words, if Q¥ is the
queue length at time t*, Q¥ = max(Q* + u* — ¢,0). The
acceptance rule is the classic DPP threshold policy: u* = 1
whenever r* > Qk /V, where V' > 0. Note that this policy
does not suffer from the overhead issues above. However,
one has to bear with the classic O(1/V), O(V) trade-off
between optimality and constraint violation, respectively [29].
Moreover, if each switch ¢ locally observes different flow size
distributions p?, then assigning the same constraint ¢ to all
switches is suboptimal, and each switch has to ojgtimally tune
a private constraint ¢;, whose optimal value is > =1 Uj (a)pj.
Yet, the computation of ¢; for each switch ¢ boils down to
the estimation of the local flow distribution, which pushes us
back to the original problem. We will notice that this issue
does not arise in our scheme, which plays directly with the
segmentation threshold a.

Motivated by this, we propose a learning algorithm that
generates low extra signaling traffic between switches and
controller, that does not depend on locality of flow size
distribution, but that is still able to converge to the optimal
flow segmentation policy.

IV. STOCHASTIC APPROXIMATION SOLUTION

In this section we tackle the flow segmentation control
problem (2) under signaling constraint (1) by solving the
equation 6(a) = ¢ in an online fashion, where function 6(.)
is defined as in (6). This approach requires only the iterative
evaluation of the fraction of flows that have been admitted
during a given observation interval.

It is important to observe that the function 6(«) is unknown
at runtime, because it depends on distribution {p;};. Yet,
we can easily come up with an unbiased estimator for 6(«).
In fact, this quantity is the sample average of the Bernoulli
random variable Y*(a) = {1,0} which indicates whether
the flow arriving at switch * at time ¢ has been admitted,
assuming that the policy u(c) is used at time ¢*. Moreover,
we observe that 6(«) is a strictly increasing function of
a. Our goal then becomes finding the root of a monotone

13

increasing function of «, namely (f(a) — ¢), which we acquire
through noisy observations Y*(«), where the additive noise
term has zero mean. For this class of problems, stochastic
approximation theory provides the solution concept, which we
employ with an algorithm of the Robinson-Monroe type [30].

The algorithm works in rounds with fixed time duration
T, also called the observation window. During round n, i.e.,
during time interval [nT,(n 4+ 1)7T], all switches adopt a
threshold policy u(a™), where o™ has been broadcasted by
the controller to all switches at time n7". To understand how
a™*1 is updated at the next round, let A?(¢) and R?(¢) count
the total number of new flows that have been admitted and
rejected by switch ¢ during the time interval [nT,nT + t],
respectively. More formally,

AP (t) = > I(Y*™) =1).10(* =i) (7)
k:nT<tk<nT+t
RM(t) = > I(Y*(™) =0).0(* =i). (8)

k:nT<tk<nT+t

Each switch ¢ € & waits for a random backoff time 7
and then reports to the controller the quantities A?(7*) and
RI(1]*). Note that this procedure does not require any sort
of synchronization among switches. In order to simplify the
implementation, it is convenient to assume that the random
variables 7;* are i.i.d. over different switches i € §.

At the end of round n, i.e., at time (n + 1)7, the controller
aggregates the counters sent by switches before the deadline
and then computes the total portion of accepted flows Y™ (a™):

Dies AT () U7 <T)
Dies AL L] <T) + RPU(rP < T)
Under the i.i.d. assumption on waiting times 7;", the quantity
Y™(a™) is an unbiased estimator for 0(a™), i.e.,

E[Y™(a™)] =6(a"). (10)
Then, the SDN controller updates the threshold « as follows:
o™t =11 [a”—l—e”(c—?”)] (11)

where II(.) is the projection max{0, min{ X, .}}. The stepsize
€" can be set to €y - n~ 7, with g > 0 and 1/2 < v < 1 (see
Thm. 1). We call this procedure Stochastic Online Flow seg-
mentatlon Algorithm (SOFIA), and one can find its compact
description in Algorithm 1.

We remark that if the SDN controller can roughly estimate
the flow distribution p, e.g., via historical data, then it is
sensible to initialize the value of « as the optimal value of
the program (3,4) with respect to the estimated distribution.

We now prove that SOF IA converges to the optimal thresh-
old a*, hence solving our original problem (2) subject to (1).

Y7 (am) = ©)

Theorem 1. Let the sequence {€"} be such that € > 0 Vn,
—+o0 —+o0

> € = +oo and Y (€")? < +o0. Then, the policy u(a™)
n=0 n=0

converges to the optimal policy u(a™) with probability 1.

Dynamics, message complexity and convergence time.
Hereafter we analyse the performance of SOFIA.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Algorithm 1: SOFIA

1: input: T, {¢" = eon™ " }n, and v € (1/2;1]
2: initialize: o € [0; N], e.g., by solving (3,4) w.r.t an estimated
distribution p

3: for rounds n =0,1,... do

4: At time nT the controller broadcasts new threshold o™ to
all switches.

Each switch will adopt segmentation policy u(a™) during
time interval [nT, (n + 1)T)

5. Each switch i € & waits for a random time 7;* and then
sends to the controller the quantities A7 (7]*) and R} (7]"),
being the total number of flows accepted and rejected
within the interval [nT; 7;"], respectively, see (7),(8).

6: Attime (n+ 1)T the controller computes the portion of
admitted flows Y™ (a™) during round n, as in Eq. (9)

7: Controller computes o™ « H(oz" +e(c— 17”))
8: end for

1.a) Dynamics. We recall the convergence properties of the
stochastic approximation algorithms of the Robinson-Monroe
type [30]. The convergence argument proving Thm. 1 makes
use of the Ordinary Differential Equation (ODE) method
for stochastic approximations, based on the dynamics &
¢ —6(a). The output {a"™(w)}nen generated by the algorithm
is a random process, where w belongs to its natural filtration.
Actually, the deterministic ODE describes the temporal evo-
lution of the mean value of the process, namely E [o"]. The
ODE converges to the unique restpoint which is asymptotically
stable. The convergence result implies that the sample paths
of o™ converge a.s. to the deterministic solution of the ODE.
In practice, with probability one, the sample-paths {a"(w)}
follow the solution of the ODE closely for a time that increases
to infinity as the number of steps increases (see also Fig. 2.c)).
As a consequence, the estimates of SOFIA are confined in a
small neighborhood of the optimal segmentation threshold o*
from which they can escape at most a finite number of times.

1.b) Convergence time. The following result provides a
characterization of the algorithm convergence with respect to
the estimate error A".

Theorem 2. Let A™ := w be the relative error of
SOFIA at the n-th round of the algorithm. Let €" n=7,
where 1/2 < v < 1 and n > 0. Then, there exist B,v > 0
such that

P{A" > (} < %exp(f an_v).

Note that the bound presented in Thm. 2 is provided with
respect to the number of rounds n, and does not depend on
the window size T'. Yet, intuitively, there should exist a finite
value of T" at which convergence speed is maximized; in fact,
reducing T also degrades the estimate of Y, which translates
into a higher number of rounds to reach the same optimality
gap. We show this numerically in Section VI, Fig. 2.b).

l.c) Message complexity. SOFIA is a decentralized algo-
rithm and works by exchanging messages between switches
and controller on a per round basis. As detailed in Alg. 1,

14

switches transmit the quantities A7 (1), R}*(7]*) to the con-
troller after a tunable backoff time 7;°. Assume that each
message may not be received successfully with probability
py > 0. In order to account for possible retransmissions of
control messages, we define message complexity of SOFIA as
the number of control messages to be exchanged between the
switches and the controller until a certain precision is attained.
It is immediate to see that the message complexity is linear
in the number of switches |&|. In fact, at each round, the
controller broadcasts the newly computed policy once to all
switches. The switches reply sending |§'| messages with the
number of accepted and rejected flows during the previous
round. The total number of messages to be exchanged per
round is hence (1+|8|)/(1—py), plus the number of broadcast
message retransmissions, which is O(14+ps/(1—py)log(|$]))
[31]. By combining such considerations with Thm. 2 we obtain
the next result.

Corollary 1. Let n be the tolerance as in Thm. 2, and fix
0 < P, < 1. In order to attain P{A™ >n} < P,, SOFIA
\

|§
generates O (7(1 Y

log (C%)) message transmissions on
n
the control channel.

Adaptive solution. The decreasing stepsize formulation of
SOFIA (e.g., € = egn~ ") does not react quickly to changes
in the flow size distribution. However, it is possible to obtain
a version of the algorithm which can react to changes in the
traffic pattern. In fact, we can adopt the constant stepsize
approach for stochastic approximation. It allows to converge
faster, while partially sacrificing some of the noise-rejection
properties of the original decreasing step size formulation.
We need to introduce to this purpose a simple variant in the
pseudocode of SOFIA, where the step of approximations has
small but constant size, i.e., by assuming €” = ¢ for any round
n. In this case, line 7 of Alg. 1, i.e., the update step, writes

"t = H(oe”—i—e(c—?")). (12)

Since the approximation stepsize does not change over time,
the algorithm continues to adapt to changes in the flow size
distribution. This seamless change in the formulation of the
threshold update requires anyhow to prove the convergence
properties ensured by the algorithm.

Theorem 3. For any § > 0, define by Bs(a*) = {x € R :
|z — o*| < 6}. As € — 0, the succession {a"},, computed
as in (12) converges in distribution to elements in Bs(a*).
Moreover, the fraction of time spent by the process in Bs(a*)
during [0,t] goes to 1 as t diverges.

Thus, as time goes by, the fraction of time that sample
paths generated in (12) spend in a (small) neighborhood of
the ODE restpoint tends to one. The above result captures the
trade off between the step size € and adaptation capabilities
of the algorithm. In fact, the larger the stepsize, the faster the
algorithm convergence. However, the segmentation threshold
a™ computed by the algorithm shall be confined in a larger
neighborhood of the optimal threshold o*.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

V. ROBUSTNESS TO MISCLASSIFICATION

So far we have assumed that the flow classifier is ideal. In
other words, the switch is always able to successfully estimate
the size class that the new incoming flow belongs to. In this fi-
nal section we investigate the effects of flow misclassification,
and provide a robust version of our stochastic approximation
policy for flow segmentation.

Optimal policy under misclassification. We first describe the
performance of a flow classifier through its confusion matrix
P, defined for all i,j € R as:

P;; =P {flow size is classified as r; | its actual size is 7;} .
Similarly to the ideal case P = I described in (3,4), the linear
program that solves the optimal flow segmentation policy in
the presence of classification errors writes:

W*(P) = (13)

N
s.t. Z u;p; < c
Jj=1

where u; = 1 whenever a flow that has been classified as
having size 7; is accepted, p; is the probability that the
incoming flow is classified as r; and 7; is the expected actual
flow size when a flow has been detected as r;, i.e.,

N N
pi=>_piPy, 7= riPji
=1 i=1

Here Pj; = <=x—2—
n Pnj

bility that the agtzlllazi size of a flow is r;, given that it has been
classified as r;. We observe that the optimal policy is still a
threshold one, but the flow indexes are sorted according to the
values of 7}, being in general different from r; due to misclas-
sification. More formally, let us define o as the permutation of
flows 1,..., N such that 7,(;) > 7,(;) whenever o (i) < o(j).
Then, the optimal policy for the problem in (13) is

(14)

denotes, by Bayes’ rule, the proba-

1 if o(i) < |
wi(@,0) =< a—|a] ifo@i)=|al+1 (15)
0 o(i) > |a] +2
where & solves the equation:
0(.,0)=c (16)

Lo)
and 0(c,0) = Y Po-1(j) + (@ = [a])Po=1(laj+1)-

j=1
Clearly, the presence of classification errors decreases the
achievable admitted traffic volume, namely

W*(P) < W*(I) := W™,
To see this, it suffices to observe that the optimal strategy
u(@, o) for the problem (13) produces a feasible (but not
necessarily optimal) solution @ for the original problem (3,4)
defined as U; Zj Uj (a, U)ijji-
The plain version of SOFIA applied to the scenario with

15

classification errors solves an equation in the variable o which
is possibly different from (16). In particular it writes:

0(.,0")=c (17)

where o denotes the trivial permutation o (i) = i for all i

-~

and moreover 6(., o) is defined as

N Lo]
(e, 0") = P+ (@ = la))Plaj41-

j=1
To this respect, we say that a classifier with confusion matrix
P is order-preserving whenever o = o, i.e., the misclassifica-
tion does not modify the order of flow sizes. We observe from
the expression of 7; in (14) that the order-preserving property
not only depends on the properties of the classifier, but also
on the flow size distribution p. The following fact immediately
stems from the comparison of expressions (16) and (17).

Fact 1. Under misclassification, SOFIA is able to solve (13)
optimally if the classifier is order-preserving.

In the very special case where only two flow size classes
are considered (/N = 2, e.g., elephant and mice flows) we can
provide a positive result on the original version of SOFIA.

l—e1 &1

Lemma 1. Let N = 2 and let P = (o 1_52) be the
confusion matrix of the classifier. Then, P is order-preserving
if and only if e1 +¢e2 < 1.

As a consequence of Lemma 1 and Fact 1, when N = 2
SOFIA is able to attain the optimal value W*(P) for any flow
size distribution if and only if €1 +e5 < 1. On the other hand,
for N > 3 we have the following negative result.

Theorem 4. For N > 3, there exists no classifier that is
order-preserving for all flow size distributions.

Next we overcome the negative result in Thm. 4 by propos-

ing a robust version of SOFIA with delayed feedback on the
actual size of flows.
Robust SOFIA with delayed feedback. We now propose
a variant of SOFIA that converges to the optimal value
W*(P) under misclassification errors. We exploit the fact
that, although the decision on whether or not interrogate the
controller has to be taken as soon as the classifier detects the
arrival of a new flow, the SDN controller can still monitor
the tagged flow later on. Thus, the controller can learn the
value of the misclassified flow sizes 7 via monitoring, and
such information can be used to improve future decisions.

More precisely, we call 77 the average actual size of flows
that are classified as belonging to class j up to time n7.
Similarly, o™ is defined as the corresponding permutation of
flow indexes, i.e., @(i)” > ?Z(jy,, whenever o (i)™ < o(j)™.
Thus, the policy that is adopted during round n is u(a™, o™),
see (15). We name this variant Robust SOFIA (R-SOFIA) and
we resume its steps in Algorithm 2. By the strong law of large
numbers we can prove that R—SOF IA reaches asymptotically
the optimal performance in terms of maximum average traffic
volume W*(P) handled by the controller.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Algorithm 2: R—-SOFIA

L: input: T, {¢" = eon " }n, €0 > 0, v € (1/2;1]

2: initialize: ag < 1, o' « o

3: for rounds n =0,1,... do

4: At time nT the controller broadcasts new threshold o™
and flow permutation o™ to all switches.

Each switch will adopt segmentation policy u(a™,c™)
during time interval [nT, (n 4+ 1)T)

Each switch i € & waits for a random time 7;* and then

sends to the controller the quantities A} (7;*) and R (7{"),

see Eq. (7,8)
At time (n + 1)T the controller computes the portion of
admitted flows Y (a™) during round n, see Eq. (9)

Controller computes o™ < II(a™ + ¢ (c — Y™)

Controller monitors flows in the network and produces the
estimate 771! as the average size of flows that are clas-
sified as belonging to class j up to time (n + 1)7". It then
computes the new class permutation ¢™ that sorts 7" +! in
decreasing order

9: end for

Lemma 2. The flow segmentation policy u(a™,o™) of Algo-
rithm 2 converges to the optimal policy u(Q, o) for problem
(13) with probability 1.

We remark that the price incurred in making SOFIA robust
against misclassification errors is i) the overhead to com-
municate also the updated permutation o™ in the step 1 of
R-SOFIA, and ii) the flow size monitoring performed by the
controller in step 8. However, such flow size monitoring can be
performed at much slower timescale than R—SOF IA execution,
and does not need to be applied to each and every flow, as
long as the estimate 7; is allowed to converge to the real value
r; for each class j.

VI. NUMERICAL RESULTS

In this section we characterize the performance of SOFIA
both from an algorithmic and a networking standpoint.
In-vitro experiments. We first describe numerical experi-
ments on the performance of SOFIA. Fig. 1.a) reports two
runs of the algorithm for the case P = [(no classification
errors). Flows arrivals follow a Poisson process with intensity
A = 10° flows/s. The probability distribution of flow size over
N =4 classes is p = (1/6,1/3,1/12,5/12). In the two runs
of the algorithm the observation window size is set to 7' =1
ms and 7" = 10 ms, respectively. Qualitatively, the time to
converge appears several tenth milliseconds slower for 7' = 10
ms; SOFIA’s output appears more noisy for 7' = 1 ms.

Fig. 1.b) quantifies the dependence of the convergence time
on the window size 7. The convergence time of the algorithm
is measured by the largest time such that relative error A™ > 7.
In our experiments, tolerance is set to n = 0.05; we report
confidence intervals at 95% over 300 samples. We observe
that if 7" is small, then increasing 7" allows to speed up the
convergence: the larger 7, the larger the number of samples
and the better the estimates of the fraction of optimized flows
O(a™). Yet, setting T' too big is detrimental for convergence
time: in fact, the advantage of having good estimates of (™)

16

is canceled by the drawback of updating the threshold o™ too
infrequently. As observed in Fig. 1.b), there exists a finite
optimal value of 7" minimizing convergence time, the analysis
of which we leave as part of future work.

Fig. 1.c) describes the trajectory of the ODE associated
to SOFIA : &(t) = ¢ — 0(«a(t)). Such trajectory has been
superimposed to the envelope of the sample paths generated
by the algorithm for same initial condition «(0) = N/2 (the
time scale is the one of the stochastic approximation, namely
Zn = 22:1 €k, see [30]). The solution of the ODE appears as
the meanfield approximation of the sample paths, which are
concentrated in a narrow neighborhood of the ODE dynamics.

Fig. 2.a) describes the adaptation of the algorithm with con-
stant step size. A time-varying flow size distribution has been
assumed for N = 3, where the flow size distribution switches
between p; = (2/3,1/4,1/12) and po (1/4,2/3,1/12).
As seen in the figure, the algorithm maintains the expected
number of admitted flows (upper figure for 6(a™)), while
adjusting the optimal policy (lower figure for o™); dashed lines
denote the optimal solution.

Fig. 2.b) shows the effect of a non ideal classifier. We
consider P;; = 1 — ¢ and P;; = ¢ for i # j in the confusion
matrix, for 0 < ¢ < 1. For € = 0, the optimal policy is a water-
filling solution, where flows of size r; are admitted determin-
istically, flows of size 7o undergo randomized admission and
flows of size 73 use default routes. In presence of classification
errors (¢ = 0.15) the threshold policy determined by SOFIA—
optimal in this setting — is equivalent to a segmentation policy
being randomized on all three flow sizes.

In Fig. 2.c) we compare the value of the maximum seg-
mented traffic volume optimized by R-SOFIA in presence
of classification errors against the value attained by SOFIA.
The sample values are derived for 100 sample paths with 95%
confidence intervals. As it can be observed, the optimal value
decreases up to the critical value ¢ = 2/3. Beyond that value,
the errors of the classifier are large, the order of flows solving
optimally problem (13) becomes {2,1,3}, and the optimal
policy attainable by R—-SOFIA compensates for the errors
by admitting larger number of flows classified as low size.
Conversely, for e > 2/3, SOFIA — which does not perform
flow reordering — is suboptimal. The results suggests that flow
rate reordering, as performed in R-SOFIA, is mandatory in
the event of large classification errors.

Network experiments. After assessing the performance of
SOFIA, we aim at understanding its behavior in a realistic
environment. To that aim we have emulated the SDN-based
cluster depicted in Fig. 2.c). The cluster is composed of four
MapReduce servers running Hadoop [9] and a home-made
traffic generator. The network is managed by one OpenFlow
Ryu controller (https://osrg.github.io/ryu/) that implements
SOFIA to dynamically configure two OpenvSwitch switches
(http://openvswitch.org). We have loaded the Hadoop cluster
with the terasort benchmark sorting a 1 GB file generated
with teragen. This benchmark is available in the standard
Hadoop MapReduce framework (http://hadoop.apache.org). In
addition, we loaded the network with synthetic background

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

b) %1073 C) 35
— 16
S 0.5 T =1ms A,
= 0.4 g 14 8
0 01 02 03 04 2 s
time [s] g I 25
=]
o 10
= 06FAY 2
ihedd 2 8 2 [Sample Paths
= 82 T =10 ms §] —ODE
} 15
01 02 03 04 0 1 3 4 5 0 10 20 30 40 50
time 3] T [s] 1072 t [s]

Figure 1. a) Sample paths of SOFIA for decreasing step size for 7' = 1 ms and 7" = 10 ms; ¢ = 0.61 marked by the dashed blue line. b) Convergence
time for n = 0.05 ¢) Sample paths versus ODE dynamics; p = (1/6,1/3,1/12,5/12), ¢ = 0.61, A = 10° flows/s.

a) b) ©)
Wl flow size distribution 1.24
e A - A, - [Ce=0 1 xxx
0s[™T" T - 0.4] (e 0.15 !)228(
0 1 2 3 B R o8
g, ‘§ 0.6
2 é 0.4
S0 I W N U 02| X R-SOFIA
. —SOFIA
0 1 2 3

T [s]

flow classes

0
0 02 04 06 08 1
€

Figure 2. Sample paths of SOFIA for N = 3 and constant step € = N/10, ¢ = 0.61. b) Effect of classification errors confusion matrix P on the optimal
policy; ¢ = 0.5, and p = (0.3,0.25,0.45) c) Performance loss for increasing values of classification error &: comparison between SOFIA and R-SOFIA;

p = (0.01,0.1,0.89), 1 = 100, r2 = 1 and r3 = 0.1 Mbyte, ¢ = 0.6.

a) b)
Linux 4.4.0-83, Intel Core i7-4800MQ @ 2.70GHz, 80
32BG RAM ~
"W Controll [
‘ontroller z 60
. . o)
o . oy i
€ Openflow swithe € ¢ 40
_OpenFlow switches X 2
I\ %20 —~SOFIA
N R] F3 -v-random
Traffic Traffic | = 0
generator MapReduce servers generator O 0.1 03 0.7 09
&)

signaling constraint ¢

C,) 1) 400

& 2| = —~—SOFIA
£ : £ 300 -v-random
e =

50.5 £ 200

2 . |=SOFA| £

& -v-random| 5100

8 0 ¥ -0-optimal | © terasort

5 0

£ 0.1 03 0.7 0.9 0.1 03 0.7 09

signaling constraint ¢ signaling constraint ¢

Figure 3. a) Cluster used for the network emulation; b) Maximum controller load; c) Average portion of optimized background volume; d) completion time

under terasort vs. signaling constraint c. Confidence intervals at 95%.

traffic generated with our home-made TCP traffic generator.
Background traffic flows are produced with an average rate
of 20 new flows/s, according to a Poisson law and picked
randomly from N = 1000 classes distributed according to a
Zipf law of exponent 0.8 [32]. The size of every flow in a
class i is i? - 1024 bytes, in order to produce frequent mice
and rare but large elephant flows.

As our objective is to optimize the control channel usage
and not the data-plane, we have implemented a routing policy
that segments background traffic by sending large background
traffic flows to a non-conflicting path (similar to Hedera [7]).
The remaining traffic, i.e., MapReduce and small background
flows, is always routed on default ECMP paths without trigger-
ing control messages, i.e., packet-in messages; in fact, switches
identify MapReduce via their TCP port numbers.

SOFIA is a sampling method that automatically adapts to
keep a predefined signaling load ¢ on the controller and still
maximizes the amount of optimized traffic. That being said,
we can first compare it with a naive random sampler that
randomly filters signaling messages with a probability ¢ of
sending the packet-in messages to the controller. Fig. 3.b)
reports the controller load, i.e., the fraction of packet-in
messages received. The comparison with random confirms
the correct computation of the threshold by SOFIA as it
is essentially equivalent to random sampling, meaning that
SOFIA conserves the good properties of usual flow sam-
pling. Yet, Fig. 3.c) reveals the real advantages of SOFIA.
It depicts the fraction of background traffic volume optimized
by the controller and compares it to two radically different
approaches: (i) the theoretical optimal with full a-priori

17

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

traffic knowledge and (i¢) the random approach with no
knowledge at all. In Fig. 3.c) we observe that the proportion
of optimized traffic with SOFIA coincides with the expected
optimal, which empirically confirms the convergence to the
optimal solution, as proven in Thm. 1.

Fig. 3.d) shows the benefit of flow segmentation on the
MapReduce traffic: since background elephant flows are
rerouted by the controller to free bandwidth for MapReduce
traffic resulting in lower completion times. The terasort
benchmark traffic is composed by a small fraction of very
heavy elephant flows, as it happens in the background traffic
as well. Nevertheless, avoiding collision of rare, yet harmful,
large elephants reduces drastically (up to 50%) the completion
time. The gain of SOFIA over random is visible at interme-
diate values of c. In fact, the skewness of flow size distribution
allows SOFIA to cope with all elephant flows even when
the signaling constraint ¢ is small. On the contrary, random
cannot perform any better than basic ECMP load balancing.

VII. CONCLUSIONS

Ideally, the SDN controllers of a datacenter should compute
an optimized route for every new connection request, aiming
at network-wide objectives such as minimum routing cost or
minimum link congestion. Yet, at the typical frequency of
packet-in events occurring in such networks, SDN schemes
incur excessive latency. This suggests to segment the traffic
flows to be optimized: switches interrogate the controller for
path computation only for flows which are “big enough”,
following the customary strategy by which elephant flows
should be treated in priority. In this paper we presented an
online learning algorithm called SOFIA, able to learn the
optimal segmentation threshold without any a priori knowl-
edge on the traffic characteristics. Correctness, convergence
time and message complexity of the algorithm have been
analyzed. SOFIA can work on top of existing solutions for
route optimization. With a simple backward learning procedure
it can be made robust with respect to flow classification errors.
SOFIA has been implemented and tested in a MapReduce
cluster on a real OpenFlow controller, hence proving that it is
a promising solution for production environments.

In the future we aim at reducing the signaling overhead
of SOFIA. Instead of letting switches report asynchronously
to the controller at each round, we will study how to make
control messages reactive to traffic changes. Also, we plan to
consider the constraint on limited switch memory, which may
prevent the installation of a new custom forwarding rule.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow: Enabling
Innovation in Campus Networks,” ACM SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69-74, Mar. 2008.

B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Commu. Surveys Tutorials,
vol. 16, no. 3, pp. 1617-1634, February 2014.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM IMC, Melbourne, Australia,
November 1-3, 2010.

[2]

18

(4]

(5]

(6]
(71

(8]

=)
8

(10]

(11]

(12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On Controller Performance in Software-defined Networks,” in Proc.
USENIX Hot-ICE, 2012.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63-74, Aug. 2008.

C. Hopps, “RFC2992: analysis of an equal-cost multi-path algorithm,”
United States, 2000.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in Proc.
USENIX NSDI, 2010.

A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in Proc. IEEE INFOCOM, 2011.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107-113, 2008.
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. USENIX Hot-
Cloud, 2010.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. ACM
SIGCOMM, 2009.

“Introducing data center fabric, the next-generation Facebook data center
network,” https://code.facebook.com/posts/360346274145943/, 2014.
K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Proc. IEEE ICDCN, 2013.

H. Wang, L. Chen, K. Chen, Z. Li, Y. Zhang, H. Guan, Z. Qi, D. Li,
and Y. Geng, “Flowprophet: generic and Accurate Traffic Prediction for
Data-Parallel Cluster Computing,” in Proc. IEEE ICDCS, 2015.

M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 393406, Aug. 2015.

H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: Toward Automatically Identifying and Scheduling Coflows in
the Dark,” in Proc. ACM SIGCOMM, 2016.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: dy-
namic resource allocation for software-defined measurement,” ACM
SIGCOMM Computer Comm. Review, vol. 44, no. 4, pp. 419-430, 2015.
M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma, “Intelligent SDN
based traffic (de)Aggregation and Measurement Paradigm (iSTAMP),”
in Proc. IEEE INFOCOM, 2014.

M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in Proc. USENIX NSDI, 2013.

B. Claise, “Cisco systems NetFlow services export version 9,” 2004.
S. Paris, A. Destounis, L. Maggi, G. S. Paschos, and J. Leguay,
“Controlling flow reconfigurations in SDN,” in JEEE INFOCOM, 2016.
T. Wang, F. Liu, and H. Xu, “An Efficient Online Algorithm for Dynamic
SDN Controller Assignment in Data Center Networks,” IEEE/ACM
Trans. on Networking, vol. PP, no. 99, pp. 1-14, June 2017.

H. Xu and B. Li, “TinyFlow: Breaking elephants down into mice in data
center networks,” in Proc. IEEE LANMAN, 2014.

W. Wang, Y. Sun, K. Salamatian, and Z. Li, “Adaptive path isolation
for elephant and mice flows by exploiting path diversity in datacenters,”
IEEE Trans. on Network and Service Management, vol. 13, no. 1, pp.
5-18, January 2016.

X. N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “OFFICER:
A general optimization framework for OpenFlow rule allocation and
endpoint policy enforcement,” in Proc. IEEE INFOCOM, 2015.

P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen,
K. Chen, and H. Jin, “Online flow size prediction for improved network
routing,” in Network Protocols (ICNP), 2016 IEEE 24th International
Conference on. IEEE, 2016, pp. 1-6.

E. Altman, Constrained Markov decision processes. CRC Press, 1999.
B. Korte and J. Vygen, Approximation Algorithms. Springer, 2012.
M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Comm.
Networks, vol. 3, no. 1, pp. 1-211, 2010.

H. J. Kushner and G. G. Yin", Stochastic Approximation and Recursive
Algorithms and Applications”. Springer, 2nd Edition, 2003.

B. N. Levine and J. Garcia-Luna-Aceves, “A Comparison of Reliable
Multicast Protocols,” Multimedia Syst., no. 5, pp. 334-348, Sep. 1998.
S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian et al., “Less Pain, Most of
the Gain: Incrementally Deployable ICN,” in Proc. ACM SIGCOMM,
2013.

