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Abstract—Various routing protocols are deployed to operate
networks, and border routers manage the exchange of routing in-
formation. Network engineers carefully configure routing policies
to ensure reliable, efficient, and secure connectivity. However, the
complexity of these configurations can lead to errors and issues
like routing loops. Existing control plane verification solutions
offer comprehensive analysis but struggle with scalability. This
demonstration presents a scalable verification tool capable of
locating routing loops in large multi-protocol and multi-instance
networks, demonstrating its efficiency and performance with
numerical results and live verification.

I. INTRODUCTION

Networks are generally structured into areas and domains
where various instances of routing protocols (such as OSPF,
ISIS, and BGP) operate. Border routers, which connect these
protocol instances, use routing policies to manage the ad-
vertisement and reception of routing information. Network
administrators meticulously configure these policies to ensure
optimal end-to-end connectivity, considering availability, per-
formance, and security. However, configuring these protocols
is complex and error-prone. Misconfigurations in routing poli-
cies can lead to severe issues, including routing loops.

Various solutions have been employed for control plane
verification. Batfish [1] simulates the behavior of individual
protocols to infer data plane information, allowing for compre-
hensive control plane analysis. Minesweeper [2] uses a formal
method based on descriptive logic to examine control plane
configurations. Although these contrasting methods can verify
numerous intended properties, such as node reachability, iso-
lation, waypointing, black holes, routing loops, bounded path
length, and load-balancing, they do not scale well for practical
scenarios. To enhance scalability, more targeted solutions have
been developed. For example, ARC [3] and Tiramisu [4]
abstract the control plane with graph transformations to verify
a limited set of routing properties, including security policies,
reachability after failures, disjointness, and waypointing. De-
spite these improvements, scalability remains a challenge.

In this demonstration, we introduce a scalable verification
tool specifically designed to detect routing loops in multi-
instance and multi-protocol networks. This centralized man-
agement tool can identify loops in networks with up to 10,000
nodes and 1 million prefixes in an hour. According to RFC
9067 [5], a routing policy defines how routes are imported,
exported, modified, and advertised between protocol instances

Fig. 1. Miss-configuration of two IGP instances (blue, red) inducing a routing
loop for prefix t. Integers on links represent IGP costs.

or within a single protocol instance. The remainder of this
paper begins with a use case that illustrates how routing policy
misconfigurations can cause loops. We then provide a high-
level overview of our algorithmic solution to verify routing
policies and present the demonstrator along with results.

A. Motivation use case

Fig. 1 shows a network consisting of two instances of IGP
protocols (OSPF or ISIS). The first instance is represented in
blue, and the second instance is in red. Link weights indicate
IGP costs. Nodes b and e are border routers and belong to both
instances. Other nodes are only visible within their respective
instances. To allow an IP prefix to be reached from another
instance, routing policies can be configured with an ”import”
policy at border routers. In the use-case, two imports allow
reaching prefix t via border routers b and e, each with a cost
of 100. We notice, for example, the path cost from node a to
t is 101 through node b, and 102 through node e.

In this example, import costs are not properly defined and
causing a loop. From the perspective of node b, there are two
routes: 1) in the Red instance: b → c → t with a cost of 102,
and 2) in the Blue instance: b → e → t with a cost of 101.
Similarly, from node e’s perspective, the routes are: 1) in the
Red instance: e → f → t with a cost of 102, and 2) in the
Blue instance: e → b → t with a cost of 101. Consequently,
any packet to t arriving at e will be forwarded to b, and any
packet to t arriving at b will be forwarded to e, causing a loop.

II. FAST ROUTING LOOPS IDENTIFICATION

Algorithmic framework. In the following, we propose
a loops identification algorithm for a given prefix. Let us979-8-3503-5171-2/24/31.002024IEEE



Fig. 2. Two Dijkstra trees rooted at b and e

Fig. 3. Computation time per prefix

consider the example in Fig. 1. When an import of a prefix
t is configured in either b or e, an LSA/LSP is propagated
within the red instance to advertise the route to t. Naturally,
b and e will disregard their own LSA/LSP. Consequently, the
border router b believes that a route with a cost of 100 is
available between e and t, while e believes that there is a
route with a cost of 100 from b to t. This situation can be
captured by constructing a transformed graph for each border
router and each prefix. The transformed graph represents the
perspective of the border router concerning a specific prefix.
Fig. 2 shows the transformed networks from the perspective
of b (Left) and e (Right). This allows us to design a loop
identification algorithm using Dijkstra algorithm (Alg. 1).

Steps 1-9 construct a transformed graph for every border
router. It represents the network from the perspective of the
border router. For a border router br, on line 8 a Dijkstra tree
Gbr rooted at br is computed. On line 10, we iterate over
every prefix and every border router and verify the existence
of the loop using a linear-time algorithm. For a given br, we
concatenate the path between border router br to br′, where
br′ is the next border router in the path between br and t in
T br′ , and then set br = br′. We continue until a border router
is crossed twice. In this case, a loop is detected. Fig. 2 shows
the two Dijkstra trees rooted in b and e. Clearly, if we merge
the two trees, the cycle b →e→ b will be generated.

Demonstration. Fig. 4 presents the Routing Loops Identi-
fication Tool we will demonstrate. It shows a network with
5 instances and some border router configurations. 106 loops
have been detected and loop n°4 to prefix 229 is displayed.
We can see that it is due to a misconfigured import between
OSPF-1 and ISIS-0 (protocol with instance identifier). A
video presenting the tool is available here: https://tinyurl.com/
Routing-Loops.

Numerical results. The tool has been tested on a large-
scale instance, randomly generated with 5 instances (OSPF
and ISIS), 9 980 nodes, 311 000 edges, 30 border routers, and
24 011 import policies for 10 000 prefixes. Fig. 3 shows the
computation times per prefix, allowing us to identify 29 670
loops. On average 3.7 milliseconds per prefix.

Algorithm 1 Loop identification
Input:

• Graph G = (V,E) and set of prefixes R ⊂ V
• Ω: Set of configuration pairs (Border router, Import cost, prefix)

Output: Loop
1: for each border router br ∈ V do
2: Gbr ← G
3: for each (br′, c, t) ∈ Ω do
4: if br ̸= br′ then
5: add virtual link (br′, t) to Gbr of cost c
6: end if
7: end for
8: T br ← compute Dijkstra tree rooted at br in Gbr

9: end for
10: for each prefix t ∈ R do
11: for each border router br ∈ V do
12: br′ ← br
13: while br′ ̸= null do
14: br′ ← next border router in T br′ to reach t
15: if br′ was already visited then
16: loop = concatenation of visited sub-paths
17: return loop
18: end if
19: end while
20: end for
21: end for

Fig. 4. Routing Loops Identification Tool

III. CONCLUSION

We presented a scalable verification tool to locate routing
loops in large multi-protocol multi-instance networks. In con-
trast to existing solutions, this tool allows a fast and light loop
identification without any heavy simulation of the network.
The proposed solution can be extended to handle other policy
parameters and other protocols such as BGP.
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