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In the emerging field of the Internet of Things (IoT), Wireless Sensor Networks (WSNs) have a key role to
play in sensing and collecting measures on the surrounding environment. In the deployment of large
scale observation systems in remote areas, when there is not a permanent connection with the Internet,
WSNs are calling for replication and distributed storage techniques that increase the amount of data
stored within the WSN and reduce the probability of data loss. Unlike conventional network data storage,
WSN-based distributed storage is constrained by the limited resources of the sensors. In this paper, we
propose a low-complexity distributed data replication mechanism to increase the resilience of WSN-
based distributed storage at large scale. In particular, we propose a simple, yet accurate, analytical mod-
eling framework and an extensive simulation campaign, which complement experimental results on the
SensLab testbed. The impact of several key parameters on the system performance is investigated.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The concept of Internet of Things (IoT) has emerged over the
last decade and relies on the vision of everyday objects having an
end-to-end IP connection with the Internet. The range of objects
involved in IoT encompasses several related systems, such as Radio
Frequency Identification (RFID), Machine-to-Machine (M2M), and
Wireless Sensor Networks (WSNs). Many business applications
based on the IoT have already rolled out, notably smart grid or
smart infrastructures. However, there are still many challenges to
be addressed, especially regarding the specification of a standard
architecture and IPv6-compliant communication protocols.

WSNs for IoT observation systems are typically composed by
unattended nodes, that sense the surrounding environment, and
a sink node, which acts as data collector and gateway towards
the Internet. Communications between sensor nodes and the sink
are typically not instantaneous, especially in isolated WSNs where
the sink node is not always present. Moreover, when applications
do not require real-time data collection, storing data units and
sending aggregate data bursts can contribute to reduce the amount
of radio transmissions, thus increasing the lifetime operation of the
WSN. Efficient data retrieval can be carried out periodically
through the use of a mobile node which wanders across the WSN
and collects the data stored at the nodes. However, rare data retrie-
val can cause local memory overflow and, therefore, data loss. In
order to avoid this, nodes can cooperate by storing the sensed data
in a distributed way.

As WSNs tend to be left unattended for long periods, distributed
data storage has to be robust also against node failures. In order to
achieve this goal, an attractive approach consists in combining dis-
tributed storage with data replication, i.e., by distributing and stor-
ing multiple copies of the same data across the WSN. This
redundancy exacerbates the communication overhead required
to find proper ‘‘donor nodes’’ (i.e., nodes available to store data of
other nodes), as well as the storage capacity of the system. There-
fore, the design of efficient distributed storage algorithms with
data replication requires to deal with trade-offs between storage
capacity, system robustness, energy consumption (network life-
time), communication efficiency.

In this paper, we propose a low complexity (‘‘greedy’’) distrib-
uted data replication mechanism to increase the resilience and
storage capacity of a IoT-based surveillance system against node
failure and local memory shortage. In [1], we have presented pre-
liminary experimental results on distributed data storage in Sen-
sLab [2]. In the current paper, we extend this experimental
approach and complement it with a simple, yet accurate, analytical
performance evaluation framework, and with an extensive simula-
tion campaign performed with the Cooja network simulator [3]. In
particular, the proposed framework allows to evaluate: the net-
work storage capacity; the time required to reach this capacity
and, consequently, to start dropping data; the system robustness,
format.
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in terms of retrievable data in case of a failure of several neighbor-
ing nodes (‘‘bomb-like scenario’’). The validity of the proposed
framework is confirmed by simulations and realistic experimental
data obtained with SensLab, studying the impact of several key
parameters. To the best of our knowledge, this is the first work that
integrates experimental results of SensLab with analytical and sim-
ulative counterparts.

The paper is organized as follows. Section 2 is dedicated to re-
lated works. In Section 3, we motivate and detail the design of
our greedy mechanism for distributed data replication. In Section 4,
an analytical performance evaluation framework is proposed. Sec-
tion 5 is dedicated to the presentation of performance results,
based on the proposed analytical framework, the simulation cam-
paign, and the real experiments conducted in the SensLab testbed.
At last, Section 6 concludes the paper, with an outlook on the
extension of our distributed mechanism with RPL, the standard
routing protocol for the IoT [4].
2. Related work

In the past years, various schemes to efficiently distribute and
replicate data in WSNs have been proposed [5].

In WSN distributed storage schemes, nodes cooperate to effi-
ciently distribute data across the WSN. There are two main ap-
proaches: data-centric storage and fully distributed data storage.
The data-centric storage approach is described in [6–8]. Here, some
distinguished storage nodes, e.g., determined by a hash function,
are responsible for collecting a certain type of data. A load-bal-
anced distributed storage approach is proposed in [9], according
to which data are preferably stored in densely populated areas of
the sensing field to minimize data loss. In [10], data are stored
according to their spatial and temporal similarity, in order to re-
duce the overhead as well as the latency of a query request. Even
if data-centric storage approaches are based on node cooperation,
they are not fully distributed since specific nodes store all the con-
tents generated by the others. A detailed survey on data-centric
storage schemes is presented in [11].

In a fully distributed data storage approach, all nodes contribute
equally to sensing and storing. All nodes try, first, to store the sen-
sor readings locally and, then, delegate other nodes in the WSN to
store newly collected data as soon as their local memories are full.
A first significant contribution in this direction is Data Farms [12].
The authors propose a fully data distributed storage mechanism
with periodic data retrieval. They derive a cost model to measure
energy consumption and show how a careful selection of nodes
offering storage, denoted as ‘‘donor nodes,’’ optimizes the system
capacity at the price of slightly higher transmission costs. They as-
sume a network tree topology, where each sensor node knows the
return path to a sink node, which periodically retrieves data. The
energy consumption problem is studied also in [13], where data
preservation in an isolated WSN is considered. In this context, an
energy-efficient data distribution scheme is proposed, based on
the dissemination of data from low energy nodes to high energy
ones. However, only low energy nodes generate contents.

An interesting approach for load balancing is proposed in Env-
iroStore [14]. The authors focus on in-network data redistribution
when the remaining storage space of a sensor node exceeds a given
threshold. They use a proactive mechanism, where each node
maintains a local memory table containing the statuses of the
memories of its neighbors. Furthermore, mobile nodes (called
mules) are used to carry data from an overloaded area to an offload-
ed one, as well as to send the collected data to a sink node. The
deployment of mobile mules is also addressed in [15], where an
efficient distributed data storage mechanism for an isolated WSN
with limited storage space is proposed. Data is opportunistically
Please cite this article in press as: P. Gonizzi et al., Data dissemination scheme
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offloaded to mobile mules when the latter are in proximity. More-
over, data are assigned different priorities: high prioritized data are
stored closer to areas where the mules will pass more frequently.
The main limitation of the above studies consists of a lack of a com-
prehensive performance evaluation framework, which encom-
passes analysis, simulations, and experiments. This holistic
approach is a key contribution of our work.

Data replication strategies have been proposed in the literature,
mainly to overcome the problem of node failures. The goal of rep-
lication is to copy data at other nodes within the WSN to increase
resilience. Authors in [16] propose ProFlex, a distributed data stor-
age protocol for replicating data measurements from constrained
nodes to more powerful nodes. The protocol benefits from the
higher communication range of such nodes and uses the long link
to improve data distribution and replication against the risk of
node failures. In [17], a replicator node is selected according to
some critical parameters such as connectivity, available storage
and remaining energy of the node. However, a model for such
selection is not given. In TinyDSM [18], a reactive replication ap-
proach is presented. Replicas are randomly distributed within a
predefined replication range influenced by the specific replica
number and density.

Overall, with respect to related works, our paper goes beyond.
First, we encompass, with a fully distributed mechanism, both data
replication and distributed storage. Second, we provide a simple,
yet accurate, analytical modeling framework to measure several
key parameters, such as: replication robustness (by means of the
percentage of data stored at a given distance from the generator
node), network storage capacity, time to reach capacity, and data
drop for local memory shortage. Third, we conduct extensive sim-
ulations and real experiments to evaluate our approach and vali-
date the proposed framework.
3. Replication-based distributed data storage

We assume that the nodes of the WSN keep on collecting data
(acquired with a given sensing rate). Periodically, data is retrieved
from a sink and cancelled from their memories. This periodic re-
trieval is instrumental to allow the use of limited onboard memo-
ries. Data retrieval consists in forwarding the collected sensed data
of the WSN to a central base station for further processing. In this
paper, we do not focus on data retrieval, which is the subject of our
current research activity.

In order to prevent data losses due to nodes’ failures or memory
shortages, nodes cooperate in the following way. A data acquired
by a node is stored in several nodes (possibly including the gener-
ating node). This consists in copying and distributing replicas of
the same data to other nodes with some available memory.

Information about memory availability is periodically broad-
casted, by each node, to all its neighbors. Conversely, each node
keeps on updating a local memory table relative to the memory
statuses of all detected neighbors. Upon reception of a memory sta-
tus from a neighbor, a node updates the corresponding entry of its
local memory table with the new information received.

The proposed replication-based distributed data storage is gree-
dy: in order to create a replica of a stored data, a node selects,
according to its neighbors’ memory table, the ‘‘best’’ neighbor—
the selection criterion will be specified in the following. The se-
lected neighbor becomes a donor node. If no donor node can be
chosen and there is no available space in the local memory, then
the acquired data is dropped. In the remainder of this section, we
formalize this greedy algorithm.

Table 1 lists the main parameters of the system. A WSN with N
fixed nodes is deployed over a region with area A (dimension:
[m2]). The radio transmission range of the nodes is denoted as d
for distributed storage for IoT observation systems at large scale, Informat.
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Table 1
Main system parameters.

Symbol Description Unit

N Number of nodes scalar
A Surface of deployment area m2

d Node’s transmission range m

V ðiÞ1
Number of 1-hop neighbors scalar

Bi Node i’s buffer size, i 2 {1, . . . ,N} scalar
Tsens,i Node i’s sensing interval, i 2 {1, . . . ,N} s
rsens,i Node i’s sensing rate, i 2 {1, . . . ,N} s�1

Pt Common node transmit power mW
Tadv Period of memory advertisement (from each node) s
R Maximum number of replicas per sensing data unit scalar
T Period of data retrieval (from the sink) s
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(dimension: [m]). The number of direct (1-hop) neighbors of node i
(i 2 {1, . . . ,N}), i.e., nodes within the transmission range, is denoted
as V ðiÞ1 . The ith node has a finite local buffer of size Bi (dimension:
[data units]) and sensing interval Tsens,i (dimension: [s]), whose
corresponding sensing rate is rsens,i = 1/Tsens,i (dimension: [data
units/s]). Each node broadcasts, without acknowledgment and
every Tadv (dimension: [s]), its memory status to all 1-hop neigh-
bors. Each memory status message contains the following values,
relative to the sending node: (i) node ID; (ii) current available
memory space; (iii) sensing rate; and (iv) a sequence number iden-
tifying the message. Each node maintains a local memory table
which records the latest memory status received from neighbor
nodes. The local memory table contains one entry per neighbor,
with indication of its most recent available memory space and
the corresponding notification time. Upon reception of a memory
advertisement from a neighbor, a node updates its memory table,
using the sequence number field to discard multiple receptions
or out-of-date advertisements. The memory table has a fixed size.
In case of complete depletion of the memory table, as it may occur
in dense networks (with a large number of 1-hop neighbors), a
node stores only the ‘‘best’’ neighbors.

The greedy distributed storage mechanism consists in creating
at most R copies of each data unit generated by a node and distrib-
ute them across the network, storing at most one copy per node.
Each copy is referred to as replica. Let us focus on node i 2 {1, . . . ,N}.
At time t, node i generates (upon sensing) a data unit. If node i has
some available space in its memory, it stores a copy of the data unit
locally, setting the number of remaining copies to R � 1. Otherwise,
if the local memory of node i is full, or multiple copies are to be
stored, node i selects, from the memory table, a neighbor node to
store a copy of the data unit. In particular, node i selects the neigh-
bor node, called donor, with the largest available memory space
and the most recent information. Denoting the neighbors of node
i as f1; . . . ;V ðiÞ1 g, the donor at time t, indicated as D(i)(t), is chosen
according to the following heuristic rule:

DðiÞðtÞ ¼ arg max
j2f1;...;VðiÞ

1
g

BjðtjÞ
t � tj

; ð1Þ
Fig. 1. Hop-by-hop replication in the case of R = 3 desired replicas, for several scenarios: (
hop; and (c) the replication process stops at an intermediate donor node and the last (R

Please cite this article in press as: P. Gonizzi et al., Data dissemination scheme
Fusion (2013), http://dx.doi.org/10.1016/j.inffus.2013.04.003
where tj < t denotes the time at which the available memory space
Bj(tj) of node j was received by node i, with Bj(tj) 6 Bj. If there is no
suitable neighbor in the memory table (i.e.,
BjðtjÞ ¼ 0; 8j 2 f1; . . . ;V ðiÞ1 g), there is no possibility to distribute rep-
licas of the data unit across the network. In this case, only the ori-
ginal data unit can be stored in the local memory of node i,
provided that there is some available space at node i.

Upon reception of the copy, the donor node D: (i) stores the
copy in its memory and (ii) selects the next donor node among
its neighbors, according to a modified version of (1). In particular,
in order to avoid loops, previously selected donors (which already
have a copy of the received data) are not enlisted among the can-
didate nodes. Therefore, the selection criterion for the choice of a
donor for the rth replica (r 2 {1, . . . ,R}) is

DðiÞr ðtÞ ¼ arg max
j2f1;...;V ðiÞ1 gnS

ðr�1Þ

BjðtjÞ
t � tj

; ð2Þ

where S(r�1) is the set of donor nodes for the previous r � 1 copies.
Upon selection of the donor, the rth node thus sends it a copy,
decrementing the number of required copies by 1. The replication
process continues recursively until either the last (Rth) copy is
stored or an intermediate (r⁄th, r⁄ < R) donor node cannot find any
suitable next donor node. In the latter case, the final number of cop-
ies actually stored in the WSN is smaller than R.

In Fig. 1, we show three illustrative scenarios with R = 3. In
Fig. 1a, 3 copies of the data unit D1, generated by node 1, are stored
(respectively in nodes 1, 3, and 5). In Fig. 1b, copies of the data unit
D2 are stored (respectively in nodes 1, 4, and 2)—note that in this
case replicas do not propagate beyond 1 hop from the generator
node. In Fig. 1c, the replication process stops at node 4 and no suit-
able donor node can further be found. In this case, the last replica is
not stored.
4. Analytical performance evaluation

Implementing distributed data storage with replication raises
several trade-offs. Indeed, storing multiple copies of a single data
reduces the amount of unique data that can be stored in the
WSN, whereas it improves the reliability against the risk of node
failure and complete data loss. Also, the latter reliability goes
against the lifetime operation of the WSN, as it entails more costly
communication for the distribution of replicas across the WSN. In
order to characterize these trade-offs, in the following subsections
we derive analytical bounds for key performance metrics of inter-
est. The portfolio of metrics includes: the network storage capacity,
interpreted as the amount of unique data that can be stored in the
WSN; the time to reach the storage capacity, given by the time re-
quired by the WSN to fill the memories of all nodes; the dropped
data, i.e., the amount of data lost because of local memory short-
age; and the system robustness, given by the percentage of recover-
able distinct data in the presence of a ‘‘bomb-like’’failure event
a) replicas propagate up to 2 hops from the source node; (b) replicas are stored at 1-
th) copy is dropped.

for distributed storage for IoT observation systems at large scale, Informat.
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involving all nodes within a certain spatial range. An accurate ana-
lytical evaluation (also through the derivation of upper/lower
bounds) of the system robustness, as it will be defined, is an open
problem.

4.1. Network storage capacity

We derive analytical expressions for upper and lower bounds of
the network storage capacity, considering the cases with and with-
out replication.

We first consider the case without replication, when only the
original copy is kept (R = 1). Given the number of nodes N, the buf-
fer sizes {Bi}, and the sensing rates {rsens,i}, the network storage
capacity C (dimension: [data units]) is simply given by

C ¼
XN

i¼1

Bi: ð3Þ

With replication (i.e. with R > 1), the system has a resulting stor-
age capacity, denoted by Cr, which is upper-bounded by C. In this
case, the capacity is reduced by the maximum number R of replicas
and can be lower-bounded as follows:

Cr P
C
R
: ð4Þ

Obviously, Cr = C when R = 1, i.e., only the original copy is kept and
no replication is performed at all. On the other hand, the lower
bound (4) can be actually reached only if R replicas of each gener-
ated data unit can be effectively stored across the WSN. This can
happen only if the storage spaces {Bi} at the nodes are very large
and/or the sensing rates {rsens,i} are much lower than the retrieval
rate 1/T of the sink.

4.2. Time to reach storage capacity and data drop

Another key performance metric is the time required to reach
the network storage capacity. This time is of interest for an opera-
tor when parameterising the period at which the sink has to re-
trieve the data from the WSN. In order to provide an analytical
expression for this metric, we consider the three following cases.

In the case with local storage and without replication, the time
required by the ith node to fill its local buffer autonomously is ti = -
Bi/rsens,i. Therefore, the time interval to reach the network storage
capacity corresponds to the longest storage filling time across all
nodes, i.e.,

tcap�l ¼ max
i2f1;...;Ng

ti: ð5Þ

Obviously, nodes which fill their buffers faster will drop newly
sensed data because of local buffer overflow. Assuming that the sink
retrieves the stored data when there is no available storage space
left at any node in the network,1 the total amount of dropped data
can be expressed as

Ddrop�l ¼
XN

i¼1;i–j

ðtcap�l � tiÞ � 1=Tsens;i: ð6Þ

Note that the more heterogeneous the times {ti}, the larger the
amount of dropped data. On the other hand, should all filling times
be equal, i.e., ti = tcap�l, "i, it would follow that Ddrop�l = 0, i.e., all
nodes fill up their storage memories simultaneously.

In the case with distributed storage without replication, a perfor-
mance benchmark can be obtained considering an ideal WSN
where nodes can communicate with any other node, considering
1 This is a pessimistic assumption, as the sink might not wait till all nodes fill their
buffers.
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instantaneous transmissions. In this case, the WSN is equivalent
to a single super-node with a storage capacity C equal to

PN
i¼1Bi

and sensing rate equal to
PN

i¼1rsens;i. Thus, the time required to
reach the storage capacity can be given the following expression:

tcap�ideal ¼
CPN

i¼1rsens;i

¼ CPN
i¼11=Tsens;i

: ð7Þ

The amount of dropped data can then be expressed as follows:

Ddrop�ideal ¼
0 t < tcap�ideal;

ðt � tcap�idealÞ �
XN

i¼1

ri t > tcap�ideal:

8><
>:

ð8Þ

In the case with distributed storage with replication (according
to the greedy mechanism proposed in Section 3), the time to reach
the storage capacity can be lower-bounded using (7) after replac-
ing C with Cr. Taking into account the lower bound (4), one thus
obtains

tcap�d ¼
CrPN

i¼1rsens;i

P
C

R
PN

i¼1rsens;i

¼ tcap�ideal

R
: ð9Þ

In Fig. 2, we present analytical results (using Matlab) relative to
the network storage capacity. They refer to a scenario with N = 10
nodes, each with a buffer of dimension B = 250 data units and sens-
ing rate {rsens,i} uniformly distributed in the interval [1,10] data
units/s. Regarding the data stored local curve (local storage without
replication), the slope decreases each time a node fills its local buf-
fer and the time to reach the storage capacity (C = 2500 data units)
is tcap� l = 120 s. The first dropped data occurs when the first node
saturates the buffer (around 25 s). On the other hand, with ideal
distribution and no replication (data stored ideal R = 1 curve), the
WSN is equivalent to a single super-node: therefore, the amount
of stored data increases linearly up to the storage capacity and
no dropped data occurs until this point (around 40 s). Once the
capacity is reached, the curve flattens and data starts to be
dropped. By adding replication (R = 3 and R = 5), the total sensing
rate is multiplied by R (see the denominator of the lower-bound
in (9)): the capacity C is reached faster and data dropping starts
earlier. In order to avoid dropped data, in practical scenarios data
retrieval from the sink should be more frequent, preventing the lo-
cal memories from saturating.
Fig. 2. Stored and dropped data, as functions of time, with local and ideal
distributed storage. For both cases, curves with and without replication are
depicted.
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5. Performance results

In this section, we apply the analytical framework proposed in
Section 4 to study the performance of our distributed storage
mechanism. We complement this analysis with a simulation cam-
paign, performed in the Cooja network simulator [3], and a large-
scale experimental validation, carried out with the SensLab testbed
[2]. Even if the SensLab platform is suitable for testing WSN-based
applications [19], to the best of our knowledge, no studies with
experimental results collected in SensLab have been published so
far, but for preliminary experimental results which we presented
in [1]. In the remainder of this section, we focus on a direct com-
parison between analytical, simulation, and experimental data, in
order to clearly highlight the accuracy of the proposed framework.

In the remainder of this section, we study how the system per-
formance is affected by (i) the (common) transmit power Pt; (ii) the
sensing interval of the nodes Tsens; and (iii) the number of replicas
R. We also investigate the system robustness against bomb-like
events. Before presenting performance results, we summarize the
experimental (SensLab) and simulation (Cooja) setups.
5.1. Setup

The SensLab platform offers 1024 sensors, equally distributed at
4 sites in France (Grenoble, Strasbourg, Lille, Rennes), where
researchers can deploy their codes and run experiments. Each
node’s platform embeds a TI MSP430 micro-controller and oper-
ates in various frequency bands depending on the radio chip
(either CC1100 or CC2420).

All the experimental results presented in the following are ob-
tained from the Lille site of SensLab. The deployed WSN platform
is the wsn430v14, which adopts the CC2420 radio chip, conformed
to the IEEE 802.15.4 standard. An overview of the Lille site is
shown in Fig. 3. Nodes are installed in a regular grid, placed on ver-
tical and horizontal trays. We have chosen the Lille site since the
deployed wsn430v14 platform embeds the same MSP430 micro-
controller and the same CC2420 radio transceiver of the Tmote
sky platform, which can be easily emulated in the Cooja simulator,
thus allowing a direct comparison between simulations and
experiments.

The proposed distributed storage mechanism has been imple-
mented in Contiki, which is an open source operating system for
the IoT. It allows tiny, battery-operated low-power systems to
communicate with the Internet. Contiki provides two wireless net-
working stacks: (i) a full IP network stack (with standard IP proto-
cols such as UDP, TCP, and HTTP), denoted as uIP and (ii) the Rime
stack, a lightweight protocol stack that supports simple primitives,
such as sending a message to all neighbors or to a specified neigh-
bor. In the implementation considered for this work, we adopt the
latter.
Fig. 3. The Lille site of SensLab.
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At the link layer, nodes run the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) mechanism, coupled with
ContikiMAC [20], a low-power asynchronous radio duty cycling
protocol. All nodes have the same buffer size, equal to B = 100 data
units. The memory advertisement period Tadv is set to 25 s. The sce-
nario consists of 80 nodes,2 placed on the same horizontal tray, i.e.,
at the same height. A graphical representation of the experimental
setup is shown in Fig. 4a.

5.2. Impact of transmit power

We argue that our greedy approach is significantly influenced
by the network topology. For instance, in a dense network, where
nodes have several neighbors, our data distribution mechanism
could work better than in a sparse network with only a few direct
neighbors. The network topology depends on the transmit power
of the nodes. The higher the transmit power Pt, the higher the num-
ber of neighbors a node can communicate with. However, it is hard
to compute the exact number of detected neighbors in SensLab.
This is due to the highly variable propagation conditions of the
environment, because of: reflections and shadowing effects; radio
interference with experiments run by other users; presence of peo-
ple in the room; instabilities of the nodes. For this reason, experi-
ments are executed with different power settings, namely, -
20 dBm and -25 dBm, according to the CC2420 datasheet. Higher
values of the transmit power cause high interference, which leads
to many collisions and degrades the overall communication
performance.

On the simulation side, Cooja offers a unit disk communication
model, composed by an inner transmission circle, with radius dtx,
and an outer interference circle, with radius dint P dtx. A node
communicates with nodes within the circle with radius dtx and
interferes with nodes located within the outer circle with radius
dint. No interactions occur with nodes located outside the interfer-
ence circle. Four combinations of dtx and dint, numbered from 1 to
4, have been considered in the simulations, as shown in Fig. 4b.

At this point, it is of interest to evaluate the time required by the
system to reach the network storage capacity. In Fig. 5, the amount
of stored data is shown, as a function of time, by comparing the
analytical prediction with experimental and simulation results.

� Considering the experimental results, it can be observed that
the capacity, equal to 8000 data units, is reached later when a
lower transmit power is used—for instance, �25 dBm—since
fewer neighbors are detected. Consequently, data cannot be dis-
tributed efficiently through the network. On the other hand,
with a higher transmit power—namely, �20 dBm—each node
has a ‘‘larger’’ neighborhood and the capacity is reached earlier.
� The analytical framework is applied considering the case with

local storage (‘‘local storage (anal)’’ curve), i.e., where nodes fill
their own local buffers autonomously, according to (5) in Sec-
tion 4.2. In this case, the time to reach the storage capacity cor-
responds to the longest storage filling time across all nodes. As
expected, the analytical curve relative to local storage lower
bounds the experimental curves. Note how the ‘‘local storage
(exp)’’ curve, obtained by setting the transmit power to 0 in
SensLab, is equivalent to the analytical one.
� Considering the simulation results, it can be observed that

increasing the communication range dtx leads to a delayed data
storage. In this case, the CSMA module detects the radio channel
2 It has been found that some SensLab nodes do not work properly or are not
available for testing. This prevents us to deploy all the 256 nodes in Lille.

for distributed storage for IoT observation systems at large scale, Informat.

http://dx.doi.org/10.1016/j.inffus.2013.04.003


Fig. 4. Network topology: (a) scenario tested in SensLab Lille and (b) equivalent topology simulated in Cooja, for various transmission ranges.
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Fig. 5. Data stored in the system, for various values of the transmit power. In all
cases, we consider: no replication (R = 1), buffer size equal to 100 data units, N = 80
nodes, and Tadv = 25 s.

3 In network theory, this situation is referred to as congestion, and it occurs when
the arrival rate is greater than the departure rate.
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busy, being occupied by radio activities from other nodes, and
postpones the transmission. Consequently, the time to reach
the storage capacity increases.

Overall, an excellent agreement between analysis, simulations,
and experiments can be observed.

We also evaluate the amount of dropped data due to local mem-
ory shortage. Results are shown, considering all configurations of
Fig. 5, in Fig. 6. Nodes drop newly acquired data once their local
memories are full and no neighbor is available for donating extra
storage space. It can be observed that data dropping starts early
Please cite this article in press as: P. Gonizzi et al., Data dissemination scheme
Fusion (2013), http://dx.doi.org/10.1016/j.inffus.2013.04.003
for lower transmission ranges, e.g., with [dtx,1, dint,1] and [dtx,2,
dint,2] configurations, respectively. In these cases, data is distrib-
uted more rapidly and the capacity is reached earlier. In the same
figure, the performance predicted by our analytical framework
with local storage, according to (6), and the experimental perfor-
mance (‘‘local storage (exp)’’ curve, �20 dBm and �25 dBm cases)
are shown. As observed for Fig. 5, in this case an excellent agree-
ment between analysis, simulations, and experiments can be ob-
served as well.

In order to monitor the dynamic filling of the memories, in Fig. 7
the number of saturated nodes, i.e., nodes which have their local
memories completely filled, is shown as a function of time. Again,
it can be observed that the scenarios with lower transmit power
are associated with a faster saturation of the nodes’ memories.
The step function is related to the case with local storage (both
analytical and experimental results).

It has been anticipated that the CSMA module delays the trans-
mission of radio packets when detecting a busy radio channel. In
this case, packets are queued in the output MAC buffer up to suc-
cessful delivering. The transmission fails if no acknowledgment is
received back from the destination or if the queue is full.3 In
Fig. 8, the number of failed transmissions is shown as a function of
time. In this case, only experimental and simulation results are
shown. As expected from the results previously shown, failed trans-
missions occur more frequently in the presence of a higher transmit
power. However, higher congestion can be observed in the experi-
ments, even if they are run at a very low transmit power. The same
behavior has been observed for higher values of the transmit power.
We remark that a comprehensive performance evaluation of the
for distributed storage for IoT observation systems at large scale, Informat.
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SensLab testbed goes beyond the scope of this paper and is currently
under investigation.
Please cite this article in press as: P. Gonizzi et al., Data dissemination scheme
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5.3. Impact of the sensing interval

In this subsection, we show the results obtained varying the
sensing interval Tsens of the nodes. Recall from Section 3 that the
sensing interval, defined as Tsens = 1/rsens, is the time interval be-
tween the generation of two consecutive sensed data units by a
node. We run various experiments and simulations setting the
sensing interval Tsens to an integer value in the possible ranges:
[1–4] s, [2–8] s and [4–13] s, respectively. We deploy the same sce-
nario as in Section 5.2, with no replication (R = 1). The transmit
power Pt of the SensLab nodes is set to �20 dBm. The unit disk
model in Cooja is set to [dtx,3, dint,3]. In Fig. 9, the amount of stored
data is shown, as a function of time, in correspondence to the
ranges of values of Tsens indicated above. It can be observed that
the memories of the nodes are filled faster with a shorter sensing
interval. In addition, the agreement between simulations and
experiments is very good.

In Fig. 10, the number of saturated nodes, i.e., nodes which have
their local memories completely filled, is shown as a function of
time. Nodes fill their local memories faster when shorter sensing
intervals are used, e.g., when Tsens is selected in the range [1–4]
s. In the simulated cases, the saturation of the memories occurs
earlier, since the impact of the CSMA backoff delay is reduced as
compared to experiments.
for distributed storage for IoT observation systems at large scale, Informat.
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Fig. 13. Node failure in the case of a ‘‘bomb-like’’ failure event, involving the node
and several neighboring nodes within a certain spatial range. The c parameter
controls the impact of the bomb.

8 P. Gonizzi et al. / Information Fusion xxx (2013) xxx–xxx
In order to track the energy consumption of the nodes in Sen-
sLab, we evaluate the average percentage of time the radio of the
nodes is turned on. For this purpose, we use Powertrace, a system
for network-level power profiling for low-power wireless networks
[21]. The obtained results are shown in Fig. 11. As expected, in the
case with a short sensing interval, i.e., Tsens 2 [1–4] s, the power
consumption increases, since nodes tend to distribute data more
frequently. In the other two cases, i.e., Tsens 2 [2–8] s and Tsens -
2 [4–13] s, respectively, the energy consumption is lower.

Overall, it can be concluded that results obtained through Cooja
simulations and through real experiments in SensLab are in agree-
ment with each other. As mentioned at the end of Section 5.2, a
thorough characterization of the SensLab platform is an interesting
research topic.
5.4. System robustness

There is often strong spatial correlation among failed nodes. The
events that destroy one node may very likely influence a nearby
node and destroy it as well. Examples could be a natural disaster
(earthquake, fire, etc.) or system crashes (application failure, net-
work errors, external attack).

First of all, robustness against nodes’ failure is directly related to
how well copies of a given data can spread across the network. As
discussed in Section 3, redundancy is introduced by setting the
 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

av
er

ag
e 

ho
p 

di
st

an
ce

replica number

R=3 (sim)
R=5 (sim)
R=7 (sim)
R=3 (exp)
R=5 (exp)
R=7 (exp)

Fig. 12. Average hop distance reached by the kth replica versus k. k varies between
0 and 2 (R = 3), 0 and 4 (R = 5), 0 and 6 (R = 7), respectively. The 0th replica refers to
the original data.

Please cite this article in press as: P. Gonizzi et al., Data dissemination scheme
Fusion (2013), http://dx.doi.org/10.1016/j.inffus.2013.04.003
number of copies (referred to as replicas) to a value R > 1. Replicas
of a sensed data unit follow a hop-by-hop replication from the gen-
erator node to subsequent donor nodes, avoiding loops. For the fol-
lowing tests, the transmit power Pt in SensLab has been increased
to �10 dBm, and the unit disk in Cooja has been set to [dtx,3, dint,3].

In Fig. 12, the average hop distance (from the generator node)
reached by replicas is shown as a function of the replica num-
ber—the 0th replica refers to the original data. Various values of
R are considered: for each value, the replica number varies be-
tween 0 and R � 1. It can be observed that, on average, consecutive
replicas tend to spread reasonably through the network. Simulated
and experimental curves almost coincide for R = 3 and R = 5. This is
in agreement with the proposed mechanism, since donor nodes are
selected on the basis of their available memory space and sensing
rate, which are the same for simulations and experiments. In the
case with R = 7, there is a discrepancy between experimental and
simulation results for high values of the replica number. This is
due to the fact that, according to the results in Fig. 10, in the real-
istic SensLab scenario nodes saturate their memories more slowly.
Therefore, copies are likely to be stored closer to the originator
than in the simulation scenario. As already observed, however,
the agreement between simulations and experiments is very good.
In order to make the agreement excellent, the Cooja simulator
needs to be extended to capture the phenomena (mostly at physi-
cal layer) that affects the communication performance in SensLab.

At this point, in order to investigate further the robustness of
the proposed distributed storage mechanism, we assume a
‘‘bomb-like’’ failure event, involving a node and all its direct neigh-
bors within a certain spatial range. We assume a squared failure
range, with edge c, as depicted in Fig. 13. Intuitively, higher values
of c correspond to a more violent bomb-like event. The system
robustness is defined as the percentage of distinct data units (i.e.,
not counting replicas) which can still be retrieved after a bomb-like
event. According to this definition, assuming that the bomb-like
event happens at time t, the system robustness Robsys,c(t) can be
expressed as

Robsys;cðtÞ ¼
PXðtÞ

l¼1 Rob‘;cðtÞ
XðtÞ ; ð10Þ

where X(t) 6 Cr is the amount of distinct data stored in the system
up to time t; and Rob‘,c(t) equals 1 if at least a replica of the lth data
for distributed storage for IoT observation systems at large scale, Informat.
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unit has been stored, at time t, outside the cth square (otherwise,
Rob‘,c(t) = 0). Note that the time instant t at which a bomb-like event
happens has an impact on the system robustness—obviously, our
definition of system robustness depends implicitly on t. At the
beginning of the collection period (i.e., with limited storage), it is
more likely that at least one of the R replicas is stored in a surviving
node (in a node beyond the direct neighbors). On the other hand, at
the end of the collection period the network saturates and nodes’
buffers are almost full. Thus, it is more likely that no replica can
be stored and, therefore, a bomb-like event may destroy a signifi-
cant amount of information.

In Fig. 14, the system robustness is shown as a function of time,
for various configuration of R and c. For each considered combina-
tion, both simulated and experimental results are shown. Two val-
ues of c are considered, namely, c = 1 and c = 3. The robustness
increases for lower values of c, since the geometrical shape of the
failure event is reduced. As for the number of replicas R, the case
with R = 3 surprisingly has the highest robustness. In fact, storing
fewer replicas slows down the saturation of the memories, and it
allows more data to be replicated. Both simulations and experi-
ments show this trend.

Simulated results show a higher robustness than experimental
ones. In particular, the robustness is around 0.7 in the simulated
case with R = 3 and c = 1, while in the corresponding experimental
case the robustness reaches 0.5—similar conclusions hold for the
remaining configurations. This is caused by (i) the slightly higher
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spread of the replicas in simulations, as observed in Fig. 12 for
R = 7, and by (ii) the amount of stored data for each replica number.
The latter parameter is investigated in Fig. 15, where the Probabil-
ity Mass Function (PMF) of the total stored data, as a function of
the replica number, is shown, considering various values of R. It
can be observed that, in the experimental case, the PMF concen-
trate at the origin, i.e., a considerable amount of data, about 60%,
has only the original copy. On the opposite, the PMFs predicted
by the simulations, regardless of the value of R, have the same
trend of the experimental ones, but for a higher average value—in-
deed, less than 50% of the data has only the original copy. The dis-
crepancy between experimental and simulation results is caused,
as already observed, by the collisions in the SensLab testbed, which
limit effective data spreading.
5.5. Discussion

The impact of several parameters on the performance of the
proposed distributed data storage mechanism has been investi-
gated, through analysis, simulations, and experiments. On the basis
of the obtained results, the following observations can be carried
out.

Experimental results, which significantly extend the prelimin-
ary results in [1], have been validated through an analytical frame-
work and a comprehensive simulation campaign. In particular, the
Cooja network simulator has been configured to reproduce the
SensLab Lille experimental scenario as accurately as possible. We
have shown that a careful calibration of the communication range
in the simulator allows to obtain simulation results which have a
limited discrepancy with respect to the experimental results. This
discrepancy is mainly related to the higher amount of collisions in
the SensLab Lille testbed, which cause the CSMA module to delay
the transmissions or even to drop packets. Accurate modeling of
the propagation conditions, the interference, and the received
radio signal strength of the SensLab nodes is an interesting re-
search direction and is currently under investigation.

As for the proposed greedy distributed storage mechanism, it
can be concluded that the lightweight hop-by-hop replication
scheme guarantees a reasonable spread of the replicas. Therefore,
this mechanism is robust in the case of a failure involving several
nodes within a limited area. A shortcoming of the proposed ap-
proach, however, is that it tries to make exactly R replicas of all
data. This may be unconvenient when the memories of the nodes
are almost full, and may prevent new data to be stored. A solution
to this problem could rely on a dynamic self-organization of the
replicas, which autonomously decide to replicate or not. For exam-
ple, the replication process may stop in correspondence of an inter-
mediate rth step (with r < R) if a prior replica has already been
stored far away. In order to prevent dropping of locally generated
data, thus increasing robustness, the storage space at each node
could also be divided into two blocks: one for local measurements
and the other for data coming from other nodes.

Another appealing extension of the proposed mechanism is in
the direction of including load balancing, e.g., by equalizing the
levels of occupancy of the nodes’ memories over time. Replicas
may move from a saturated network region to an offloaded one.
However, the complexity of this solution could be quite high and
may require the use of a centralized approach.
6. Conclusion and future work

This paper has addressed the problem of redundant data distri-
bution for IoT-based observation systems. We have proposed a
low-complexity greedy mechanism to distribute and replicate
measurements with a minimum signaling overhead. Through a
for distributed storage for IoT observation systems at large scale, Informat.
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rich analytical framework, extensive (Cooja) simulations, and a
large experimental campaign on the SensLab Lille testbed, we have
shown how the performance is affected by the main system
parameters. Results show a satisfactory agreement between simu-
lations, experiments, and analysis. To the best of our knowledge,
this is one of the first works presenting experimental results at
large scale on SensLab, supported by simulations and an analytical
framework.

Extensions to the proposed mechanism will consider RPL, the
IPv6 routing protocol for Low power and Lossy Networks (LLNs)
standardized by IETF ROLL [4], which is one of the building blocks
of the IoT. We believe that our distributed data storage scheme can
be significantly improved with RPL, leading to (i) a more efficient
donor node selection algorithm and (ii) a broad propagation of
redundant copies through the network. We will also investigate
the data retrieval phase using the Directed Acyclic Graph (DAG)
structure provided by RPL.
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