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Abstract—While rerouting existing demands towards a (better)
target configuration, it is sometimes unavoidable to end up in
an intermediary deadlock state, where some demands need to
be rate-limited to be able to successfully reroute all demands
to their new path. This is the classic Deadlock Break Problem
(DBP), known to be NP-hard. We propose to simplify DBP by
first selecting a subset of demands such that, once they have
been rerouted via rate-limiting, then all demand rates can be
restored to their original value and the normal rerouting process
can resume. We call this sub-problem Deadlock Jump Problem
(DJP), which is to be solved prior to DBP. We prove that DJP is
NP-hard, but we provide an efficient heuristic for it, consisting
in rerouting backward the demands in deadlock, i.e., from their
target to their initial path. Next, DBP can focus only on the
demands that have not been successfully rerouted backward. We
finally show by experiments that our approach can significantly
boost the performance of State-of-the-Art algorithms for DBP,
in terms of throughput gain, number of rate-limited demands
and number of rerouting epochs.

Keywords—congestion-free rerouting; deadlocks; backward
rerouting; rate-limit

I. INTRODUCTION

As the network conditions change, routing is to be mod-

ified so as to dynamically optimize performance. Network

changes are of different nature: new (old) connection request

(dis)appear, existing demands modify their connection require-

ments, or the network encounters a failure.
The advent of centrally managed Software Defined Net-

works (SDN) has recently fostered the implementation of

network re-optimization algorithms. However, migrating the

current network routing to the new optimized state is still a

non-trivial task. In fact, switching all demands to their new

path at the same time is not a practical solution to this problem,

as data plane updates may fall behind the control plane and

the latency is variable across the switches, see [10] and [4].

This may cause transient inconsistent routing policies during

the migration process, which are essentially of three different

natures [3]: link congestion, black-holes, and loops.
In this paper we focus on the first one, hence looking for

congestion-free updates computed in a centralized manner. In

this scenario, the rerouting procedure is typically divided into

several successive epochs. At each epoch, only a subset of

demands is selected for rerouting, such that link congestion is

prevented for any asynchronous behavior of switches, i.e., for

any order of update of the demands. The congestion-free prop-

erty of being robust to asynchronous updates can be ensured

via the well-known Make-Before-Break (MBB) mechanism

[2]: if a demand is rerouted from its old to its new path at

epoch t, then the old connection is still kept active during

E : set of directed edges
K : demands in deadlock
D : set of deadlock states
Ok (Nk) : old (new) path for demand k
dk : (original: before rate-limiting) size of demand k
be : available capacity of edge e
T : n. of epochs used to break the deadlock
TBKW : n. of epochs for Backward Rerouting
DBP : Deadlock Break Problem
DJP : Deadlock Jump Problem, proposed to simplify DBP
MBB : Make-Before-Break

TABLE I: Table of notation symbols

epoch t. Such operational constraint makes the congestion-free

rerouting problem NP-hard [6]. Hence, researchers recently

proposed several heuristics, that can be classified into two

main categories, depending on whether flows can be (unevenly)

split or not between their old and their new, optimized path.

In the practice, most of the time, flows can only be split using

the classic Equal-Cost Multi-Path (ECMP). On the other hand,

the implementation of more general uneven flow splitting

has not yet reached a consensus and it is still under study.

E.g., hash-based routing rules have been proposed, under the

constraint of limited memory at the switch side [11]. In this

paper we consider the unsplittable case, first studied in MPLS

networks in [7],[9] and then investigated in SDN notably in

[6],[1]. In the unsplittable case, during the rerouting process

it may happen (in fact, it is unavoidable when the network

is highly loaded, see [8]) to end up in a deadlock state. A

deadlock state is a routing configuration where only a subset

of demands are instantiated on their new path, while none of

the remaining demands can be individually rerouted without

incurring link congestion. In order to break a deadlock and be

able to safely reroute all demands to their target new paths, the

rate of some demands needs then to be temporarily limited,

in order to let the rerouting process resume. Yet, one should

not abuse rate-limiting, in order to minimize throughput loss

during the rerouting process. The Deadlock Break Problem

(DBP) of solving a deadlock situation to reroute all demands

is also known to be NP-hard, hence heuristic approaches are

proposed in the literature, e.g. [6],[8].

In this paper we propose a method called UNLOCK to

reduce the dimensionality of DBP, that is able to boost the

performance of any heuristic designed for breaking dead-

locks via rate-limiting. We formalize it as the solution to

the so-called Deadlock Jump Problem (DJP) computing the

minimum number of demands that should be simultaneously

swapped to their new path to break the deadlock, and let the

normal rerouting process resume with restored demand rates.978-1-5090-4026-1/17/$31.00 c©2017 IEEE
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II. DEADLOCK BREAK PROBLEM

We model the network as a directed graph, where E is the

set of edges. A number of MPLS tunnels (also called demands)

is instantiated in the network: each demand k is routed on its

(old) path Ok, with reserved bandwidth dk.

At a certain time, the network controller decides to re-

optimize the network and computes a new target state which is

characterized by a set of (new) paths {Nk}k for each demand

k. As explained in the Introduction, this decision may respond

to a network failure, to the modification of the set of active

connection requests, or else to the variation of requirements

for existing demands. The new target state {Nk}k may be

more profitable than the old configuration in terms of, e.g.,

overall routing cost, Quality of Service or link utilization, as

in [5].

Once the target state has been computed, each demand k
needs to be rerouted from its old path Ok to its new path

Nk in a congestion-free manner, which is also robust to

asynchronous switch updates. Classically, this is achieved

via the Make-Before-Break (MBB) rerouting mechanism [2],

according to which a new path is instantiated before the

old one is terminated. MBB is an efficient congestion-free

mechanism, that overbooks network resources in order to

ensure that no traffic loss has to be endured during migration.

It may happen (in fact, it is sometimes unavoidable [9])

that during network re-optimization a deadlock situation is

reached, where the rerouting process cannot continue in a

congestion-free manner. In other words, no single demand

can be rerouted without violating capacity constraints.

Let us now define more formally the concept of deadlock.

Deadlock. Assume that a subset of the whole set of demands

has already been rerouted and is on their new path, while the

remaining demands K are still on their old path. Let be be the

available capacity on edge e. Then, we say that demands K
are in deadlock whenever no single demand can be rerouted

to its new path, i.e.,

∀ k ∈ K, ∃ e ∈ Nk \ Ok : d
k
+

∑

k∈K:e∈Ok

dk > be.

�

Let us clarify the concept of deadlock through an example,

that we will revisit in Section III-A to illustrate our approach

to efficiently solve deadlocks.

Example 1 [deadlock] (see also Fig. 1). Let us consider a

graph with 5 edges, e1, . . . , e5. Edges e3, e4 have capacity

b3 = b4 = 2B, while all other edges e1, e2, e5 have capacity

B. We consider three classes of demands (K+,K−, k̄). We

call K+ the demands having [e1, e3] as old path and [e2, e4]
as new path, and total size

∑
k∈K+ dk = B. Then, we call

K− the demands with [e2, e3] as old path and [e1, e4] as new

path, with the same total size
∑

k∈K− dk = B. Finally, we

consider a single demand k̄ having e5 as old path, e4 as new

path and with (small) size d̄ = mink∈K+∪K− dk/2. Then, the

initial configuration, where each demand is on its old path, is

a deadlock state. In fact, none of the demands can be rerouted

to its new path without violating capacity constraints on edge

e1 (for demands K−), on edge e2 (for demands K+) or else

on edge e3 (for demand k). �
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Fig. 1: Illustration of Example 1 with 5 demands, and |K+| = |K−| = 2.

In this paper we work under the (pragmatic, see the Intro-

duction) assumption that demands are unsplittable between old

and new path. In this scenario, a deadlock state can be broken

and all demands can be successfully rerouted to their new

path by temporarily limiting the rate of certain demands, as in

[6],[8]. At the same time, the temporary rate reduction should

be minimized or, equivalently, the total throughput achieved

during rerouting should be maximized.

We remark that allowing the traffic to be routed on intermedi-

ate paths can help reducing the throughput loss caused by rate-

limiting, as in [5]. On the other hand, this would increase the

complexity of DBP as the number of constraint becomes ex-

ponential. Moreover, instantiating intermediate paths is time-

consuming. For simplicity of analysis we will assume that

intermediate paths cannot be used, even though our approach

described in Section III can be easily adapted to this scenario.

The program that breaks a deadlock with the minimum

throughput loss is dubbed Deadlock Break Problem (DBP),

and we formalize it below.

Deadlock Break Problem (DBP). Let K be the set of

demands in deadlock. Assume that T ≥ 2 rerouting epochs

are used to break the deadlock. Then, reroute all demands K
via rate-limit by solving the following program1:

max
dt

k
,P

T∑

t=1

∑

k∈K

dtk (1)

s.t.
∑

k:e∈Pt−1

k
∪Pt

k

dtk ≤ be, ∀ e ∈ E , t ∈ [1;T ] (2)

0 ≤ dtk ≤ dk, ∀ k, t (3)

d0k = dTk = dk, ∀ k (4)

Pt
k = {Ok,Nk}, ∀ k, t (5)

P0
k = Ok, P

T
k = Nk, ∀ k ∈ K (6)

where Pt
k is the path of demand k at epoch t and dtk < dk

denotes that the rate of demand k is limited to dtk at epoch t.
�

1We observe that breaking a deadlock state is always possible, since the
program (1-6) admits at least one feasible solution. In fact, it trivially suffices
to rate-limit all demands to 0 at epoch t = 1 (i.e., d1

k
= 0, ∀ k) while

switching all demands to their new path (i.e., P1
k

= Nk, ∀ k) and restore
the rate of all demands back to their original size at epoch t = 2 (i.e.,
d2
k
= dk, ∀ k). Clearly, this naive strategy is undesirable since it entails a

considerable throughput loss.
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The objective function in (1) is throughput maximization

over the T epochs, that amounts to minimizing the throughput

being lost due to rate-limit. Equation (2) describes the MBB

constraint: if demand k is rerouted at time t (thus, Pt−1 = Ok

and Pt = Nk) then a tunnel of size dtk is reserved on all edges

belonging to the union of old and new path, i.e., Ok ∪ Nk.

According to (5), a demand can be routed either on its old

path or on its new path.

We observe that, as DBP generalizes the NP-hard unsplit-

table rerouting problem in [7], then it is also NP-hard.

A. Previous work

The congestion-free traffic migration problem has been

studied extensively in the last few years. It is known to be

NP-hard, even in the easiest case where demands cannot be

rate-limited and intermediate paths cannot be used [7]. For

this reason, several rerouting heuristics have been developed

over the last few years (see [3] for a recent survey). The

bulk of the existing approaches rely on the computation of

an opportunistic metric for each demand, according to which

demands are prioritized for rerouting.

Under our assumption that flows cannot be split, the seminal

work in [8] prioritizes demands with respect to metrics in-

spired by discrepancy theory, based on the level of congestion

caused by rerouting a demand. A different approach, schedul-

ing rerouting according to an inter-dependence graph, has been

taken by [6] and its follow-up [12]. Such graph describes the

dependency between rule updates and the resources freed by

any rerouting decision. The work in [9] tackles the even harder

problem of jointly computing the new target routing state

and the rerouting plan, so as to maximize a generic fairness

function of the achievable routing state. In the splittable flow

scenario, the work in [5] is the first to show how to exploit the

free slack capacity to reroute paths via successive rate update.

From a more theoretical perspective, [1] decides in polynomial

time if consistent migration is possible at all.

While the congestion-free rerouting problem has received

considerable attention over the last few years, the sub-problem

of solving a deadlock situation has seldom been investigated

carefully. The seminal work [8] only mentions that the rerout-

ing algorithm should be run until the target configuration is

attained, and then demands should be rate-limited a posteriori,

to avoid violating capacity constraints at any epoch. A second,

more detailed approach illustrated in [6] prescribes to 1) select

k∗ demands, 2) limit their rate to successfully reroute all of

them and 3) finally attempt to resume the standard rerouting

process, until a new deadlock state is reached (see Alg. 2).

B. Main contributions

In this paper we propose an approach to boost the perfor-

mance of any method designed to solve the Deadlock Break

Problem (DBP), being NP-hard. More specifically, we start

by simplifying DBP by first solving Deadlock Jump Problem

(DJP). DJP selects a small subset of demands KJ (out of

the whole set of demands in deadlock K) for resizing, such

that once KJ has been rerouted via rate-limiting then i) all

demands can be restored to their original size and ii) the

standard rerouting procedure can resume, without the need to

resort to rate-limiting.
We then prove in Theorem 1 that DJP itself is a NP-

hard problem, but we propose an efficient Backward Rerout-

ing approach to tackle it. Backward Rerouting exploits the

intuition that the traffic migration problem has an intrinsic

symmetry: rerouting demands from old to new path via MBB

is logically equivalent to rerouting them from new to old path,

in reverse time order. Hence, we first reroute the demands

in deadlock in reverse time order, without resorting to rate-

limiting. Then, we select KJ as the set demands that could

not be rerouted backward, and which are finally rerouted via a

generic Rate-Limit heuristic. We dub our overall approach

to solve DBP “UNLOCK” (Alg. 1).
UNLOCK is shown to have several advantages. First, by

construction, it reduces the complexity of the main Deadlock

Break Problem DBP. Then, it is capable to boost the perfor-

mance of the State-of-the-Art heuristic to solve DBP in terms

of total throughput during rerouting, number of rate-limited

demands and number of used rerouting epochs.

III. DEADLOCK JUMP:
A PROBLEM REDUCTION FOR DEADLOCK BREAK

Breaking the deadlock by solving DBP optimally is not a

viable solution since, as already observed, DBP is NP-hard.

For this reason, some heuristics have been proposed in the

literature to approximate DBP (see Section II-A).
In this paper we propose a boosting technique for a generic

heuristic approximating DBP, which reduces the dimension-

ality of DBP by first tackling what we call Deadlock Jump

Problem (DJP). DJP reduces the potential pool of demands

that are to be rate-limited by DBP in order to successfully

reroute all demands. More specifically, DJP selects a (small)

subset of demands KJ ⊂ K such that, once they have been

rerouted via rate-limiting, then all demands can be restored

to their original size and the normal rerouting procedure can

resume. Finally, the task of effectively rerouting the selected

demands KJ is delegated to a generic rate-limit heuristic, such

as the one in [6].
Technically speaking, the Deadlock Jump Problem (DJP)

can be formalized as follows.

Deadlock Jump Problem (DJP). Find x∗ defined as the

solution to the following program:

min
x∈{0,1}K

∑

k∈K

xk (7)

s.t.
∑

k∈K:e∈Nk

xkdk −
∑

k∈K:e∈Ok

xkdk ≤ be, ∀ e ∈ E (8)

K \ {k : xk = 1} /∈ D (9)

where D is the set of deadlock states. Then, select the demands

to be jumped as KJ = {k : x∗k = 1}. �

Equations (8),(9) claim that, after demands {k : xk = 1}
have been rerouted, then they can all be restored to their

original size and the network is no longer in deadlock,

respectively.
By construction, the first clear advantage of DJP is reducing

the complexity of DBP. Moreover, as it will become apparent
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in Section IV, it also allows to boost the performance of

any heuristic designed for DBP, in terms of throughput, and

number of rate-limited demands and number of used epochs.
Unfortunately, the problem reduction DJP itself is NP-hard,

as we show below.

Theorem 1. DJP is NP-hard.

We defer the proof of Theorem 1 to the Appendix. It

relies on a polynomial reduction from a modified version of

the classic subset problem, that given a set of numbers asks

whether there exists a subset of them summing up to zero.
On the other hand, as a positive result, we next propose a

Backward Rerouting approach that jointly allows to heuristi-

cally approximate DJP and, as a by-product, to compute the

rerouting schedule after the deadlock has been broken.

A. UNLOCK: Break Deadlocks via Backward Rerouting

After introducing Deadlock Jump Problem (DJP) as a

method to reduce and simplify the NP-hard Deadlock Break

Problem (DBP) and having proved that DJP is also NP-hard,

we now develop a heuristic for DJP.
We build upon the intuition that the rerouting problem has

an inherent symmetric structure: the classic, forward problem

of rerouting demands from an initial (old) configuration to

a target (new) one is essentially equivalent to the respective

backward problem, where new and old paths are swapped and

time order is reversed. We can then apply this concept to our

scenario where demands K are in deadlock. By definition,

none of the demands K can be rerouted forward. Yet, some

demands may still be – virtually – rerouted backward (see

Figure 2). In other words, we bet on the fact that the target

state, where all demands are on their new path, is not in

deadlock if we reverse the time order.
We can now exploit this intuition to build a straightforward

but effective heuristic for DJP. We first (artificially) reroute

backward the demands in deadlock K over a – possibly fixed

a priori – number of epochs TBKW . This can be achieved via

any rerouting heuristic from the literature, e.g., [6],[7],[8],[12],

with the trick of swapping the roles of new and old paths.

We highlight that Backward Rerouting is performed without

resorting to rate-limiting.
Then, we can finally tackle the solution of the main Dead-

lock Break Problem (DBP). We first select the demands KJ

as the ones that were not successfully rerouted by Backward

Rerouting. Next, we feed the selected demands KJ to a

generic Rate-Limit routine that approximates the original

Deadlock Break Problem DBP, as the one in [6] that we recall

in Alg. 2. Remarkably, as a by-product, our approach not only

allows to jump a deadlock, but it also outputs at the same

time a feasible rerouting schedule after the deadlock has been

resolved, read in reverse time order.

We call UNLOCK our procedure to break deadlocks, that uses

Rate-Limit as sub-routine and that we formalize below in

Alg. 1 (see also Fig. 2).
In order to help the reader grasp the idea behind UNLOCK,

let us apply it to Example 1, described in Section II and

Figure 1.
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Fig. 2: (left) Classic approach to break deadlock via a Rate-Limit procedure, as in
[8] and [6]; old/NEW stand for old/new path. To break a deadlock state, all demands
can be possibly rate-limited to reach the target state. (right) UNLOCK prescribes to
reduce the number of potential demands that can be rate-limited by first Backward
Rerouting (without rate-limiting), from the target state back to the deadlock state. Then,
a generic Rate-Limit procedure is applied to the remaining demands KJ .

Algorithm 1: UNLOCK for the Deadlock Break Problem

Data: - Demands in deadlock K;
- N. of epochs TBKW for Backward Rerouting;
- Generic routine Reroute(initial paths, target paths,
TBKW ) computing congestion-free rerouting sequence
R1, . . . ,RTBKW

without rate-limiting over the TBKW

epochs (as, e.g., [6],[7],[8],[12]);
- Generic routine Rate-Limit to reroute demands in
deadlock by limiting their rate (as, e.g., Alg. 2 [6])

1 Solve Deadlock Jump Problem (DJP) via Backward
Rerouting:
Compute the backward rerouting sequence for the demands in
deadlock K:
R1, . . . ,RTBKW

= Reroute({Nk}k∈K, {Ok}k∈K, TBKW )
(Observe that old and new paths are swapped)

2 Compute the set KJ of demands that could not be rerouted
backward: KJ = K \ ∪tRt

3 Solve a smaller Deadlock Break Problem (DBP):
Call Rate-Limit routine on the reduced set of demands KJ

4 Reroute rate-limited demands KJ as computed in step 3
5 Restore each demand k ∈ KJ to its nominal rate dk
6 Reverse the time order of the the rerouting sequence R

computed in step 1, i.e., Rt ← RTBKW−t+1, ∀ t
7 Reroute all remaining demands K \ KJ according to R over

the last TBKW epochs
8 END: All demands are successfully rerouted.

Example 1 (continued). As already observed, all demands

K = K+ ∪K− ∪ k̄ are in deadlock. We observe that the only

way to jump the deadlock is to jointly move to their new path a

subset of demands K̃+ ⊂ K+ and a subset of demands K̃− ⊂
K−. In this way, at least demand k̄ can be safely rerouted.

We notice that, since no slack capacity is available at edges

e1 and e2, we must impose the constraint that the total size of

demands K̃+ and K̃− is equal. This requires to solve a form

of subset sum problem, that given a set of numbers (in our

case, the size of demands) asks whether there exists a subset

of them having equal sum. Unfortunately, this is a NP-hard

problem, that we do not want to tackle. For further details,

please refer to the proof of Theorem 1 in the Appendix.

A less ambitious goal would be to just identify the whole

bundle of “hard” demands K+ ∪ K− and jump the deadlock

by simply setting KJ = K+ ∪ K−. In such a way, we avoid

tackling the NP-hard subset problem, while still managing

to reduce the Deadlock Break Problem DBP by one unit, as

the demand k /∈ KJ . In fact, once the bundle of demands

KJ = K+ ∪ K− has been jumped, then there exists enough
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capacity on edge e3 to reroute demand k to its new path.

In order to identify the bundle of “hard” demands K+∪K−

we can apply Backward Rerouting. Thus, demand k is rerouted

backward from its new path to its old path, since in the the

target state there is free capacity on edge e5. Then, a new

(backward) deadlock state is reached; Backward Rerouting ter-

minates after TBKW = 1 epoch and it outputs the demands

KJ = K+ ∪K−, which according to UNLOCK are then fed to

a Rate-Limit heuristic for the original problem DBP. �

Algorithm 2: Rate-Limit, as in [6]

Data: - Number k∗ of demands to be rate-limited;
- Demands in deadlock K;
- Rerouting (without rate-limiting) routine Reroute (as,
e.g., [6],[7],[8],[12])

1 Select demands K∗ (|K∗| = k∗) among the |K| demands in
deadlock

2 For each k ∈ K∗, limit the rate of demand k to the maximum
d′k such that demand k can be rerouted, i.e.:
d′k = min(dk,mine∈Nk\Ok

left capacity on e)
3 Reroute demands K∗ over a single epoch
4 Resume the standard rerouting procedure over the remaining

demands K \ K∗ via sub-routine Reroute, until a new
deadlock is reached, and iterate.

IV. NUMERICAL RESULTS

We now demonstrate numerically that UNLOCK (Alg. 1)

outperforms SoA Rate-Limit heuristic (Alg. 2) in solving

the original Deadlock Break Problem (DBP). We recall that

UNLOCK can be actually considered as a boosting method for

any rate-limiting procedures, as it employs Rate-Limit as

a sub-routine (see line 3, Alg. 1). More specifically, UNLOCK

prescribes to first reduce the NP-hard problem DBP via

Backward Rerouting, and then to feed Rate-Limit with

the simpler resulting problem.

Before commenting upon our results, we provide two simple

intuitions on the reason why our UNLOCK approach is able to

boost the performance of Rate-Limit.

Intuition 1. Via Backward Rerouting, UNLOCK ensures the

existence of a (final) phase where no demand is rate limited.

This clearly decreases the throughput loss during rerouting. �

Intuition 2. By shrinking the potential number of de-

mands that can be potentially rate-limited, UNLOCK feeds

Rate-Limit with a smaller, and essentially simpler, prob-

lem. This helps Rate-Limit reducing the number of de-

mands that are rate-limited unnecessarily, which also reduces

the overhead traffic required for handling rate limiting. �

We now back up our intuitions via numerical experiments.

For the sake of fairness, in our simulations UNLOCK uses the

very same Rate-Limit algorithm (Alg. 2) as a sub-routine

to reroute the demands KJ . For completeness, we still have to

specify the Reroute routine to reroute demands without rate-

limiting, used in UNLOCK (line 1) and in Rate-Limit (line

4). Demands are first sorted in decreasing order of rate. Then,

there is an attempt to reroute all demands via MBB, in sorted

order. The same procedure iterates over the demands not yet

rerouted, until either all demands are rerouted, or a deadlock

or else the maximum number of epochs is attained. We point

out that any algorithm among [6],[7],[8],[12] can replace the

Reroute routine we used, but we do not insist on this point

as Reroute showed little impact on our simulation results,

and moreover it is not the focus of this paper.
We considered large size topologies, with > 104 demands,

4.104 links and 104 nodes. In order to test our approach under

stress, we considered highly intricate rerouting scenarios: for

all topologies, the inter-dependency graph as defined in [6]

contains one single connected component at a deadlock state.
We then compare UNLOCK (Alg. 1) against State-of-the-Art

Rate-Limit routine (Alg. 2) in terms of

a) total throughput during rerouting: =
∑T

t=1

∑
k∈K dtk;

b) number of rate-limited demands:

= |{k : dtk < dk for some epoch t}|;
c) total number T of epochs used to reroute all demands.

We remark that b) has a direct impact on the amount of signal-

ing traffic required to handle rate-limiting, while c) measures

the time required to attain the target routing configuration.

We show in Fig. 3.a,b,c) the boosting factor of UNLOCK with

respect to Rate-Limit for the three aforementioned metrics,

respectively, versus the number of rerouting epochs TBKW al-

located to Backward Rerouting. As a complement, in Fig.3.d)

we present the proportion of demands rerouted backward, and

hence not treated by the Rate-Limit heuristic.
Clearly, the number of demands rerouted backward in-

creases monotonically in TBKW , see Fig.3.d). As Intuitions

1 and 2 suggested, this has a beneficial impact on the perfor-

mance boost of UNLOCK with respect to a pure Rate-Limit

procedure for metrics a,b), see Fig.3.a,b). On the other hand,

Fig.3.c) shows that allocating too many epochs to Backward

Rerouting procedure may lead to an overall inefficient use of

rerouting epochs T . This stems from the diminishing marginal

return of Backward Rerouting, whose ability to reroute de-

mands vanishes when TBKW increases, as shown in Fig.3.d).

V. CONCLUSIONS

While rerouting the network traffic towards a better config-

uration, it is sometimes unavoidable to end up in a deadlock

state, where demands must be rate-limited in order to attain

the target configuration. In this paper we exploit the inherent

time symmetry of the congestion-free rerouting problem to

break the deadlocks in a more efficient manner, via Backward

Rerouting. We show that our approach to break deadlocks,

called UNLOCK, allows to boost the performance of State-of-

the-Art Rate-Limit heuristics. In fact, by restricting the

number of demands on which Rate-Limit can operate,

UNLOCK also naturally reduces the number of myopic rate-

limiting decisions taken by Rate-Limit itself. Moreover, it

ensures via Backward Rerouting the presence of a final phase

where all demands are restored to their original size. This

allows to reduce the throughput loss incurred during rerouting,

the number of rate-limited demands and, as a by-product, the

time required to effectively attain the target routing state.
We envision that the concept of Backward Rerouting can be

further generalized, and be successfully exploited for solving

the rerouting problem on its own. We believe that alternating

between forward and backward rerouting may allow to further

reduce the number of demands in deadlock.
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Fig. 3: Performance boost of UNLOCK w.r.t. Rate-Limit ([6], Alg. 2), both solving the Deadlock Break Problem (DBP). The performance metrics are a) throughput (=∑
T

t=1

∑
k∈K

dt

k
), b) number of rate-limited demands (= |{k : dt

k
< dk for some t}|) and c) number of epochs T used to reroute all the demands in deadlock K. In d) we

show the corresponding problem reduction, i.e., the number of demands |KJ | successfully rerouted by Backward Rerouting w.r.t. the total number of demands in deadlock |K|.
On the x-axis, the number of epochs TBKW used by Backward Rerouting sub-routine in UNLOCK (Alg. 1, line 1).

APPENDIX

A. Proof of Theorem 1

We will prove the NP-completeness of the decision problem

associated to DJP, called Deadlock Jump Decision Problem

(DJDP), aiming at selecting a subset of the demands in dead-

lock K′ ⊂ K of size smaller than h > 0 such that allocating

K′ to their new path allows to break the deadlock. Before

proving the NP-completeness of DJDP, we first introduce an

auxiliary problem, being a variation of the classic subset sum

problem and that we prove to be NP-complete.

Modified Subset Sum Problem (MSSP). Given a set of

numbers I = {i1, . . . , in} summing up to 0, is there a strict

subset of I also summing up to 0?

We start by proving that MSSP is NP-complete. Clearly,

MSSP is in NP. We prove the thesis via a polynomial

reduction of from the classic Subset Sum Problem (SSP), that

we here recall: “Given a set of numbers I ′, does there exist a

subset of I ′ summing up to 0?”. Given I ′, set a = −
∑

i∈I′

and construct the instance I = I ′ ∪{a}, which can be clearly

done in polynomial time. I sums up to 0 and it represents

a suitable instance for MSSP. If SSP answers YES on the

instance I ′ then there exists I ′′ ⊆ I ′ ⊂ I that sums up

to 0, then MSSP also answers YES on I. Conversely, if

MSSP answers YES on I then there exists I ′′ ⊂ I summing

up to 0. Notice that its complement I ′′ also sums up to 0,

as I itself sums up to 0 by construction. Then, if a ∈ I ′′

then I ′′ ⊆ I ′ is a YES instance for SSP; else, if a ∈ I ′′

then I ′′ ⊆ I ′ is a YES instance for SSP. In either case,

SSP answers YES on I ′. Hence, MSSP is NP-complete.

Now we are finally ready to prove Theorem 1. Given a

certificate K′ ⊆ we can verify in polynomial time whether

equations (9) hold by setting xk = 1I(k ∈ K′). Then, DJDP is

in NP. We will prove the NP-completeness of DJDP via a

polynomial reduction from the modified subset sum problem

(MSSP), being NP-complete as we previously proved. Let

I be an instance of MSSP, and we define for convenience

I− = {i ∈ I : i < 0}, I+ = {i ∈ I : i > 0} and B =∑
i∈I+ i = −

∑
i∈I− i. To conceive a suitable instance of

DJDP, we refer to Example 1 (see also Fig. 1). We say that

demands K+ have size {dk}k∈K+ = I+. Similarly, demands

K− have size {dk}k∈K− = −I−.

Let f : I → K be a mapping between the instances of the

two problems. We also observe that this instance of DJDP can

be constructed in polynomial time. Next, we set h = |K| − 2

and we show that solving MSSP on I is equivalent to solving

DJDP on f(I). If there exists Ĩ ⊂ I summing up to 0 then

the demands f(Ĩ) ∩ K+ and f(Ĩ) ∩ K− have the same total

size, hence they can switch from their old to their new path

while fulfilling the capacity constraints. Thus, enough capacity

is freed up on edge e3 for demand k̄ to switch to its new path

e3. Thus, K′ = f(Ĩ) is not in deadlock, i.e., K′ /∈ D. Also,

K′ ≤ h. Then, K′ is a solution to DJDP. Conversely, let

K′ be a feasible solution to DJDP. Assume by absurd that

k̄ ∈ K′. Then there exists a demand k ∈ K+ (or K−) such

that there exists some scratch capacity on e2 (or e1) being at

least dk, which implies that the load on e1 or e2 exceeds the

capacity. Then, k̄ /∈ K′. Now, consider Ĩ+ = {dk}k∈K+∩K′

and Ĩ− = {−dk}k∈K−∩K′ . Then, Ĩ+ ∪ Ĩ− ⊆ I sums up to 0

and MSSP answers YES on the instance I, Q.E.D.. �

REFERENCES

[1] S. Brandt, K.-T. Förster, and R. Wattenhofer. On consistent migration
of flows in SDNs. In Computer Communications, IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on. IEEE, 2016.

[2] E. Crabbe, I. Minei, J. Medved, and R. Varga. PCEP extensions for
stateful PCE. draft-ietf-pce-stateful-pce-18, 2016.

[3] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consistent
network updates. arXiv preprint arXiv:1609.02305, 2016.

[4] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan. Measuring control plane latency in sdn-enabled
switches. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, page 25. ACM, 2015.

[5] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven WAN.
In ACM SIGCOMM Computer Communication Review, volume 43,
pages 15–26. ACM, 2013.

[6] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
In ACM SIGCOMM Computer Communication Review, volume 44,
pages 539–550. ACM, 2014.
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