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ABSTRACT
To optimize bandwidth utilization in wide area networks, a con-
troller typically maintains policies at edge routers. In this context,
our demonstration presents a versatile policy optimization model
that carefully selects the set of overlay links for each application
based on its requirements and the overall intent of the operator. The
optimization of policies is realized using an SLA prediction model
for several intents. We demonstrate, for instance, that latency is
improved by 40% when the high-quality intent is selected.
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1 INTRODUCTION
Quality of Service (QoS) and routing mechanisms are key to con-
trol how bandwidth is shared among the different applications in
Software-Defined Wide Area Networks (SD-WAN) [9]. They can be
used to serve multiple intents to optimize the utilization of the net-
work, e.g., minimization of financial expenses or maximization of
the experienced quality. In typical SD-WAN architectures, a central-
ized controller maintains a set of policies deployed at edge routers
that interconnect multiple sites (e.g., enterprise sites, data centers).
Each edge router is configured to send traffic to the others over
several access transport networks (e.g., private lines based onMPLS,
cheaper broadband Internet). Ingress routers are responsible for the
load balancing of flows across outgoing networks so as to satisfy
Service Level Agreements (SLA) in terms of QoS, security, etc.

Policy optimization algorithms have been proposed for several
purposes. In [3], the authors minimize costs for total volume and
95𝑡ℎ percentile charging rules. Google’s B4 [5] optimizes the fair
sharing of the available bandwidth for elastic applications. To opti-
mize latency and other QoS parameters, a number of works have
applied Deep Reinforcement Learning (DRL) [8], under the umbrella
of experience-driven networking [8]. Closed-form performance mod-
els have also been embedded into routing optimization algorithms
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to minimize latency. For instance, [1] considered the Kleinrock
function [6].

Our demonstration showcases a policy optimization model for
Smart Policy Routing (SPR) [4] to either minimize cost or latency,
while meeting QoS requirements of applications. It decides the set
of transport networks, i.e. overlay links, that each application is al-
lowed to use. Our solution goes beyond state of art as it can address
multiple intents from the network operator while satisfying individ-
ual requirements from applications. Furthermore, to take strategic
decision on top of the tactical decisions taken inside routers, our
model integrates accurate SLA predictions for latency.

2 INTENT-BASED POLICY OPTIMIZATION
Our architecture is based on a centralized controller that can modify
periodically policies at ingress routers.

Smart Policy Routing. Ingress routers are configured with an
SPR policy for each application, also called flow group. The policy
contains the set of candidate overlay links that a flow group is
allowed to use. All the policies are configured, in a slow control
loop, by the network controller and executed inside devices, in a fast
control loop. At a high frequency, each device determines for each
flow group the set of active links from the pool of candidate links
authorized by the controller based on link-level measurements (i.e.,
latency, jitter, loss). The set of active links is used to load balance
traffic for each flow group. In order to avoid congestion and satisfy
SLA requirements of flow groups, policies have to be carefully
decided by the controller to mitigate interferences between flow
groups. The main challenge addressed by our demonstration is to
automatically configure these policies for several intents.

Figure 1: SD-WAN network scenario.
Problem Formulation. We consider an SD-WAN network as

shown in Fig. 1 with a set of overlay links 𝐸 and a set of flow groups
𝐾 . For each flow group 𝑘 ∈ 𝐾 , the measured traffic demand is
denoted 𝑏𝑘 and the set of all possible overlay links is given by 𝐸𝑘 ⊆
𝐸 (e.g., outgoing links at ingress routers). Let 𝑥 ∈ [0, 1] |𝐾 |× |𝐸𝑘 | be
the split ratio of traffic on link 𝑒 ∈ 𝐸𝑘 for flow group 𝑘 ∈ 𝐾 (𝑥𝑘𝑒 ) and
𝐷 ∈ R |𝐾 |

+ be the maximum delay required by the flow group 𝑘 (𝐷𝑘 ).
For a piece-wise modeling of the cost function, let 𝐿𝑈 ∈ [0,𝐶𝑖𝑒 ] |𝐸 |
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be the link utilization of the 𝑖-th piece and 𝐶𝑖𝑒 its capacity. For each
link 𝑒 and each piece 𝑖 ,𝑤𝑖𝑒 ∈ R+ represents its cost per unit of traffic
(remark that𝑤𝑖𝑒 ≤ 𝑤𝑖+1𝑒 ). The load balancing policy can be found
solving the following optimization model for two intents:

min
∑
𝑘∈𝐾

∑
𝑒∈𝐸𝑘

[∑
𝑖∈𝐼𝑒

𝑤𝑖𝑒𝐿𝑈
𝑖
𝑒 (min cost) or 𝑓 𝑘𝑒 (𝑥) (high quality)

]
s.t.

∑
𝑖∈𝐼𝑒

𝐿𝑈 𝑖𝑒 =
∑
𝑘∈𝐾𝑒

𝑏𝑘𝑥
𝑘
𝑒 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸, (1)

𝑓 𝑘𝑒 (𝑥) ≤ 𝐷𝑘 ∀𝑘 ∈ 𝐾,∀𝑒 ∈ 𝐸𝑘 , (2)∑
𝑒∈𝐸𝑘

𝑥𝑘𝑒 = 1, ∀𝑘 ∈ 𝐾 (3)

where 𝑓 𝑘𝑒 (𝑥) is the delay function that provides the delay of flow
group 𝑘 on link 𝑒 by considering the assignment given by 𝑥 . Con-
straints (1) ensure the capacity of each link is satisfied. Inequalities
(2) compute the delay of each flow group. Constraints (3) ensure
that all the traffic demand is routed.

Full model. In our implementation, the SLA prediction 𝑓 relies
on a queuing model for a non-preemptive priority scheduler with 3
classes (real-time, business and bulk). The full optimization model
also supports other intents (e.g., MLU minimization), stickiness
constraints to limit modifications of policies and a proper estimation
of UCMP weights proportionally to link capacities.

3 DEMONSTRATION
We use NS3 simulator [7] with Open Flow 1.3 [2]. Applications
are generating traffic following typical patterns for 3 flow groups
(Real-time, Business, Bulk) with end-to-end delay requirements of
respectively 40ms, 60ms, and 1s. The transport layer is TCP. The
microflow inter-arrival time varies to generate diurnal traffic pat-
terns. As Fig. 1 shows, the topology is an SD-WAN network where
3 branches are connected to a headquarter site using 3 MPLS and 3
broadband Internet access networks. The capacity of Internet links
is 1.5 times that of MPLS links. The propagation delay of Internet
and MPLS links range from 35 ms to 50 ms and 10 ms to 20 ms,
respectively. Traffic is prioritized using a non-preemptive priority
scheduler. The priority of packets is marked by Differentiated Ser-
vices Code Points (DSCP). Link-level measurements are collected
every 1s and policies are updated by the controller every 5s. In real
networks, these periods are expected to be much larger because traf-
fic varies at a slower pace than in this demonstration. Fig. 2 shows
the diurnal evolution over time of the total traffic (throughput of
all flow groups) and the corresponding end-to-end delays when the
high-quality intent is used. Business traffic is 2 times more than
real-time and bulk traffic. End-to-end delay of Real-time is much
smaller than for Business and Bulk. Business also has a stable and
low delay most of the time. There is only one delay spike around
320s due a rapid increase in traffic (faster than policy update). Bulk
plots more delay spikes than others especially during high traffic
periods due to its low priority. Table 1 provides the end-to-end
delay, SLA violations (% of epochs the target is not met), and the
total cost for different intents OPT-HQ (opt. model with high-quality
intent), OPT-COST (opt. model with minimum cost intent). We also
compare with All-TNswhere all links can be used and the selection
of links is handled by SPR [4]. For the charging model, if traffic is

Figure 2: Traffic and end-to-end delay (high-quality intent).

Policy OPT-HQ OPT-COST All-TNs

Real-time
Average delay (ms) 16.1 22.2 25.2
SLA violations (% time) 0.0 0.0 3.84

Business
Average delay (ms) 36.5 42 43.9
SLA violations (% time) 7.23 11.8 14.4

Bulk
Average delay (ms) 61.7 65 63.7
SLA violations (% time) 0.0 0.0 0.7
Total cost 8033 7077 8016

Table 1: End-to-end delay, % SLA violations and total cost

less than a threshold (e.g. 60% of link capacity) the cost is 150$ per
traffic unit. Otherwise, it is 10 times more expensive. OPT-HQ ob-
tains the lowest delay, up to 40% lower than All-TNs for Real-time
and Business. Thanks to the estimation of delay in the optimization
model, there is reduction in SLA violations, up to 3 times compared
to All-TNs. With the minimum cost intent, there is no remarkable
difference with All-TNs in delay, but still a significant gap for SLA
violations. In addition, the minimum cost intent yields a cost 12%
cheaper. The video is available here: https://tinyurl.com/wwkn237t

REFERENCES
[1] Walid Ben-Ameur and Adam Ouorou. 2006. Mathematical models of the delay

constrained routing problem. Algorithmic OR 1, 2 (2006).
[2] Luciano Jerez Chaves, Islene Calciolari Garcia, and Edmundo Roberto Mauro

Madeira. 2016. OFSwitch13: Enhancing Ns-3 with OpenFlow 1.3 Support. In Proc.
ACM Workshop on Ns-3. New York, NY, USA.

[3] Zbigniew Duliński, Rafał Stankiewicz, Grzegorz Rzym, and Piotr Wydrych. 2020.
Dynamic traffic management for sd-wan inter-cloud communication. IEEE Journal
on Selected Areas in Communications 38, 7 (2020), 1335–1351.

[4] Huawei Technologies. 2021. Smart Policy Routing. Technical Re-
port. https://support.huawei.com/enterprise/en/doc/EDOC1000174111/2ed71c78/
smart-policy-routing

[5] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 3–14.

[6] Leonard Kleinrock. 2007. Communication nets: Stochastic message flow and delay.
Courier Corporation.

[7] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.
[8] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold

Liu, and Dejun Yang. 2018. Experience-driven networking: A deep reinforcement
learning based approach. In IEEE INFOCOM.

[9] Zhenjie Yang, Yong Cui, Baochun Li, Yadong Liu, and Yi Xu. 2019. Software-
defined wide area network (SD-WAN): Architecture, advances and opportunities.
In Proc. of IEEE ICCCN.

https://tinyurl.com/wwkn237t
https://support.huawei.com/enterprise/en/doc/EDOC1000174111/2ed71c78/smart-policy-routing
https://support.huawei.com/enterprise/en/doc/EDOC1000174111/2ed71c78/smart-policy-routing

	Abstract
	1 Introduction
	2 Intent-based policy optimization
	3 Demonstration
	References

