
Online Bandwidth Calendaring: On-the-Fly

Admission, Scheduling, and Path Computation

Maxime Dufour, Stefano Paris, Jérémie Leguay, Moez Draief

Mathematical and Algorithmic Sciences Lab

France Research Center - Huawei Technologies Co. Ltd.

Boulogne-Billancourt, France

Email: {name.surname}@huawei.com

Abstract—The centralized control in Software Defined Net-
works paves the way for new services like Bandwidth Calen-
daring (BWC), where the possibility to shift temporally future
bandwidth requests allows to efficiently use network resources.
Assuming perfect knowledge of the calendar for all future
bandwidth reservations is unrealistic. In this paper, we study
the online version of the BWC problem presented in [1], where
for unpredictable incoming demands an admission decision,
scheduling and path allocation must be taken instantaneously. We
design an algorithm for solving the online version of the BWC
problem and proposes two heuristic approaches to exploit the
scheduling flexibility of demands. Our numerical results reveal
that the proposed solution approach outperforms state-of-the art
methods by up to 70% in terms of accepted traffic.

Index Terms—Software Defined Networking, Online Bandwidth
Calendaring, Scheduling, Online Optimization.

I. INTRODUCTION

Software-Defined Networking (SDN) [2] technologies have

radically transformed the network architecture of data centers,

network overlays, and carrier networks. By offloading the

control plane to a remote platform, the control plane can

now be implemented on top of commodity servers and benefit

of their high computational power. Although the controller

platform is usually distributed on multiple servers, it keeps

a global view of the network status in real-time and pushes

consistent configuration updates to network equipment. The

resulting centralized control as well as the high flexibility

and programmability of SDN enable service providers to ex-

ploit more efficiently their network resources. This eventually

permits to quickly develop and offer new types of network

services, whose implementation was more challenging with

legacy network devices.

Bandwidth Calendaring (BWC) [1] is one of such emerging

connectivity services that SDN enables. It helps enterprises or

cloud providers in establishing connectivity at low cost for

bulk data transfers with guaranteed bandwidth and quality of

service. Its main goal is to optimize the execution of large

batch processes (e.g., Hadoop jobs, database backups) which

consume significant network resources. Indeed, in most of

the cases, these resource-intensive tasks can tolerate delay as

long as they are completed before a given deadline. For this

type of services, service providers envisage new on-demand

provisioning models where the customer is billed on a usage

basis, similarly to what already exists for computational and

storage resources in cloud platforms. A service provider can

then decide to monetize the remaining capacity of its network

to sell low cost connectivity services for delay-tolerant bulk

data transfers. In this context, the goal for the service provider

is to maximize the accepted volume of traffic and its revenue

by leveraging the scheduling flexibility of delay-tolerant band-

width reservations.

A challenging issue for the widespread adoption of the

BWC service is the lack of an automation system for the

creation of the calendar in highly dynamic scenarios (i.e., the

set of demands with their traffic profile). Assuming perfect

knowledge of future arrivals is often unrealistic. Indeed, traffic

demands are usually revealed and notified when applications

need network connectivity. In such a setting, Over-The-Top

(OTT) operators cannot precisely predict important parameters

such as the traffic profile, duration, and arrival time of data

connections. Yet, these parameters are essential for building up

the calendar of future bandwidth reservations, which is used by

the BWC service to efficiently allocate network resources over

time. We therefore advocate a system that learns and builds

the calendar in an online fashion without any assumption on

the knowledge of future arrivals.

To this end, we design an admission control mechanism with

the objective of maximizing the volume of accepted traffic.

The system decides acceptance, scheduling and routing of

demands in an online fashion. Extending an algorithm for

online routing [3], we propose two modifications to decide

the scheduling of demands. These online algorithms take

sequential decisions without knowing the future. To minimize

the optimality gap with respect to the offline optimal, the

general idea is to compute paths over a modified network

graph, called the oracle, where weights depend exponentially

on the link utilization. The oracle is used to proactively reject

some demands and load balance network resources over time.

The first algorithm we propose takes an immediate decision

while the second can postpone it if the demand cannot start

immediately. The online nature of the proposed algorithms

permits to quickly provide an admission feedback to appli-

cations and commit resources to secure/ensure the admission

decision. Numerical results show that our algorithms increase

the accepted throughput by up to 70% and load balance the

resources of the system with respect to other approaches with

the same computational complexity.

The paper is structured as follows. Section II presents

an overview of related research literature. In Section III we

describe the system model and we formulate the onsline

version of the BWC problem, while in Section IV we present

the two algorithms to solve the problem. Section V compares

the approaches we proposed for solving on-the-fly the BWC

problem against other heuristic approaches proposed in the

literature, showing the performance gain of our approaches.

Finally, concluding remarks are discussed in Section VI.

II. RELATED WORK

With the advent of SDN, the interest in dynamic routing

and Traffic Engineering (TE) methods has been renewed.

Designing TE over traditional distributed routing protocols is

sub-optimal [4]. Instead, several works propose methods to

exploit the global network view available at the SDN controller

to optimize resource allocation [5]. If network reconfigurations

could be calculated and applied instantaneously, the resulting

bandwidth reservations and path allocations would be optimal.

In reality, updating all the involved network devices with the

new centrally-made decisions requires a significant amount

of time and it might affect ongoing data transmissions. In

this context, any knowledge about the future can be used to

optimize resource allocations over time. Thus, the potential of

bandwidth calendaring is explored in a series of works, e.g.,

[6]–[9].

The time dimension of TE over SDN is considered in

[7], where the problem of optimal allocation of current and

future bandwidth resources is studied. A max-min objective

is pursued, regarding the minimum fraction over all demands

that is satisfied by its deadline. The problem of fair bandwidth

allocation to a set of demands over predetermined paths is

investigated in [10]. An efficient method to schedule a batch

of demands so that the overall throughput is maximized has

been proposed in [1]. The market aspects of such bandwidth

calendaring problems are considered in [6], where the utility

of each user is assumed to be decreasing on the delay until the

transfer has been completed. A pricing mechanism is proposed

so that users reveal their true valuation of bandwidth.

All aforementioned works consider the inter-DC scenario

where data transfers have to be delivered up to a deadline.

Although this scenario captures the benefits of calendaring and

scheduling in TE problems, as we demonstrate in Section IV

applying directly this approach to our bandwidth reservation

setting is highly suboptimal. To the best of our knowledge,

[11] is the only work that considers time-varying bandwidth

requirements, but in the setting of communicating virtual ma-

chines (VM). The authors address the resulting VM placement

problem via dynamic programming.

III. ONLINE BANDWIDTH CALENDARING

In this section we present the system model and the as-

sumptions we consider in the formulation of the online BWC

problem.

Fig. 1: BWC system to decide acceptance, scheduling and

routing of demands having a time-varying bandwidth profile.

A. System Model

We consider a Wide Area Network (WAN) represented by

an undirected graph G{V, E}, where each edge e corresponds

to a network link and is characterized by its capacity be and

cost ce per unit of traffic. Let K denote the set of demands that

are expected to arrive in any order. For the sake of clarity, we

discretize time into a set T of epochs of equal duration. Each

demand k ∈ K is defined as a tuple 〈sk, tk, αk, βk, qk,dk, ρ
k〉.

The parameters sk and tk represent the source and destination

nodes of the demand, whereas αk, βk, qk define the earliest

starting epoch, the latest ending epoch (i.e., the deadline), and

the duration of a demand (in number of epochs), respectively.

Finally, the vector dk =
[

dk
1
, dk

2
, ..., dkτ , ..., d

k
qk

]

describes the

traffic profile of demand k where dkτ corresponds to the size

of the demand k in its τ -th epoch, as illustrated in Fig. 1. The

demand profit ρk corresponds to the traffic volume, namely

ρk =
qk
∑

t=1

dkt . Note that demands can be started at any epoch

within the scheduling window
{

αk, · · · , βk − qk + 1
}

.

In contrast to the offline version of the BWC problem where

the network operator knows the calendar of future bandwidth

reservations, the goal here is to rapidly decide and provide

feedback to applications. The challenge in this context comes

from the online nature of the optimization problem: new

variables are revealed sequentially, as soon as an arrival of

a flow occurs in the system. Even in the case that arrival rates

can be estimated from past observations, the exact sequence

of future requests is not known in advance. In this setting,

we consider that the earliest starting epoch corresponds to the

epoch where the demand arrives αk and that a decision has to

be made as quickly as possible. To this end, for each arrival

the network operator faces the decision whether to accept the

demand, when to set up the data connection and where to

accommodate the traffic in the network (i.e., which path to

use to route the traffic from the origin to the destination).

The main objective is to maximize the volume of data traffic

accepted over time. To this aim, an operator may reject low-

profit demands over highly utilized paths as they may prevent

the future acceptance of high-profit demands.

We observe that admission decisions for the BWC service

are non-preemptive to prevent any service interruption. There-

fore, once a demand is accepted and network resources are

reserved, the operator cannot halt the data connection in order

to admit larger demands that may arrive in the future. Table I

summarizes the notation used throughout the paper.

Parameter Description

V Nodes (network devices).

E Edges (network links).

ce edge cost (in cost units) e ∈ E .

be edge capacity (in capacity units) e ∈ E .

K set of demands (i.e., commodities).

αk ∈ T Arrival time of demand k ∈ K.

qk ∈ T Duration for demand k ∈ K.

βk ∈ T Latest ending time for demand

k ∈ K
(

βk ≥ αk + qk − 1
)

.

dkτ Bandwidth request for demand k ∈ K
at time epoch τ{1, 2, . . . , qk}.

Variable Description

xk ∈ {0, 1} Whether demand k is admitted in the system.

fpt ∈ {0, 1} Whether path p ∈ Pk is selected to route
demand k starting from epoch t (fpt = 1).

TABLE I: Input parameters and variables of the problem.

B. Problem Formulation

In the following we present the path-schedule-based for-

mulation of the offline BWC problem. Before introducing the

model, let us define the set of paths and decision variables

used in our formulation. P denotes the set of all network paths,

whereas Pk ⊆ P defines the subset of paths that connect the

source sk to the destination tk of demand k (i.e., set of paths

over which the demand can be routed). Similarly, Pe ⊆ P
identifies the set of paths that traverse edge e ∈ E .

Let xk be the binary decision variable used for the admis-

sion decision of a demand (xk = 1 if demand k is accepted).

Furthermore, we use binary decision variables fpt with p ∈ Pk

and t ∈ T to decide the starting epoch t at which path p is used

to route demand k. We refer to variable fpt as path-schedule

(p, t), since it jointly provides the scheduling and routing of a

demand. The offline BWC problem can be formulated as (1)-

(5):

max
∑

k∈K

∑

t∈T

d
k
t x

k
(1)

s.t.
∑

p∈Pk

βk−qk+1
∑

t=αk

fpt = x
k ∀k ∈ K (2)

∑

p∈Pe

∑

k:p∈Pk

min{qk,t}
∑

τ=1

d
k
τfp(t−τ+1) ≤ be ∀e ∈ E , t ∈ T (3)

fpt ∈ {0, 1} ∀p ∈ P, t ∈ T (4)

x
k ∈ {0, 1} ∀k ∈ K (5)

The objective function (1) maximizes the accepted volume

of traffic. Constraints (2) impose that an accepted demand

starts its transmission at a unique starting epoch and uses a

single path, while the set of constraints (3) ensures that the

allocation stay within the capacity region during each epoch.

In the online setting presented in this paper, the param-

eters and decision variables of the BWC problem (1)-(5)

are discovered in a unknown sequence that depends on the

demands arrival. The goal is still to maximize the accepted

volume of traffic over the time horizon T . However decisions

for any new demand must be made before the end of the

scheduling window without knowing the sequence of arrivals

(i.e., the calendar) and without the possibility of changing past

decisions. In the next Section we present two algorithms for

solving the online BWC problem that minimize the optimality

gap with respect to the offline version, which instead assumes

perfect knowledge of the whole sequence of demands.

IV. ON-LINE ALGORITHMS FOR ADMISSION,

SCHEDULING, AND PATH ALLOCATION

In this section we present two algorithms that solve the

joint admission, scheduling, and routing decisions of the

online BWC problem. These algorithms extends the online

routing algorithm proposed by Awerbuck in [3], where only

admission and routing decisions were considered. We modify

this algorithm to decide the scheduling of all demands in

addition to the routing once they are accepted. Finally, we

show that the solution obtained over a time horizon has

provable performance guarantees.

An online algorithm takes sequential decisions without

knowing the future. To minimize the optimality gap with

respect to the offline optimal that can be computed knowing

exactly the sequence of arrivals like in [1], we need to

proactively reject some demands and load balance network

resources over time. Small demands that do not contribute

to the maximization of the accepted traffic can be rejected.

At the same time, scheduling and routing decisions have the

twofold objective of avoiding the utilization of bottleneck links

and the creation of traffic spikes. To achieve this goal, the

general idea is to compute paths over a modified network

graph, called the oracle, where weights depend exponentially

on the link utilization. This weight can be interpreted as the

urgency of avoiding the resource: high traffic load results into

a steep increase of the weight of congested resources in order

to restrain their use in the near future. In addition, they are

used to define an admission criteria which compares the price

of accepting a request to its profit (i.e., the traffic volume of

the demand). If the admission price is higher than the expected

profit, the connection is rejected.

Before detailing the two algorithms, let us define the relative
load of and edge e seen by demand k as follows:

λet (k) =

∑

p∈Pe

∑

m:p∈Pk∧m<k

min{qm,t}
∑

τ=1

dkτfp(t−τ+1)

be
(6)

The relative load seen by demand k depends on all decisions
〈xk, fpt〉 taken for all demands m arrived before k (recall that
for demands with the same arrival time we can break ties
arbitrary). In both algorithms, the edge cost function given
by Equation (7) is coupled with a shortest path computation
method (e.g., Dijkstra) to select the least congested links.

we (k) =

ι+qk
∑

t=ι

λet (k) be
(

µ
λet(k) − 1

)

(7)

Such a function increases exponentially with the relative load,

thus decreasing the possibility of selecting a link as its load

increases. We refer to this function as admission price of the

link. Note that both λet (k) and we (k) are defined only within

the interval between the earliest starting time and the deadline

of the demand k.

A. One-Shot Scheduling and Routing

Algorithm 1 illustrates the steps of what we call the one-

shot scheduling and routing approach, in short one-shot, which

decides simultaneously whether to accept the demand, its

starting time within the scheduling window and the path to

connect the origin to the destination. When demand k arrives,

the algorithm selects among all possible epochs of its schedul-

ing window the one that produces a path p with the lowest

admission price
∑

e∈p we. Among the paths generated for each

possible epoch, only those with a total admission price lower

than the profit ρk of the demand are retained as candidates

for routing the traffic of k from its origin to its destination.

The profit is
∑

t∈T
dkt , the total volume of data traffic that

the demand will contribute to the throughput maximization

objective. If any such path exists for any possible epoch of

the scheduling window, the demand is rejected. Upon arrival

of a demand, the one-shot algorithm takes a decision and

provides an immediate answer to the application. We would

like to underline that the paths computed for each possible

Fig. 2: Computation of relative load for edge (i; j) seen by

demand 3. Demand 3 does not see the load of 1 after epoch 7.

Algorithm 1: One-Shot Online BWC

Input: Network topology: G{V, E}, b, 〈sk, tk, αk, βk, qk,dk〉
Output: Admission, Scheduling, Routing
ηk ← ρk

xk ← 0
1 for ι ∈ {αk, ...βk − qk + 1} do

/* Select unique starting time for k */

2 Update λet (k), ∀t ∈ {ι, ..., ι+ qk}, e ∈ E
Update we (k), e ∈ E

3 Compute shortest path p over G{V, E , we(·)}
4 if

∑

e∈p

we (k) ≤ ρk and
∑

e∈p

we ≤ ηk then

ηk ←
∑

e∈p

we (k)

xk ← 1
fpι ← 1

5 if xk = 0 then
reject demand k.

epoch may differ, since when we shift the demand towards its

deadline βk some demands started in an earliest epoch might

terminate and disappear from the computation of the relative

load. As illustrated in Figure 2, demand 1 terminates after

epoch 7 and it is not considered anymore after such an epoch

in the computation of the relative load and admission price

of edge (i; j) seen by demand 3. Therefore, one-shot selects

either epoch 8 or 9 as starting time of demand 3, since link

(i; j) is less congested.

B. Postpone Scheduling and Routing

The second approach we propose, called postpone schedul-

ing and routing (in short postpone), may not take an immediate

decision. Algorithm 2 details the operations performed by

postpone when a new demand k arrives. At each epoch, as in

the one-shot algorithm, we first update the relative load and

the admission price within the time window of the demand.

However, we evaluate only the first starting epoch of the

Algorithm 2: Postpone Online BWC

Input: Network topology: G{V, E}, b, 〈sk, tk, αk, βk, qk,dk〉
Output: Admission, Scheduling, Routing
xk ← 0
/* Test starting time for k */

1 Update λet (k), ∀t ∈ {α
k, ..., αk + qk}, e ∈ E

Update we (k), e ∈ E
2 Compute shortest path p over G{V, E , we(·)}
3 if

∑

e∈p

we (k) ≤ ρk then

xk ← 1
fpι ← 1

else if αk < βk − qk + 1 then
/* Postpone k to the next timeslot */

αk ← αk + 1

else
4 reject demand k.

scheduling window and we compute the shortest path in the

oracle. If there exists no path with an admission price lower

than the demand profit in the current epoch, the decision is

postponed to the next epoch. Therefore the demand is put in

the pool of arrivals of the next epoch. If in the latest epoch of

the scheduling window (i.e., βk − qk + 1) the demand profit

does not compensate the admission price, we definitely reject

the demand.

V. NUMERICAL RESULTS

In this section we compare the performance of our admis-

sion control algorithms, referred to as Postpone and OneShot.

We first describe the experimental methodology of our sim-

ulations. Then, we discuss the comparative evaluation of our

methods against other heuristic approaches based on the same

scheduling policies.

A. Experimental Methodology

To evaluate our solutions, we consider two different scenar-

ios: i) a random scenario where we compare our algorithms

in terms of accepted traffic, and ii) a realistic scenario that

permits to validate our solutions in a realistic setting.

In the random scenario, we generated networks according to

the small-world model, where few nodes called hubs permits

to reach every other node in the network by a small number

of hops. The typical distance L between any two randomly

chosen nodes grows proportionally to the logarithm of the

number of nodes N in the network (L ∝ logN). We consider

4 different instances with increasing number of nodes, links,

and demands as illustrated in Table II. In the realistic scenario

we used the GEANT topology [12], the high bandwidth pan-

European research and education backbone composed of 22
nodes and 36 high capacity 40G bidirectional links.

In both scenarios demands are generated randomly over

a period of 24 hours using distributions that closely model

the real traffic. More specifically, we have used the Zipf

distribution with exponent equal to 2.5 to select the |K| origin-

destination pairs to model the skew distribution of pairwise

connections. Furthermore, we increase the size of demands

around noon to simulate the classical diurnal pattern of real

traffic. The 24 hours period has been split into 96 consecutive

epochs corresponding to a granularity of 15 minutes. In

all simulations we performed 100 independent measurements

computing very narrow 95% confidence intervals.

We compare our OneShot and Postpone algorithms against

a greedy approach that routes demands using the cheapest path

over the residual graph. For a fair comparison, we kept in the

greedy approach the scheduling philosophy of testing all start-

ing epochs or postponing the demand in case on insufficient

resources. We replace the computation of the admission price

in Algorithms 1 and 2 with the computation of the shortest

path using as distance function the original edge cost ce after

pruning from the original graph the edges that have not enough

residual capacity during the duration of a demand. In other

words, if ∃τ ∈ {ι + αk, ..., ι + αk + qk} : reτ + dkτ > be,

where ι is the epoch within the scheduling window,we prune

edge e, and we compute the shortest path. If after the pruning

the origin and destination are disconnected, the demand is

rejected.

B. Random Networks

The performance of any admission control algorithm de-

pends mainly on the strategy used to select network resources.

In this section, we show that using the admission price

increases the volume of accepted traffic with respect to a

greedy policy (called Greedy) that tends to quickly saturate

network hubs.

Small Medium Large Very-Large

Nodes 100 100 200 1000

Links 500 500 4000 15000

Demands 100 1000 10000 10000

TABLE II: Parameters used in the random scenario.

Figure 3 shows the gain in terms of volume of accepted

traffic of our approaches with admission price against Greedy.

We observe that in all instances and independently of the

scheduling mechanism the algorithms with admission price

always outperforms Greedy. As illustrated in the figure, our

approaches (either OneShot or Postpone) accept 25% to 70%

more traffic than Greedy. Greedy tends to quickly saturate

the cheapest edges and it does not discriminate between the

demands according to their profit. Therefore, small volume

demands can consume resources that are later needed for the

transfer of huge volume of traffic. Note that rejecting small

demands in order to leave room for future demands does not

solve the problem, since we may wait forever for the arrival

of large demands (recall that we do not know the future). In

contrast, the admission price permits to distribute the traffic

over the network resources and anticipate the arrival of huge

demands in the future. The figure depicts also the gain of

Postpone over OneShot, which varies between 5% and 20%

depending on the size of the instance we consider. This is

due to the different approach used to select the starting time

of the demand. OneShot delays the demands by choosing the

latest epochs of the scheduling window as starting time, since

for a generic demand k the network is generally seen as less

small medium large very-large
0

10

20

30

40

50

60

70

80

G
a

in
 (

%
)

Oneshot vs. Greedy Oneshot

Postpone vs. Greedy Postpone

Postpone vs. Oneshot

Fig. 3: Gain of our algorithms against Greedy in terms of accepted
traffic for different network sizes.

(a) Accepted Traffic (b) Time Evolution of Accepted Demands (c) Variation of resource utilization

Fig. 4: Performance evaluation of the Postpone and Greedy over GEANT topology.

congested in the future. In contrast, Postpone serves a demand

in the first epoch where its profit compensates the admission

price of used resources, leaving the network unloaded in the

far future. In other words, Postpone uses the smallest portion

of the scheduling window necessary to accept the demand.

The counterpart is that it does not take decisions immediately.

C. Realistic Network

To evaluate the effect of the traffic load, we generate

demands according to a Poisson process with arrival rate

varying in the range [20; 60] demands/s. The size of the

scheduling window and the duration are drawn from negative

exponential distributions with parameter 8 and 16 epochs (i.e.,

2 and 4 hours), respectively. Since Postpone provides better

results than OneShot, in the following we present only the

comparative evaluation of Postpone against the corresponding

greedy approach, referred to as Greedy.

Figure 4 shows the main results we obtained using the

GEANT topology. It can be observed from Figure 4(a) that

even in realistic settings Postpone with admission price admits

up to 20% more traffic than Greedy that simply uses the

shortest path over the residual graph. The reason is illustrated

in Figures 4(b) and 4(c), which show the temporal evolution of

served demands and standard deviation of the link utilization

for arrival rate equal to 50 demands/s. During the first 10

epochs, both algorithms accept and serve the same amount

of traffic. However, the traffic is not fairly distributed over

network resources, as we can observe from the evolution of

the instantaneous standard deviation of the link utilization

in Figure 4(c). Greedy consumes quickly the capacity of

cheapest links and after the 10th epoch it starts rejecting more

demands than Postpone. The accepted traffic between the two

approaches starts to diverge as illustrated in Figure 4(b) and

the greedy scheme is not able to catch up with of our scheme.

The decrease in the standard deviation of the link utilization is

simply due to the increase of demand arrivals, which require

the connection of different endpoints (recall that we have a

peak starting around noon). The rate of decrease is higher with

the admission price since it better loads balances the utilization

of residual resources.

VI. CONCLUSION

BWC services, where operators have the possibility to shift

temporally future bandwidth requests, helps enterprises or

cloud providers in establishing connectivity at low cost for

bulk data transfers with guaranteed bandwidth and quality of

service. The impossibility of knowing or accurately predicting

future traffic represents the limiting factor for the use of BWC

in real network deployments. In this paper, we propose two

algorithms to jointly decide the admission, scheduling and

routing of bandwidth reservations being totally oblivious to the

future. The online nature of the proposed algorithms permits

to quickly provide an admission feedback to applications and

commit resources to secure the admission decision. Numerical

results show that our algorithms increase the accepted through-

put by up to 70% and load balance the resources of the system

with respect to other approaches with the same complexity.

REFERENCES

[1] L. Gkatzikis, S. Paris, I. Steiakogiannakis, and S. Chouvardas, “Band-
width calendaring: Dynamic services scheduling over software defined
networks,” in Proc. IEEE ICC, May 2016.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput-competitive on-line
routing,” in Proc. FOCS, 1993.

[4] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
ip routing protocols,” Communications Magazine, IEEE, vol. 40, no. 10,
pp. 118–124, 2002.

[5] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Computer Networks,
vol. 71, pp. 1–30, 2014.

[6] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing deadlines for inter-datacenter transfers,” in
Proc. ACM EuroSys, 2015.

[7] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in Proceedings of the 2014 ACM Conference

on SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014,
pp. 515–526, printed.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” in Proc. ACM SIGCOMM

CCR, volume=43, number=4, pages=3–14, year=2013,.
[9] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4. ACM, 2013, pp. 15–26.

[10] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin,
A. Siganporia, S. Stuart, and A. Vahdat, “Bwe: Flexible, hierarchical
bandwidth allocation for wan distributed computing,” in Proceedings

of the 2015 ACM Conference on Special Interest Group on Data

Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM,
2015, pp. 1–14.

[11] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in Proc. ACM SIGCOMM, 2012.

[12] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-
tradomain traffic matrices to the research community,” ACM SIGCOMM

Computer Communication Review, vol. 36, no. 1, pp. 83–86, 2006.

