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Abstract—Content Delivery Networks (CDN) are witnessing
the outburst of video traffic and must get ready for streaming
services based on Virtual Reality (VR). The immersive experience
that VR provides for live events or video on demand dramatically
increases the need for network and computing resources and VR
sessions are foreseen to be elephants flows in service providers’
infrastructures. This paper analyzes the challenges of request
routing in VR-ready CDNs and argues that decisions must
be taken at a finer granularity compared to today’s practice.
To make such decisions at scale, we propose a hybrid control
framework, called VR-ready Admission Control (VRAC), to
decompose and solve the underlying optimization problem in
real-time. We demonstrate in a realistic setting that it will be
decisive to withstand the ever increasing penetration of data-
hungry VR video streams.

I. INTRODUCTION

Globally, IP video traffic is expected to represent 82 percent

of all IP traffic by 2020 [1]. While a large variety of Video-

on-Demand (VoD) and video-streaming services have emerged

in the past years, the uses continue to evolve rapidly. Virtual

Reality (VR) has the potential to become the next revolution

to video, similar to what color has been to black and white.

VR-based videos are captured with a 360◦ stereoscopic camera

and viewed through a specific headset where users can see and

hear the scene all around them.

Content Delivery Networks (CDN) have prevailed as the

dominant method to deliver content. 72 percent of Internet

video traffic is intended to cross CDNs by 2019 [1]. The largest

over-the-top player Akamai currently has over 170,000 edge

servers located in over 1300 networks in 102 countries [2].

And large CDNs are already serving billions of content

requests per day. However, the emergence of VR-based video

streaming services is expected to dramatically increase the

need for networking and computing resources. CDNs solutions

will have to evolve to cope with the rise of such real-time

and data hungry video services. In fact, in the next years,

VR sessions are foreseen to reach throughputs in the order

of Gbps and to become elephant flows in service providers’

infrastructures. Even if the penetration rate of VR streaming

services is still low, Goldman & Sachs [3] foresees that by

2020, 28 and 24 millions users will respectively consume live

broadcasting and video entertainment services.

Current CDN solutions are composed by a network of

caches storing the most popular contents and a user mapping

system that redirects client requests to the best proximal

cache server [4]. The user mapping [2], [5] is typically

implemented on top of the Domain Name System (DNS) as

it eases content integration in web applications and offers

reliability and performance at Internet scale. Such system

enforces request routing decisions at the granularity of clients’

local DNS or IP prefix [5]. However, VR streams are expected

to consume a significant amount of bandwidth and processing,

their admission into a CDN infrastructure must be carefully

decided to be consistent with available resources. Making

aggregated decisions will not work and lead to the rejection

of most demands.

Our paper analyzes the challenges of request routing in VR-

ready CDNs and shows that the problem becomes an online

packing problem where custom decisions must be taken for

every request. To solve the problem at scale and in real-

time with tens of millions of requests per day, we propose a

hybrid control framework, called VR-ready Admission Control

(VRAC), which uses advanced clustering and online optimiza-

tion techniques. Our approach extends the control framework

introduced in [6] for the maintenance of distribution trees

in video CDNs. More specifically, we propose 1) to break

the large admission control problem into several smaller ones

by assigning clients to clusters of CDN servers, and 2) to

adopt a two step decision process for the routing of VR

requests. Streaming requests are first directed to the best

proximal cluster using DNS mappings. In a second step, they

are processed in batch by cluster heads to optimize their

allocation in an online fashion using a fast linear programming

based heuristic. We show on a realistic scenario that VRAC

outperforms current solutions, especially when the system is

highly loaded and do not have the capacity to accept all

requests.

II. CHALLENGES

This section analyses the characteristics of VR streams and

the request routing problem in VR-ready CDNs.

A. Characteristics of VR streams

The vision of users in the virtual environment evolves in a

sphere, which unfolds 360◦ horizontally and 180◦ vertically.

Users only view a part of the spherical data called the Field of

View (FoV). Fig. 1 shows that on average, humans are able to

see about 220◦ horizontally of FoV naturally, while modern

consumer-grade head-mounted displays (HMDs) have a FoV



Entry-Level VR Advanced-level VR Ultimate-level VR

Continuous experience duration Less than 20 minutes 20 to 60 minutes Over 60 minutes

Estimated time Now-2 years 3-5 years 5-10 years

Video resolution Full view 8K 2D Full view 12K 2D Full view 24K 3D

Full frame resolution 7680*3840 11520*5760 23040*11520

Single-lens resolution 2K 4K 8K

Frame rate 30/s 60/s 120/s

Video bitrate (360◦ scheme) 64 Mbps 279 Mbps 3.29 Gbps

Video bitrate (FoV scheme) 12.8 Mbps 55.8 Mbps 568 Mbps

Requirement on access bandwidth 100 Mbps 1 Gbps 2-5 Gbps

TABLE I
CHARACTERISTICS OF VR-BASED VIDEO STREAMS.

within 90◦ and 120◦ horizontally and vertically [7]. The figure

also presents what is displayed on the screen compared to what

is perceived by the human brain.

VR videos are captured by mounting several cameras with

a high degree of FoV overlap on dedicated rigs 1 (between

6 to 14 cameras, typically). For a 120◦ FoV resolution of

4K, the 360◦ video can be up to 24K which induces bit

rates in the order of 1 Gbps. The video can be encoded

as a single stream. However, as such streams consume a

tremendous amount of bandwidth, only a few Internet users

can afford to watch them at the moment. For these reasons,

specific projection techniques such as pyramid encoding 2 are

under development to offer a low degree of distortion and a

low consumption of resources. Using the scheme proposed

by Facebook, a 360◦ video is transformed into the pyramid

format for 30 viewing regions and 5 different resolutions,

making a total of 150 different sub-streams. While this scheme

requires more storage, it helps reducing network resource

consumption up to 80%. The downside is that it requires a tight

coordination between the headset and the streaming server to

switch between sub-streams. For a seamless user experience,

it is commonly accepted that the motion-to-photons latency,

i.e. the delay between head movements and video updates on

the screen, cannot exceed 20 ms [8].

To offer the best user experience under constrained network

and computation resources [9], two classes of transmission

schemes are currently envisioned:

1https://www.360rize.com/
2https://code.facebook.com/posts/1126354007399553/next-generation-

video-encoding-techniques-for-360-video-and-vr/

Fig. 1. Field of Fiew (FoV) using Head Mounted Displays (HMD)

• 360◦ scheme: the full 360◦ video is transmitted to the

terminal which in turn extracts at a low complexity the

right visual data to display.

• FoV scheme: only the visible part of the video is trans-

mitted to decrease bandwidth. The 360◦ video is split into

several sub-streams which are downloaded according to

user position. As the terminal needs to switch between

sub-streams, the maximum network latency is a few

milliseconds.

Table I presents in details the foreseen characteristics of

VR traffic [9] at three time horizons: Entry-level (today),

Advanced-level (3 years from now) and Ultimate-level (5 years

from now). Videos available today (Entry-level) are encoded

at a bitrate of 64 Mbps for a full 360◦ view, while Ultimate-

level VR videos are expected to be in the order of a few

Gbps. Considering state of the art encoding techniques such

as pyramid encoding, we consider a 80% reduction of the

video bitrate for FoV compared to 360◦. Although these figures

might decrease as new encoding or streaming features are

released, they are in-line with current estimations from VR

stakeholders. In the same time period (next five years), Cisco’s

VNI [1] predicts that broadband Internet access for fixed

networks will grow at a much slower pace. For instance, the

average access bandwidth is expected to increase in North

America from 37.6 Mb/s in 2017 to 51.4 Mb/s in 2020. This

confirms that VR streams are very likely to be considered as

elephant flows in operators and CDNs infrastructures.

Flash crowd events are expected to amplify this phenomena

and generate remarkable tidal effects. Indeed, for live events

the audience may raise suddenly and lead to a 100 times

increase of the difference between peak traffic and background

traffic [9].

B. Impact for request routing

Request routing is the process of directing client requests

to the best CDN servers [10]. In general, it aims at avoiding

the servers that provide low performance (e.g., poor processing

and downloading time) while trying not to overload the others.

Routing decisions are typically updated by the CDN op-

erator every few minutes solving a stable marriage problem

with tree constraints (see Akamai’s paper [2]). These decisions

are enforced through DNS mappings between clients and



CDN servers. And they are defined at the granularity clients’

local DNS or IP prefix. The stable marriage algorithm takes

input parameters such as the average network capacity and

latency, which are both estimated from past requests. It also

considers pre-configured routing preferences and the status of

the infrastructure (e.g., current server load, capacity). Then,

when a client requests a specific content, it resolves the content

URL and retrieves from the DNS system a candidate list of

typically 2 or 3 CDN servers. If it fails to download the content

from the first server, because of a cache miss for instance, the

client tries from the second one, and so on.

As explained in Sec. II-A, VR sessions are expected to

consume a significant amount of bandwidth and processing.

As a consequence, their admission must be carefully decided.

Making decisions at a coarse granularity, like in traditional

CDNs, will not work and lead to the rejection of most

demands. Ideally, a centralized entity should handle elephant

requests and properly pack them into the infrastructure. How-

ever, the optimization problem is generally too large for a

resolution in real-time. In practice, the challenge is to find a

solution that scales.

The elephant nature of VR flows also calls for a tighter

coordination between ISP and CDN providers so that network

resources can be dynamically allocated between servers and

clients. As explained in [9], this requires a significant evolution

of access and transport networks so that end to end bearers

can be setup in a few milliseconds. In our paper, we consider

the current situation where there is no dynamic cooperation.

C. Problem formulation

In this section, we formulate the request routing optimiza-

tion problem in order to maximize the number of VR sessions

served by the CDN.

Let V = {V1, ..., Vn} and Q = {Q1, ..., Qk} be respectively

the set of servers and requests. E = {(i, j) | i ∈ V, j ∈ Q}
denotes the set of possible request-server routing and G =
(V,Q,E) the corresponding bipartite graph. Like in current

CDNs, the existence of a link (i, j) in G is determined by

routing preferences which depend on the relative geographical

position of clients and servers or on peering agreements.

For all existing links (i, j) we denote by lij their round-trip

latency. The maximum bandwidth that each server i can output

is denoted by bi and each server cannot handle more than πi

requests in parallel.

For each request j, we denote by rj its bandwidth. The

transmission scheme used by each request is decided a priori:

for each possible server i, the system checks if the round-trip

latency allows the use of FoV (i.e., if lij ≤ 10 ms). If this holds

true for at least one server, we select FoV as it consumes the

lowest amount of resources and our objective is to maximize

the number of accepted requests.

We can now model the request routing problem as an

optimization one. For all (i, j) ∈ E we denote by xij the

binary variable equal to one if and only if request j is

redirected on server i. The problem can hence be formulated

as the following packing problem P:
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Constraint (1) imposes the maximum bandwidth capacity of

each server node; constraint (2) limits the number of parallel

requests on a server; constraint (3) models the fact that each

request can be assigned to at most one server. The objective

function of the Integer Linear Program (ILP) above maximize

the number of redirected requests.

Although the overall problem can be modeled by the In-

teger Linear Program (ILP) above, this formulation requires

prior knowledge of all future requests, hence it represents

an offline problem. In practice, the CDN discovers arrivals

and departures of requests when they occur and sequential

decisions must be taken to accept or reject requests. Moreover,

the controller cannot revisit past decisions. The request routing

problem is therefore the online version of this problem. In this

particular setting, the goal of online algorithms [11] is to be

as competitive as possible with regards to the offline optimal,

impossible to attain in practice.

III. SCALABLE REQUEST ROUTING

As mentioned in Sec. II-B, DNS has a number of advan-

tages. Thus, we believe that it should remain a key component

of the system. Indeed, it eases content integration in web appli-

cations and helps solving web-scale load balancing problems.

For this reason, we propose VR Admission Control (VRAC),

a two step request routing approach which extends current

routing solutions based on DNS mappings.

As the rate of received requests by the CDN can be high,

VRAC adopts a batch processing approach to optimize the

request allocation, under the constraint that decisions must

be taken in less than one second for each batch. Indeed,

the goal is to accept a maximum number of requests while

being responsive to clients. Responsiveness is an important

requirement as users are waiting for their VR session to start.

As depicted in Fig. 2, we also group CDN servers into clusters

by partitioning the bipartite graph G with the objective of

solving smaller optimization problems inside clusters. The

outcome of the clustering procedure are DNS mappings which

connect clients’ IP prefixes to VRAC cluster heads. In this

way, routing requests are directed towards the best proximal

group of servers based on coarse grained and quasi static

information. Then, in a second step, cluster heads determine

precisely which CDN servers3 must process requests.

As the optimization problem for each batch is too large

for a global resolution to optimality in real-time, the cluster

3To simplify the presentation, we reduce to a server, a CDN node which
may actually contain several physical servers.



Fig. 2. Two step request routing in VRAC: DNS directs requests to the best
cluster head which refines the decision.

approach helps to efficiently decompose the problem. In

addition, as presented in Sec. III-B, an efficient heuristic is

introduced to quickly obtain good allocations inside a cluster

and take the online aspect of the problem into account.

A. User mapping to clusters

To obtain a tractable problem we periodically decompose

the bipartite graph G into several clusters. Hence, we break

the large request admission problem into several smaller ones,

that could be solved in parallel by cluster heads. Since routing

requests come from different network regions, it makes sense

to assume that different sets of users can be linked to disjoints

sets of servers.

A natural idea to achieve this decomposition is to find a

minimum cut C of G (see Fig. 3). More formally, we seek for

a subset C ⊂ V ∪Q such that

cut(C) =
∑

p∈C, q/∈C

Apq

is minimized (where A is the adjacency matrix of the graph

G). Such a minimum cut C∗ would induce a first partition

(C∗, C̄∗) of the graph where the number of connections

between C∗ and C̄∗ is minimized. We then use this approach

recursively, to cluster the graph is several subgraphs. Notice

that the minimum cut problem is a polynomial problem that

can be solved efficiently with the Stoer and Wagner algorithm:

[12].

The output of the clustering defines DNS mappings. As it

operates at a coarse granularity, they can be updated at a slow

pace (e.g., a few times a day).

B. Intra-cluster admission

In this section we explain how to solve the routing problem

inside a cluster of n servers.

We now assume that we are in an online setting: at each

time step t, a new batch of kt incoming requests has to be

Fig. 3. A minimum cut that clusters the bipartite graph in two.

routed to the n servers, such that the constraints described

in Sec. II-C are satisfied. The goal is now to maximize the

number of accepted requests in the whole time windows [0, T ]
considered.

One of the strengths of our approach is that we do not

aim to maximize the number of accepted requests at each

time step t ∈ [1, ..., T ], as it would overload very quickly the

system by pack as many requests as possible in the clusters

at the beginning of the process. Instead of being greedy, we

adapt and generalize the approach proposed in [13] to solve an

online packing optimization problem which consists in saving

resources for upcoming requests.

Given a vector α ∈ R
n of coefficients belonging to [0, 1],

we define the optimization problem P(α) as the assignment

problem, defined in Sec. II-C, where the capacity of server i

has been scaled by 0 ≤ αi ≤ 1, i.e., bi is replaced by αi.bi in

equation (1).

Furthermore, to solve the integer linear program P(α) at

each time period in a short amount of time (less than one

second in practice), we first solve its linear relaxation P̃(α),
where the binary variables xij ∈ {0, 1} have been relaxed to

0 ≤ xij ≤ 1. From an optimal solution x̃ of P̃(α) we obtain

a first assignment, x̄ij , by randomly rounding x̃ij : for each

request j, we assign it to server i with probability x̃ij , i.e.,

Pr(x̄ij = 1) = x̃ij . Since x̄ij might be infeasible (with respect

to the capacity constraints), we then modify the server-request

assignment imposed by x̄ij by solving a very small knapsack

problem. Our algorithm can be summarized below:

We choose the parameter α such that we can save some

space for future requests. More precisely:

• Transition stage: Until no request that has been previ-

ously assigned to a server ends, we keep saving space

on the servers by dividing equally the bandwidth on the

servers by the estimated length of this period.

• Stationary stage: when assigned requests start to leave,

we estimate, on each server, at each time step, the average

bandwidth that is leaving the server (Leaving load) and

the average bandwidth that is assigned to the server

(Entering load). We use these two values to design α

and restraint the network to assign requests on servers

that are already almost full.

Notice that α is a learning parameter that learns, over time,

how much space should be saved for later on each server.



Algorithm 1: Assignment algorithm in VRAC

Output: Assign requests to servers on [0, T ]
/* For each time step */

1 for t ∈ [1, ..., T ] do

/* Solve the relaxed problem */

2 Solve P̃(α); get x̃ij

/* Use random rounding and get a

first (possibly) infeasible

assignment */

3 x̄ij ← ∀j ∈ [1, ..., kt] assign j to i with probability

x̃ij

/* Deduce a feasible assignment */

4 For each server, solve a knapsack to satisfy as many

assignments as possible in x̄ij

/* Update the coefficients α */

5 ∀ server i, αi =
Leaving load
Entering load

IV. PERFORMANCE RESULTS

This section details our experimental setup and the results

we have obtained.

A. Simulation setup

For the experiments, we consider a VR-ready CDN com-

posed by 10 clusters. Each cluster contains 100 servers for

approximatively 106 users. We assume that the clustering of

CDN servers is already decided and we simulate the admission

control algorithm in one cluster. We estimate that at each

server, 100 requests arrive every minute (the maximum number

of requests per server is never attained). We model the arrival

instants of requests with a Poisson process such that in average

166 requests arrive per second per cluster (i.e., 100 requests

/ minute / server or 144 million requests per day for the

whole CDN composed of 1000 servers). Furthermore, we

estimate that clients can only be served by 30% of servers.

In practice, the possibility to connect clients and servers is

defined by quasi-static preferences as for the computation of

DNS mappings.

The round-trip latency between clients and servers follows

a normal distribution with an average and a variance of both

20 ms. In our simulations, about 40% of users are served

with FOV as the maximum round trip latency for this scheme

is 10 ms. We take the average video bitrates from Table I

and consider that due to variable bitrates encoding, the size

of requests follows a normal distribution where the standard

deviation equals to 10% of the average. Similarly to [9], we

assume that the network bitrate is 1.5 times higher than the

video bitrate. Finally, the duration of requests is exponentially

distributed with an average of 5 minutes.

We compare our solution to CDN, a request routing scheme

similar to what is implemented today [2]. In this scheme, DNS

mappings are updated every minute solving a stable marriage

problem. Each request receives a list of s servers from which

the content can be retrieved. The client initiates a VR session

Fig. 4. Average acceptance ratio function of the penetration rate of Advanced-
level users.

with the first server and decides to switch from 360◦ to FoV

if the latency is below 10 ms. In case the session cannot be

established, the client tries with the second one, and so on. We

considered the current situation where s = 3 and a possible

future adaptation of the scheme with s = 15 that tries to accept

more requests when the system is highly loaded.

We simulated 1000 seconds so that the system arrives in

steady state. To obtain performance forecast of VR-ready

CDNs, we increase the penetration rate of VR technologies

by we varying the percentage p of requests using Advanced-

level VR. The rest of the requests (1-p) are at Entry-level.

We implemented the simulator using Julia and used CPLEX

to solve the relaxed problem and the small sub-knapsack

problems. All experiments were performed on a 2.7 GHz Intel

i7 dual-core CPU with 16 GB RAM. Simulation results are

average results over 5 runs.

B. Numerical results

Fig. 4 plots the average ratio of accepted requests over the

whole simulation as function of p. VRAC clearly outperforms

CDN and accepts almost all requests, although its acceptance

ratio falls to 90% when all users are at Advanced-level. We

believe that the evolution of Internet broadband access will

compensate the inflation of VR traffic so that almost 100% of

requests can be accepted with a scheme like VRAC. Looking

at the fast degradation of the performance of current solutions

(s = 3) for request routing, we see that VR requests must be

processed individually with efficient online packing algorithms

such as the one we proposed. The adaptations of CDN with

s = 15 improves the performance but the gap with VRAC

increases significantly with p. In addition, such adaptations

require a lot of trial and error accesses to CDN servers and

may induce a slow responsiveness.

Fig. 5 shows the acceptance ratio over time for a penetration

rate of 80%. We also show the average remaining bandwidth

capacity (for VRAC) of the servers over time. We see that the



Fig. 5. Acceptance ratio over time with a penetration rate of 80%.

steady state is reached at approximatively t = 200 s. In term

of execution times in all simulations, we saw that it takes in

average 412 ms to process one batch of requests with VRAC.

The maximum amount of time encountered is 847 ms which

meets our requirement of one second.

V. CONCLUSION

In this paper we proposed a hybrid control framework,

called VR-ready Admission Control (VRAC), to decompose

and solve the request routing problem at scale for VR-ready

CDNs. We demonstrated in a realistic setting that our method

outperforms current algorithms when the system is highly

overloaded. Our results show that taking custom decisions for

every request is decisive to withstand the ever increasing pene-

tration rate of data-hungry VR video streams. In particular, we

saw that when the percentage of users using advanced-VR is

increasing the classical DNS-based solutios based on a stable

marriage algorithm was not able to route a sufficient number

of requests, while our algorithm could maintain a success ratio

above 80%.

Future works along these lines include the integration of

advanced traffic predictions in the computation of the learning

parameter. We also aim to extend the problem with the

dynamic allocation of network resources between clients and

servers.
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