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Abstract—By separating control and data planes, Software-
Defined Networks (SDN) pave the way to a plethora of online
routing mechanisms that react instantaneously to sudden traffic
variation and network failures. In this paper, we introduce a
dynamic routing system where these online mechanisms strive
to solve an optimization instance that constantly evolves due to
new arrivals and departures as well as network failures and
repairs. We model the optimality gap, which is characteristic
to the surcharge cost paid by network operators, of such a
system as an auto-regressive stochastic process and we show
that its evolving average does not diverge. We further propose a
control policy that operates on top of the online routing solver to
dynamically decide when to reconfigure the network. The policy
minimizes the average surcharge cost and guarantees that the
network reconfiguration rate does not exceed a threshold set by
the operator. Numerical results show that our policy outperforms
periodic schemes and approaches that reconfigure constantly the
network after any system changes occur.

Index Terms—Software Defined Networking, Online Reconfigu-
ration, Routing Optimization, Lyapunov Stability.

I. INTRODUCTION

Software-Defined Networking (SDN) technologies have rad-

ically transformed the network architecture of data centers,

network overlays, and carrier networks [1]. They provide pro-

grammable data planes that can be configured from a remote

controller platform. This control and data planes separation

creates an opportunity to implement more efficient routing

processes than classical protocols, since the controller can take

real-time decisions at a (logically) centralized place using an

accurate view of the network.

Traditionally, routers collaboratively share topological infor-

mation and establish end-to-end paths using traffic engineering

protocols such as OSPF and MPLS with TE extensions [2].

The two different approaches used are: (i) hot standby mech-

anisms, which suffer from long recovering times, and (ii) IP-

level mechanisms, which are reactive but do not offer fine-

tuned control and may lead to suboptimal flow allocations [3].

Hence both approaches fall short of optimizing network uti-

lization while meeting QoS requirements and guaranteeing

resilience at the same time. Conversely, SDN architectures

unleash the potential to reconfigure in real-time custom paths

for each flow, so that network resources are optimized and

performance requirements are met (in terms of QoS and

resilience). This has already been showcased with the B4

controller [4] developed for inter-datacenter traffic, which

achieves high network utilization.

By enabling a global and online routing optimization, SDN

brings back to light online traffic engineering techniques, such

those summarized in [2], with new algorithmic challenges

when large networks have to be controlled. First, to set up

appropriately the data plane, the SDN controller needs to

solve an optimization problem of large size, often an extension

of the Multi-Commodity Flow (MCF) problem with a great

number of constraints and variables. To solve this problem, the

SDN controller usually implements iterative methods. Then,

contrary to existing routing solutions which allocate new

flows on top of existing allocations, the SDN controller can

reoptimize the flow allocation in real-time. However, as the

network must be configured within tight time constraints and

the instance to be optimized constantly evolves due to network

changes (e.g. new arrivals and link failures), there might be

a discrepancy between the solution computed by the SDN

controller and the actual flow configuration in the network.

Therefore, at each iteration of the computation, the SDN

controller can reconfigure the network according to the flow

allocation computed in the last iteration. However, network

reconfiguration itself degrades the QoS of data transmission,

since the system may need to tear down old routing paths

and set up new end-to-end connections. On the other hand,

leaving the network in the sub-optimal configuration may

become more expensive, since new incoming demands and

old ones that need to be rerouted after a failure, are quickly

rearranged with sub-optimal routing decisions. Therefore, a

key problem is to determine when to apply the computed

network reconfigurations.

We investigate the evolution of such a dynamical routing

system and model it with an auto-regressive stochastic process.

Under this framework, we prove that the optimality gap for

the routing cost does not diverge. Furthermore, we propose a

control framework that operates on top of the iterative routing

solver to limit the number of network reconfigurations and

to reduce at the same time the flow allocation cost. The

control policy applies the solution of the SDN solver to the

switches only when the benefit is larger than a threshold,

which is dynamically tuned over time. At any time instant such

a dynamic threshold combines the gap between the current

and optimal configurations and the number of reconfigurations

applied so far. Therefore the control policy strives to balance

the optimality gap and the reconfiguration rate.

Finally, we validate our system model and show the perfor-



mance of our control framework on a realistic network sce-

nario. Our results show that our control policy well approaches

the performance that can be achieved by constantly and

optimally re-configuring the network even in the presence of

network failures. Additionally, our solution greatly decreases

the number of system reconfigurations, thus increasing the

network stability and reliability.

The paper is structured as follows. Sec. II discusses related

work. Sec. III introduces the system model as well as the

assumptions considered in our work, while Sec. IV formalizes

the problem and provides closed-form formula to predict the

system performance. Sec. V introduces the framework and

the policy we propose to optimally control the system under

reconfiguration rate constraints. Sec. VI illustrates numerical

results in a realistic network scenario that validate our solution.

Finally, concluding remarks are discussed in Sec. VII.

II. RELATED WORK

The SDN controller can quickly optimize the routing con-

figuration of the network, thus increasing the link utilization

and the reactivity to failures. Google has already showcased in

2013 that they could use nearly 100% of the network capacity

with their OpenFlow WAN controller [4]. Programmable data

planes and centralized controllers for the network optimiza-

tion represent the main factors for this evolution. Protocols

like PCEP [5], Forces [6], and OpenFlow [7] have been

recently proposed to make network devices programmable

and controllable by a remote unit. At the same time, works

like [1], [8] have proposed distributed architectures that keep

a consistent view of the network in order to quickly compute

new configurations when the network change.

The work [9] presents several techniques to solve routing

problems in SDN infrastractures. To make such approaches

scalable with the problem size, several approaches have been

proposed using column generation [10] and rounding tech-

niques. However, these approaches have been mainly designed

for offline network planning. Therefore, they do not consider

an evolving instance of the problem that captures more closely

an online scenario where the network might be in a non-

optimal configuration.

As described [11], the online version of the MCF problem,

where new variables and constraints appear over the time

without any prior knowledge, has been thoroughly analyzed

both for throughput maximization and load balancing. The

methodology has been extended to consider more general

online packing problems [12] to derive algorithms with theo-

retical performance guarantees. Specifically, online algorithms

that can compete with offline oracles that know in advance the

sequence of future events have been proposed. However, they

are mainly appropriate for admission control of new requests,

since they cannot change previous decisions and reconfigure

the flow allocation.

III. SYSTEM ARCHITECTURE

We consider an SDN controller with two main components:

1) one to quickly accept new demands and react to failures

and 2) one to re-consider the flow allocation over time. We

explain the two systems below.

A. Components Overview

• Fast Connection Setup/Fast Recovery (FCS/FR). When con-

nection requests arrive at ingress nodes or when a group of

demands have to be rerouted after a failure, the SDN controller

has to find a set of feasible paths satisfying multiple constraints

(e.g., capacity, and QoS). Although this problem concerns one

or few demands, it is still quite complicated to solve due

to the numerous constraints relating to QoS and reliability.

Additionally, the SDN controller needs to quickly compute a

solution to route demands. Hence at this stage, the goal is not

to optimize the network, but rather to find a quick approximate

path allocation, which can even be precomputed.

• Garbage Collection (GC) of network resources. The se-

quence of sub-optimal network configurations obtained as a

result of FCS/FR poses significant concerns on the evolution

over time of the global objective function. Apart from arrivals

or failures, the departures and repairs also affect the utility

of an allocation. Suppose a demand is reallocated to an

expensive backup path after a link failure on the primary path.

After the link has been repaired, the demand can be routed

on the cheaper primary path. Therefore, periodic or event-

based reconfiguration of the overall network can improve the

optimality gap. We call this mechanism Garbage collection

of network resources since it mirrors the way a Java virtual

machine collects garbages and reorganizes the memory.

Fig. 1 shows an example of an SDN controller which strives

to minimize cost. In this example, for simplicity the FCS/FR

uses a shortest path algorithm, while the GC uses a mincost

MCF solver. The numbers on links indicate the link costs,

while all link capacities are 1 Mbit/s. Both demands (A− B

and A−D) require 1 Mbit/s. After the failure of link (B;D),
FCS/FR reallocates demands A − B and A − D on paths

{A,B} and {A,C,E, F,D}, respectively (step 1). When the

link (B;D) has been repaired (step 2), the network operates

in a sub-optimal state, since a cheaper flow allocation exists.

Finally, the controller runs GC and decides to change the flow

allocation (step 3), saving in this way 20% of the cost.

B. Solving Large Routing Problems

In this section we focus on the GC and explain how this

mechanism can be implemented. To re-optimize the flow

allocation, the controller has to solve an extension of the min-

cost MCF problem, which involves millions of variables and

constraints on large scale networks. Due to the immense size

of the problem instance (network graph and set of demands),

we consider in the rest of this paper a Linear Programming

(LP) approach, which iteratively improves the solution at each

step until it converges to the optimal solution. The advantage

of the LP approach is that by considering the path formulation

of the problem1and using the column generation extension of

1In the path formulation, each optimization variable is the flow volume
assigned to a path for a specific commodity.



Fig. 1: Example of an online SDN routing optimization with two
demands. Edges labels represent costs of links. All links have capacity
of 1 Mb/s. Both demands (red and black arrows) require 1 Mb/s. The
cost evolution is computed according to the allocation performed by
FCS/FR and GC.

the simplex method [13], only a small number of variables

and constraints are considered at each iteration.

Due to the arrivals and departures of network demands

as well as network failures and repairs, the instance of the

optimization problem under consideration changes over time.

Since the convergence time of the approach is considerable,

and comparable to the rate of network changes (traffic and

failures), a number of research questions are raised with

regards to the performance of this dynamical system. For

example, it may be possible that the solver is unable to track

adequately the rapid system changes, and the cost of the

solution over time deviates significantly from the optimal one.

In the rest of the paper we study the evolution of the objective

function under repeated approximated solutions, investigating

its divergence from the optimum cost.

IV. PROBLEM FORMULATION

This section presents the model for the general class of

online optimization routing algorithms we consider.

A. Optimization Instance

We begin by formulating an optimization problem motivated

from datacenter interconnection operators. Datacenter opera-

tors route the interconnection traffic through leased infrastruc-

ture which may vary in cost per link. Thus, they are interested

in optimizing the network traffic in order to minimize the total

used cost.

We model the network infrastructure with an undirected

graph G = (N , E), where the vertex set N represents the

set of network devices and the edge set L models the set of

links e = {i, j}, i, j ∈ N connecting network devices. Each

link e ∈ L has a limited capacity be and a cost ce, which refer

the maximum amount of traffic that can be transmitted and

the price (either a monetary price or operational cost) paid for

using that link, respectively.

A unicast demand k ∈ K is identified by a source-

destination pair sk, tk ∈ N , and the amount of traffic dk that

has to be transmitted from sk to tk. The set K represents

the active demands on this problem instance that need to be

routed through the network. To this end, the controller solves

an instance of the min-cost MCF problem in order to find the

network flow that satisfies the set of active demands at the

minimum cost. More specifically, the min-cost MCF problem

can be formulated as the linear program (1)-(3), where real

variables (xp)p∈P and (ye)e∈E represent the path and link

utilization and take values in [0, 1]. In this model, P is the set

of all network paths, while Pk ⊆ P represents the set of all

paths which can be used to transmit the traffic of the demand

k ∈ K from the source sk to the destination tk. In contrast,

the set Pe ⊆ P contains all paths that use edge e ∈ E .

COPT = min
(xp),(ye)

∑

e∈L

ceye (1)

subject to
∑

p∈Pk

xp = 1 ∀k ∈ K (2)

∑

p∈Pe:k∈Pk

dkxp ≤ beye ∀e ∈ L. (3)

The objective function (1) models the overall price paid by

the operator for using the network links, the constraints (2)

ensure that each demand k ∈ K is routed from its source to

its destination over at least one path and the constraints (3)

are the link capacity constraints.

B. Online Version With Diminishing Returns

In order to scale with the network size, we use the column

generation technique to solve the LP problem (1)-(3). This

technique starts from a feasible point and at each iteration

t adds new variables (i.e., new paths) that can improve the

objective function C(t) until it converges to the optimum

COPT . Let us denote the optimality gap with Q(t) , C(t)−
COPT (t) ≥ 0. The column generation algorithm shows

diminishing returns in the reduction of the optimality gap, with

a very steep improvement in the very first iterations. Supported

by our validation, we model the improvement of the optimality

gap at every iteration t with an exponential function of the

type ( 1
1−η

)−t, t = 1, 2, . . . . This corresponds to the following

recursive equation:

Q(t+ 1) = (1− η)Q(t), (4)

where η ∈ (0, 1) is a constant that relates the volume of the

next improvement to current optimality gap values. Essentially,

at each iteration of the solver the optimality gap is reduced

by a fraction η. To validate our model, we evaluate the

evolution over time of the optimality gap for our iterative

algorithm in different traffic conditions using the GEANT

network topology. Fig. 2 shows such evolution as a function

of the number of iterations and two exponential functions that

fit the 50 and 99 percentiles obtained over 500 simulations.

Specifically, red and black solid lines represents 50 and 99

percentiles, respectively. It can be observed that the optimality

gap Q(t) obtained in numerical simulations is always lower

and upper bounded by two exponential functions, namely

9−t and 2−t, which are depicted as green and blue dashed



lines in the figure. Based on this observation, we approximate

Fig. 2: Evolution of the optimality gap Q(t) in the GEANT scenario.
The 50 and 99 percentiles are computed considering 500 simulations.

the convergence rate of our column generation solver to be

exponential. Other solvers using full gradient and stochastic

gradient methods have been shown to have an exponential

convergence rate for strongly convex objective functions [14].

Nonetheless, we leave as future work the analysis of other

solution techniques, with sublinear and linear convergence

rates [15], [16].

C. Modeling Network Events

In the above section we defined the MCF instance for

a given set of demands K and a given network topology

G = (N , E). Next, we allow this instance to vary over time.

In particular, at each iteration t we may have a potentially

different set of demands K(t) and network topology G(t),
due to demand arrivals/departures or network failures/repairs.

In case of a new demand arriving, a “fast connection setup”

algorithm is utilized to find a feasible path. We assume that

such a path can always be found. This assumption is not

restrictive in practice because (1) systems are often over-

provisioned, (2) in the case of a network overload due to

too many arrivals, a congestion controller may reject some

demands to make the system feasible. In case a link failure

occur, a “fast recovery mechanism” restores the dropped

connections on alternative paths (e.g., in case of Dedicated

Backup Path Protection schemes) or might drop demands if

there is not enough capacity (e.g., in case of Shared Backup

Path Protection schemes). In both cases, we model the link

failure as an extra cost in the objective function, since the

change that has occurred leads to a new min-cost instance for

which the current flow allocation might not be optimal.

New events correspond to arrivals or departures of demands

as well as failures or repairs of links. They all result in a

“jump” in the optimality gap Q(t). The reason an arrival

“hurts” the optimality gap is related to the fact that the new

arrival is badly configured by the “fast connection setup”

algorithm, and hence it is not globally optimized with respect

to existing demands. The departure of a demand and a network

failure also hurts. In practice, the impact of a departure

depends on the actual cost of the path the departed demand

was using. A low cost path will result in a significant jump in

the optimality gap, since this path is not used any more, and

thus it is possible that with appropriate swapping we could

redirect a demand using a high cost path to this cheap path.

In contrast, a node or link failure reduces the network capacity

and causes the drop of demands routed through the failed

link/node, triggering a “fast recovery” mechanism that brings

the system in a suboptimal state. Similarly, when a link or

node is repaired, the demands can be rearranged to reduce the

overall network cost. To simplify the considerations though,

we begin by assuming that all events incur the same cost,

which is denoted by e. More elaborate models are left for

future work. We assume that the arrivals, departures, network

failures, and repairs occur according to an i.i.d. stochastic

process A(t) with mean E[A(t)] = E[A] = λ, and finite

variance Var[A(t)] = σ2
A.

The optimality gap evolution can now be rewritten to

include the addition of the cost due to the evolving system:

Q(t+ 1) = (1− η)Q(t) + eA(t). (5)

This is a first order auto-regressive stochastic process with

discrete non-Gaussian disturbance.

D. Performance Analysis

Considering the previous model, we study the performance

of the routing system. Using the recursive equation above, we

may determine the optimality gap at time t

Q(t) = (1− η)tQ(0) + e

t
∑

i=1

(1− η)i−1A(t− i).

Taking expectation at time slot t we have

E[Q(t)] = (1− η)tQ(0) + eλ

t
∑

i=1

(1− η)i−1

= (1− η)t
(

Q(0)−
eλ

η

)

+
eλ

η
. (6)

A first question we may pose is that of stability. Will the

system diverge to infinite cost, or the cost is guaranteed to

remain bounded? We use the formal definition of “strong

stability” from Queueing Theory, whereby a stochastic process

Q(t) is stable if

lim sup
T→∞

∑T−1
t=0 E[Q(t)]

T
<∞.

Strong stability implies other weaker forms of stability like

rate stability and mean rate stability [17]. By summing up,

dividing by T , and applying limsup on (6), we get

lim sup
T→∞

∑T−1
t=0 E[Q(t)]

T
=

eλ

η
.

This satisfies the stability criterion as long as η > 0. Conclu-

sively, the average optimality gap remains finite irrespective

of how high the arrival rate of events is, or how slow the

exponential slope of our solver is.

Since stability is guaranteed, we turn our attention to the

evaluation of the time average optimality gap incurred by the

dynamics in our system, as described by (6). If we define



Q , lim inft→∞E[Q(t)] as the limiting behavior of E[Q(t)],
it follows that the limit always exists, and specifically

Q =
eλ

η
. (7)

We see that the dependence of average optimality gap on the

initial condition Q(0) washes away with time. The average

optimality gap then can be improved either by 1) reducing the

cost of event arrival e or 2) increasing η, which corresponds

to a faster solver.

In a similar fashion we may also derive the variance

Var[Q(t)] , E[Q2(t)] − E[Q(t)]2. We give here directly the

limit of the variance σ2
Q:

σ2
Q = lim

t→∞
Var[Q(t)] =

e2σ2
A

η(2− η)
, (8)

where σ2
A is the variance of the arrival process.

V. MINIMIZING NETWORK CHANGES

In the previous section, we assumed that at each iteration t

the best solution found so far is applied to the network. By

the modeling assumption, the new solution always reduces the

operational cost. Since the new solution is different from the

previous, it is implied that we need to reconfigure some of

the flows. Reconfiguring a flow takes time and causes small

disturbances in the performance, hence we want to avoid it

if possible. For example, at a given iteration, we may decide

not to apply the obtained solution from the solver and keep

the flows unaffected. In this case, however the cost diverges

from the optimum over time, thus increasing the surcharge cost

paid by the operator. In this section we will present a control

framework design around the SDN controller to decide dy-

namically when to reconfigure the network. Furthermore, we

will introduce a control policy that provides good performance

with a limited reconfiguration budget.

A. Control Framework for SDN Controllers

The goal of minimizing the number of flow reconfigurations

clearly conflicts with the goal of minimizing the average opti-

mality gap Q. It is possible to apply the best found solution at a

frequency less than one, which will incur less reconfigurations

but it will increase Q. Hereafter, we investigate this important

tradeoff.

Instead of the number of reconfiguration points, we care

more about the number of reconfigurations. To get to the

gist of this problem, we need to accurately model the law

behind the number of reconfigurations needed in order to

obtain a certain gain from the network. In particular, we

observe a diminishing returns law, namely the closer we

are to the optimal, the more reconfigurations we need to

impose to get an improvement of certain value. This results

in the following: to improve the optimality gap by a certain

fraction, the number of configurations needed are roughly the

same, say h, irrespective of the value of the optimality gap

Q(t). In our model, we therefore consider that the number of

reconfigurations is roughly the same at each reconfiguration

point, and we denote this with h.

At each iteration, our controller can decide whether to use

a new solution, incurring h reconfigurations and yielding a

multiplicative improvement on the cost (1− η), or instead do

not apply the solution leaving the cost unaffected but resulting

into zero reconfigurations. Formally, let Iπ(t) = 1 represent

the decision of applying the current best solution to the system

by means of h reconfigurations, and Iπ(t) = 0 the decision

not to apply it, where π denotes the algorithm we are using

to decide Iπ(t). Figure 3 depicts such a dynamic controller,

which decides at each iteration whether to apply the solution

of the routing solver by metaphorically turning the switch

controlled by Iπ(t). Clearly, the control decision Iπ(t) affects

Fig. 3: Dynamic control of the routing solver. By selecting at each
time slot the value of I

π(t), the control policy decides whether to
use the solution computed so far by the routing solver.

the evolution of the operational cost and the frequency of

reconfigurations.

At this point we must note that the actual computed solution

by the solver has the same error evolution Q(t) as before,

which is an uncontrollable process with time-average mean

Q, which is also the minimum possible average cost. On the

other hand, the actual operational cost may be higher when

we do not apply the best solution at each step. Let X(t) be

the operational cost, while Q(t) still represents the theoretical

cost that corresponds to the best current solution, which is not

necessarily applied to the system.

As before, we have

Q(t+ 1) = (1− η)Q(t) + eA(t).

The evolution of the operational cost Xπ(t) is then

Xπ(t+1) = (1−η)Q(t)Iπ(t)+Xπ(t)(1−Iπ(t))+eA(t), (9)

We define the control policy to be a mapping from the state

of the system (Xπ(t), Q(t)) to the action set {0, 1}.

Based on the simple model explained above, the total

number of reconfigurations under policy π by iteration t is

simply

Nπ
R(t) = h

t
∑

τ=1

Iπ(τ),

while the frequency of reconfigurations under policy π by



iteration t is

Rπ(t) =
Nπ

R(t)

h
=

t
∑

τ=1

Iπ(τ).

We define the frequency of reconfigurations as

R
π
, lim sup

t→∞

E[Rπ(t)]

t
= lim sup

t→∞

E[
∑t

τ=1 I
π(τ)]

t

We are therefore interested in the following optimization

min
π

lim sup
t→∞

∑t
τ=1 E[Xπ(τ)]

t
(10)

s.t. R
π
≤ Rmax (11)

where we pick a control policy with decisions {Iπ(t)}, t =
1, 2, . . . in online fashion to minimize the average operational

error lim supt→∞

∑t
τ=1

E[Xπ(τ)]

t
while keeping the reconfig-

uration frequency less than Rmax.

B. Drift-plus-penalty Policy (DP)

We begin by reformulating the above problem. Instead of

minimizing the time average of Xπ(t), we will attempt to

minimize the time average of Xπ(t) − Q(t). Since Q(t) is

uncontrollable, the two are equivalent.

A fundamental tool of our proposition is a virtual queue,

which is essentially a counter (which takes real values). Our

goal is to use the stability of the virtual queue in order to

ensure the satisfaction of constraint (11). We feed this queue

with Iπ(t): in an iteration where the solution is applied to

the system, we add one to the counter, while in an iteration

where the solution is not applied, we do not. We also serve

the queue with Rmax. Hence the queue evolves according to

the following recursion:

V (t+ 1) = (V (t)−Rmax)
+
+ Iπ(t). (12)

Suppose that we choose a control policy which stabilizes

queue V (t). Then it follows that the time average of arrivals

is less than or equal to the time average of departures, i.e.,

lim sup
t→∞

∑t
τ=1 E[Iπ(t)]

t
≤ Rmax, (13)

which satisfies the constraint (11).

Let us first define the Lyapunov drift. Consider the quadratic

function L(x) = x2. We define the Lyapunov drift for the

Markov chain (V (t)) as

∆(t) = E[V 2(t+ 1)− V 2(t)|Xπ(t), Q(t), V (t)] (14)

≤ (Iπ(t))2 +R2
max − 2V (t)(Rmax − Iπ(t)) (15)

Next, consider the instantaneous penalty δ(t) = E[Xπ(t+
1)−Q(t+1)|Xπ(t), Q(t), V (t)]. Clearly the penalty depends

on Iπ(t), see (9). For example, we may minimize it by

choosing Iπ(t) = 1. On the other hand, this adds a counter

in the virtual queue. Essentially, a good control policy should

try to achieve a good balance between the two.

For this purpose we define the instantaneous metric ∆(t)+
Kδ(t), called drift plus penalty. At each slot we would like

to minimize this metric. To achieve this our policy needs to

strike a good balance between stabilizing the queue (hence

choosing Iπ(t) = 0 multiple times) and keeping the penalty

small by choosing Iπ(t) = 1 when appropriate.

We have

∆(t) +Kδ(t) ≤ (Iπ(t))2 +R2
max − 2V (t)(Rmax − Iπ(t))+

+K(1− Iπ(t))(Xπ(t)−Q(t+ 1))

= Iπ(t) [1 + 2V (t)−K(Xπ(t)−Q(t+ 1))]+

+R2
max − 2V (t)Rmax +K(Xπ(t)−Q(t+ 1)).

To minimize the right hand side it suffices to solve the

following optimization

min
x∈{0,1}

x [1 + 2V (t)−K(Xπ(t)−Q(t+ 1))] . (16)

To minimize the drift plus penalty, our policy uses a dy-

namic threshold to decide whether to reconfigure the network

(i.e., to set Iπ(t) = 1):

I(t) =

{

1 if V (t) < K(Xπ(t)−Q(t+1))−1
2

0 otherwise.

A first observation is that to implement this policy we only

need to keep track of the virtual queue V (t), the gap of the

solution Q(t)−Q(t+1) and the operational cost at the previous

iteration Xπ(t); K is a constant we choose high enough to

approximate well the optimal solution. Typical values for K

are 1000. For static parameters (i.e., constant arrival rates of

demands and failures) we may choose K arbitrarily large, and

initialize the virtual queue with V (0) = 2K.

This analysis shows that a simple threshold mechanism

minimizes the right hand side bound of the instantaneous drift-

plus penalty. Prior work [17] shows that in specific scenarios

it is possible to use such policies to make the drift negative

in states where queues are large, and use it to solve stochastic

convex optimizations like (10)-(11). In fact, this is not directly

possible for our problem due to the memory our system has

from (9). As a result, the drift-plus-penalty algorithm we

derive in this section is not provably optimal, however as we

show next by simulations, the performance evaluation of this

algorithm is significantly good.

VI. EXPERIMENTAL RESULTS

To evaluate the dynamics of a real online SDN routing

optimization system, we used a scalable routing solver based

on column generation to iteratively solve the linear program

(Eq. (1)-(3)). The algorithm roughly works as follows: it

maintains a feasible solution, allocating new demands or

repairing damaged demands one by one using shortest paths

routing on the residual graph. After this initialization phase,

it iterates by adding and removing paths (i.e., xp variables)

to a restricted version of the problem until it converges to
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Fig. 4: Performance evaluation of the routing control policies over GEANT without system failures.
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Fig. 5: Performance evaluation of the routing control policies over GEANT with system failures.

the optimal point. The algorithm uses the dual formulation

of Eq. (1)-(3) to add only variables that can reduce the cost

and to test the optimality of the current solution. Even if

the algorithm can converge to the optimal point, it may stop

before computing the optimum due to the limited amount of

computational time that the SDN operator might have set.

On top of this iterative routing solver, we implemented

the control framework and the DP control policy proposed

in Section V (labeled ’DP’ in the figures). As the goal is

to stay below a target reconfiguration rate while minimizing

the routing cost, we compared the performance of our policy

against random (labeled ’RND’) and periodic (labeled ’Per’)

control policies that select reconfiguration points randomly

with probability 1
Rmax

and periodically with rate 1
Rmax

.

To evaluate our control policies in a realistic senario, we

used GEANT [18], the high bandwidth pan-European research

and education backbone, which is composed of 22 nodes

and 36 high capacity 40G links. We generated random traffic

demands and link failures as Poisson arrivals increasing the

traffic load λ1 ∈ {10, 12, 14, 16} demands/s and the link

failure rate λ2 ∈ {1, 1.2, 1.4, 1.6} failures/s. Therefore, in case

of failures the network event rate is λ ∈ {11, 13.2, 15.4, 17.6}
events/s. All demands and failures have duration of 10s and

5s, respectively. We simulated T = 100s of traffic and set the

limit of the computational time for one iteration of the CG

algorithm to 0.3s. Demands arriving between two executions

are buffered and served at the next time slot. For each of the

two scenarios, we perform 10 independent measurements.

A. Performance without Failures

In this set of simulations, we varied only the traffic load and

we compare the control policies against the optimal solution

computed by the LP solver (curve labeled ’LP’). Note that

this value is a lower bound that can be obtained only if

we have enough time to converge and we can reconfigure

the network for each occurred event. To compare the oper-

ational routing cost obtained by the control policies with the

optimal solution, we have considered the fractional version

of the problem for computational reason. Without loss of

generality, we omitted the rounding step required to obtain an

integer solution from the routing solver. Fig. 4(a) illustrates

the average cost of the flow allocation (i.e., 1
T

∑T
t=1 C(t)).

We can observe that the drift-plus-penalty policy (DP) well

approaches the solution obtained by always reconfiguring the

network (LP). In contrast, both the periodic (Per) and random

(RND) policies have worse performance (from 1.5 to 4 times

higher average cost), since they select wrong reconfiguration

points with a small benefit for the system. This is even more

evident from Figure 4(b), which shows the average number

of reconfigured links per demand (LP is not depicted, since it

reconfigures the network all the time). Per and RND impose

more changes to the network and incur larger cost than DP.

Therefore, periodically or randomly reconfiguring the network

results in bad performance, since the controller cannot achieve

the best trade off between optimality gap and number of

reconfigurations.

Finally, Figure 4(c) illustrates the evolution of the relative

cost over time (i.e.,
C(t)

COPT (t)
) for one experiment with λ1 = 10

demands/s. It can be observed that most of the time DP tracks

the optimal cost (i.e.,
C(t)

COPT (t)
= 1), which can only achieved

by continuously reconfiguring the network. The gap from the

optimal solution increases when the number of active demands

in the system grows (i.e., when we have a burst). This is due

to the size increase of the problem instance and the fact that

the iterative algorithm does not have enough time to converge

to the optimum.

B. Performance with Failures

In this scenario, we varied both the traffic load (λ1 ∈
{10, 12, 14, 16} demands/s) and the link failure rate (λ2 ∈
{1, 1.2, 1.4, 1.6} failures/s). In our simulation, we suspended

any active demand whose bandwidth cannot be completely



satisfied after an iteration of the CG algorithm due to a link

failure (i.e., any demand that can be only partially rerouted

after a link failure is blocked and reactivated only if it can

be later satisfied). We compare the performance of the three

control policies in terms of average outage probability of data

connections2 and average number of reconfigured links. Note

that we omit the outage probability for the LP solver since it

is always zero. Indeed, we assumed that the LP controller can

instantaneously compute the optimum for the new problem.

Fig. 5(a) shows the average outage probability of data con-

nections as a function of the rate of network events (demand

arrivals plus link failures) occurring in the system. We can

observe that DP outperforms simple control policies like RND

and Per, thus reacting more efficiently to link failures in

addition to demand arrivals/departures. Similarly to demands

arrivals/departures, the failure causes a jump in the optimality

gap, thus enabling the drift-plus-penalty control policy to apply

a reconfiguration. In contrast, periodic and random policies

need more time to recover from link failures, since they select

reconfiguration points that do not necessarily provide a huge

improvement in the optimality gap. Fig. 5(b) illustrates the

average number of reconfigured links per demand. Differently

from the scenario described above, link failures and repairs

increase the overall number of reconfigurations since the

solver is triggered by more events than before. Furthermore,

a link failure requires to use longer paths, thus increasing the

number of links that must be changed between consecutive

reconfigurations.

Fig. 5(c) illustrates the evolution of the instantaneous outage

probability for the three different control schemes when the

traffic load is equal to λ1 = 10 demands/s and the link failure

rate is λ2 = 1 failures/s. We can observe from the figure that

DP reacts more quickly to link failures than RND and Per. The

larger instantaneous outage probability of DP in some interval

is simply due to the higher available capacity for RND. Indeed,

if several demands are instantly suspended without their quick

recovery, we might have in the near future higher residual

capacity for future demands. However, in the long run such a

myopic behavior leads to lower performance as illustrated in

Fig. 5(a).

Finally, we underline that our control framework is orthog-

onal to typical backup approaches, which require the booking

of additional resources (e.g., link disjoint backup paths) to

handle failures in real time. In particular, our framework can

effectively work with backup approaches in order to reduce

the amount of resources dedicated to fast recovery. Indeed,

our simulation confirms that our control policy can efficiently

handle link failures with a limited reconfiguration budget.

VII. CONCLUSION AND PERSPECTIVES

Software-Defined Networking is foreseen as a means of

using more efficiently network resources and dynamically

adapting the routing configuration over time. In this context,

2Outage probability in a given iteration t is defined as the ratio of suspended
connections w.r.t. the total active connections.

we study the evolution over time of the optimality gap of

a general class of iterative routing solvers, which compute

a sequence of feasible solutions up to the optimum with

diminishing returns. We show that the optimality gap does

not diverge and we propose a control framework working on

top of any routing solver to bound the network reconfiguration

rate. Within this framework, we propose a control policy that

achieve the best trade-off between reconfiguration rate and

optimality gap. Simulations in realistic network conditions

show that SDN controllers can effectively track the evolution

of the system in terms of traffic evolution and network failures,

thus opening a new era for the dynamic control of online

routing solvers.
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