
Protected load-balancing problem: Neural-network
based approximation for non-convex optimization

Youcef Magnouche, Sébastien Martin, Jérémie Leguay
Huawei Technologies Ltd., Paris Research Center, France

Abstract—Nowadays, centralized Path Computation Elements
(PCE) integrate control plane algorithms to optimize routing and
load-balancing continuously. When a link fails, the traffic load
is automatically transferred to the remaining paths according to
the configuration of load-balancers. In this context, we propose a
load-balancing method that anticipates load transfers to ensure
the protection of traffic against any Shared-Risk-Link-Group
(SRLG) failure. The main objective of this approach is to make
better use of bandwidth compared to existing methods. It consists
in reserving a minimum amount of extra bandwidth on links
so that the rerouting of traffic is guaranteed. We propose a
non-linear non-convex model for the problem of minimizing the
bandwidth reservation cost. We introduce a new approximation
approach based on a neural network to convexify the problem
and apply Kelley’s cutting plane method to solve the problem.
Finally, we show that our algorithm significantly improves the
CPU time against a compact model solved using the SCIP solver.

Index Terms—Load-balancing, Nonlinear programming, Non-
convex optimization, Outer-approximation, Neural networks.

I. INTRODUCTION

Load-balancing plays a crucial role in improving the uti-
lization of telecommunication networks. It basically consists
in splitting traffic over multiple paths to make a better use of
network capacity. In modern network architectures, Software-
Defined Networking (SDN) controllers or Path Computation
Elements (PCE) [1] integrate control plane algorithms to
optimize routing and load-balancing. These centralized control
entities acquire, thanks to network monitoring protocols, a
global view of the network to decide whether it is necessary
to split traffic and the most efficient way to do it.

Typically, load-balancing is implemented inside network
devices, such as switches and routers, using two techniques,
hash-based splitting for Equal or Unequal Cost Multi-Pathing
(ECMP or UCMP) [2] or Weighted Cost Multi-Pathing
(WCMP) [3]. In hash-based splitting, a hash is calculated over
significant fields of packet headers and used to select outgoing
paths. Multiple forwarding rules, also called buckets, can be
configured for each path so as to customize split ratios. In
weighted cost multi-pathing, load-balancing weights are used
to define what portion of traffic must be sent over each path.
In this case, more sophisticated mechanisms are required in
the data plane to follow the utilization of paths and adjust
decisions. For elastic flows, in general, once a decision is taken
for a flow, all packets follow the same decision (same path) to
avoid packet re-ordering issues. For real-time traffic, packet-
level load balancing may be applied and controlled through an
entropy [4] field in packet headers for hash-based splitting.

In practice, when a failure happens, the split ratios of an
affected tunnel (or any traffic aggregate) are automatically
adjusted, and the load is transferred to the set of surviving
paths according to the load balancing configuration before
failure (e.g., load-balancing weights or buckets). If failure
scenarios are not anticipated well, the corresponding load
transfers may generate congestion and induce performance
degradation (e.g., packet loss). To prevent this and protect
traffic against failures, classical mechanisms [5] for single path
routing can be applied in the context of load balancing. In this
case, each path is protected by one or several backup paths.
A typical example is 1+1 protection [6] where traffic is sent
over two paths with full duplication or a specific encoding [7].
However, these solutions are not tailored to load balancing.
Taking a conservative approach, they consider each path as an
individual tunnel that needs to be protected. Therefore, they
can lead to a high bandwidth utilization or to the inability to
protect traffic due to the lack of capacity.

To improve bandwidth utilization, we propose a new pro-
tection mechanism for load balancing, that makes an efficient
use of bandwidth. The general idea is to configure, for a set
of tunnels, “safe” split ratios to avoid traffic loss in case of
failure scenarios defined as Shared Risk Link Groups (SRLG).
Each failure scenario consists in a set of links sharing critical
resources (e.g., physical fiber) that could all fail together in
case of outage. The objective of our mechanism is to globally
optimize routing paths and split ratios by anticipating all the
possible load transfers that could happen in case of failures.
The main benefits of this approach are the following: 1)
no distinction between primary and backup paths is needed
anymore, 2) it can work with any load balancing solution as
long as split ratios and routing paths can be controlled, and
3) strict protection, if needed, can be achieved by reserving
protection bandwidth on each path.

In the rest of this paper, we introduce a new protection
mechanism for load-balancing and study the associated op-
timization problem that a network controller has to solve to
compute routing paths and split ratios. For a set of tunnels,
it ensures that the utilized (or reserved) bandwidth is of
minimum cost while protecting traffic against a set of failure
scenarios. Overall, we present the following contributions:

• First, we introduce a new protected load balancing mech-
anism for multiple tunnels where reservations can be
shared across tunnels.

• Then, we formulate the associated optimization problem
to minimize the total bandwidth reservation cost using

1

Fig. 1: Impact of a failure on split ratios in UCMP.

non-linear and non-convex programming.
• To efficiently solve the problem, we approximate the non-

convex constraints by convex inequalities using a neural
network, and we apply Kelley’s cutting plane method [8].

• Finally, we present computational results on realistic
instances that indicate that the proposed algorithm finds
good solutions while improving significantly the CPU
time, compared to the compact model solved using
SCIP [9], and the quality of the solutions compared to
a linear approximation of the problem.

The paper is organized as follows. Sec. II presents the
related work. Sec III introduces the protected load-balancing
mechanism. Sec IV gives some definitions and presents the as-
sociated mathematical model for the protected load-balancing
problem. Sec. V describes the use of a neural network for ap-
proximating the non-convex constraints by convex inequalities.
Sec. VI describes the designed algorithm based on Kelley’s
method for convex problems. Sec. VII reports numerical
results and Sec. VIII concludes the paper.

II. RELATED WORK

A natural way to protect load-balancing paths is to con-
sider a backup path for each primary path involved in the
load-balancing of each tunnel. However, this mechanism is
equivalent to 1+1 in terms of bandwidth utilization. To further
optimize resources, 1:1 protection reserves bandwidth for
backup but shares it among tunnels. Upon detection of a
failure, a notification towards the head end router of tunnels
triggers the re-routing of the protected traffic on backup paths.
A Shared-Backup protection (SBP) mechanism allows tunnels
with disjoint working paths to share the same bandwidth
reservations for their backup paths [10] if they are not used
simultaneously in case of failure. In [11] authors propose an
Integer Linear Program (ILP) model for the SBP problem
to select a backup and a working path for every tunnel
such that the cost of bandwidth reservations is minimized.
This approach can be extended to m:n protection, where n
recovery paths can be shared to protect m working paths.
However, to our knowledge, no bandwidth efficient method
has been proposed to protect tunnels that are load-balanced
over multiple paths, beyond the protection of individual paths,
considered as independent tunnels.

Control plane algorithms have been proposed [2, 12] to
optimize the configuration of split ratios, but they do not

Fig. 2: Example of bandwidth reservations (bottom figure) for
a given set of split ratios (top figure), for a tunnel load balanced
over 3 paths and protected against 1 link failure.

anticipate all possible failure scenarios, and the associated
load transfers among paths, when making decisions. Some
works [13] have proposed to gracefully update split ratios after
each failure, but they consist in reactive approaches that can
be slow to restore services.

III. PROTECTED LOAD BALANCING

This section provides a motivation example and illustrates
the main idea of our protected load balancing mechanism.

A. Hash-based splitting

Without loss of generality, we provide an example for hash-
based splitting with uneven load balancing, i.e. UCMP. How-
ever, the same applies to weighted cost multi-pathing. Fig. 1
presents an example in which load balancing is implemented
in a so-called group table inside the data plane of network
devices. Each tunnel that needs to be load-balanced over
multiple paths is associated to a group with multiple entries
in this table. Each entry determines the next-hop of a flow as
a function of a hash value calculated over its packet headers.
An entry can be duplicated several times. The ratio between
the number of rules for a next-hop and the total number of
rules for the group determines the split ratio. As we can see,
when the link associated to the next-hop 56.78.91.1 fails, the
load for demand 1 (or tunnel 1) associated to the group 1 is
transferred to the remaining next-hops, modifying their split
ratios from (15 , 2

5 , 2
5) to (0, 1

2 , 1
2).

B. Protection mechanism

In practice, congestion can happen after each failure and
traffic may be lost. For this reason, we propose to calculate
split ratios so as to ensure that traffic will not face congestion
after every possible failure scenario. To do this, we need to
calculate how much bandwidth will be utilized over each path
in the worst case. This bandwidth can be reserved, when
MPLS is used, or simply considered in the calculation of split
ratios for a more best effort implementation. Fig. 2 illustrates
the computation of bandwidth reservations for a protection
against q-link failures (with q ∈ N, see [14]). In this example,
we consider one tunnel load balanced over 3 disjoint paths and

2

q = 1. At the top, we consider a given set of split ratios for a
tunnel over 3 paths. At the bottom, we display the bandwidth
reservations to cover all possible link failures. Note that, as
all paths are disjoints, all links of a path require the same
bandwidth reservation. Since the splits are unequal, when a
link fails, new splits ratios are computed on the remaining
paths based on the initial splits ratios. Let p1, p2 and p3 be
the top, middle and bottom paths in the example. Since there
are only 3 paths, bandwidth reservations can be computed
for each path by considering only two scenarios (e.g., for p1
we consider two scenarios, when p2 or p3 fails). Formally,
the bandwidth reservation on every link of path p1 can be
computed using the following formula:

(Traffic on p1)+

max{
(Traffic on p2) × (Traffic on p1)

(Traffic on p1 + Traffic on p3)
,
(Traffic on p3) × (Traffic on p1)

(Traffic on p1 + Traffic on p2)
}

The bandwidth reservation on every link of path p1 is given
as follows:

20 +max{40× 20

20 + 40
,
40× 20

20 + 40
} = 33.33 Mbps

Similarly for the two other paths, the bandwidth reservation on
every link of path p2 and p3 is 66.66 Mbps, when considering
all possible link failures.

In the example, we can observe that this protection mech-
anism is more efficient than 1+1 as it requires only 33.33 ×
3 + 66.66 × 6 = 499.95 Mbps of bandwidth over all paths
instead of 100 × 6 = 600 Mbps. Moreover, we observe that
bandwidth reservations depend on the initial split of traffic.
Hence, different split ratios may increase or decrease the total
reservation cost. In the worst case, the bandwidth reservation
cost cannot be larger than that of 1+1. Furthermore, the gain
against 1+1 does not depend only on the load-balancing.
Indeed, for q-link protection, at least q + 1 disjoint paths
(without common links) are required to ensure the protection.
While it requires at least q+2 disjoint paths to hope obtaining a
lower bandwidth reservation than 1+1. Indeed, if there are q+1
paths and q links fail, they may destroy q paths for a tunnel,
and most of the traffic must be rerouted on the remaining path.
Therefore, the required bandwidth reservation is 200%, as for
1+1.

In the rest of the paper, we will focus on the optimization
of bandwidth reservations for a set of tunnels with protection
against failure scenarios defined as Shared Risk Link Groups
(SRLG). When several tunnels are considered in the same
network, it may happen that the SRLG failures do not impact
all tunnels together. Therefore, under some conditions, the
same reserved bandwidth can be used by two different tunnels,
leading to a bandwidth reservation saving. This mechanism is
called shared protection. The same approach can be considered
for the unshared case.

IV. OPTIMIZATION PROBLEM

We first give some definitions and notations used throughout
this paper. We then formulate the optimization problem to
calculate ”safe” split ratios.

A. Definitions & notations

We consider a network represented by a simple graph G =
(V,E), where V is the set of nodes and E the set of links,
and a set of tunnels K. Let K+ (resp. K−) be the subset
of protected (resp. unprotected) tunnels in K such that K =
K+ ∪K−. Every tunnel k ∈ K is defined by a source sk, a
destination tk, a traffic demand dk ∈ R+ and a set of paths
P k between sk and tk (not necessarily disjoints). For an edge
e ∈ E, let be ∈ R+ be the associated bandwidth capacity
and ce ∈ R+ be the unit cost for the reserved bandwidth. For
p ∈ P k, let cp ∈ R+ be the routing cost associated with p,
for instance, the IGP cost. Let denote by S ⊆ E an SRLG
(a set of links that can fail together) and by S the set of all
given SRLGs against which we need to protect traffic. Let
P k
S ⊆ P k be the subset of paths of tunnel k ∈ K intersecting

SRLG S ∈ S . Let P k
e ⊆ P k be the subset of paths of tunnel

k ∈ K containing e ∈ E. If an SRLG fails, all its links fail. A
path fails, if at least one of its links fails. An amount of traffic
is said to be rejected if it passes through a failed path (after
failure and transfer of the load). Similarly, traffic is called
accepted if it does not cross any failed path. Two paths are
called disjoint if they do not intersect a common SRLG.

B. Problem formulation

The protected load-balancing problem consists in determin-
ing the split ratios for every tunnel k ∈ K over all paths P k

such that the total bandwidth reservation cost of the protected
tunnels and the routing cost is minimum. When multiple
tunnels cannot be affected by an SRLG failure simultaneously
(thanks to disjointness of the paths), backup resources can
be shared among these tunnels, which decreases the total
bandwidth reservation.

For example, let consider two tunnels k1 and k2 with path
sets {p11, p12} and {p21, p22}, respectively, such that p11 and p21 are
totally disjoints, and p12 and p22 share a common link e ∈ E.
Clearly, for 1-link protection, the paths p11 and p21 cannot fail
simultaneously. Therefore, a common bandwidth reservation
on e can be used by tunnel k1 when p11 fails, and by tunnel
k2 when p21 fails.

The shared reservations must be computed for each
link e ∈ E. Let denote by wek

S ∈ [0, 1] the ratio of dk
passing through e but not crossing S, before S fails. Also,
let denote by wk

S ∈ [0, 1] the ratio of dk passing through
SRLG S. After S ∈ S fails, the new amount of traffic
passing through e is the sum of all rerouted traffic on e of
all tunnels K+. Formally, the new amount of traffic on e

after S fails is equal to
∑

∀k∈K+

(dkw
ek
S + dkw

k
S

wek
S

1−wk
S

). The

bandwidth reservation on link e for tunnel k is equal to the
maximum amount of traffic after every SRLG failure. The
bandwidth reservation we on the link e ∈ E is equal to
max
S∈S

{
∑

∀k∈K+

{dkwek
S + dkw

k
S

wek
S

1−wk
S

}}. Since the bandwidth

reservation cost is minimized, the equality can be transformed
to a set of inequalities

∑
∀k∈K+

(dkw
ek
S + dkw

ek
S

wk
S

1−wk
S

) ≤ we

for all e ∈ E and for all S ∈ S . This is equivalent to

3

∑
∀k∈K+

dkw
ek
S

1−wk
S

≤ we for all e ∈ E for all S ∈ S.

In the following, we present the mathematical model for
the protected load-balancing problem to compute 1) split
ratios for every path of every tunnel and 2) shared bandwidth
reservations for every link. Let xk

p ∈ [0, 1] be the split ratio of
path p used by tunnel k ∈ K and we ∈ R be the shared
bandwidth reservation on link e ∈ E. The objective is to
minimize the cost of the reserved bandwidth for the protected
tunnels, together with the total paths cost. The problem is
equivalent to the following non-linear program:

min
∑
e∈E

cewe +
∑

k∈K+∪K−

dk
∑
p∈Pk

cpx
k
p∑

p∈Pk

xk
p = 1 ∀k ∈ K+ ∪K−, (1)

∑
p∈Pk

S

xk
p ≤ wk

S ∀S ∈ S, k ∈ K+, (2)

∑
p∈Pk

e \Pk
S

xk
p ≤ wek

S

∀e ∈ E, k ∈ K+, ∀S ∈ S, (3)∑
k∈K−

dk
∑

p∈Pk
e \Pk

S

xk
p +

∑
k∈K+

dkw
ek
S

1− wk
S

≤ be ∀e ∈ E,S ∈ S, (4)

∑
k∈K+

dkw
ek
S

1− wk
S

≤ we ∀e ∈ E,S ∈ S, (5)

wk
S ≤ 1− ϵ ∀k ∈ K+, S ∈ S. (6)

Equalities (1) ensure that all traffic is split on the paths of
each tunnel. Inequalities (2) compute the ratio of dk passing
through S ∈ S for tunnel k ∈ K+. Inequalities (3) compute
the ratio of dk passing through e ∈ E after S ∈ S fails, for
tunnel k ∈ K+. Inequalities (4) represent the link capacity
constraints. Inequalities (5) compute the bandwidth reservation
of the protected tunnels on every link. Inequalities (6) ensure
that every tunnel does not send all its traffic through the same
SRLG, where 0 ≤ ϵ < 1 is small enough.

The above mathematical model in non-convex and non-
linear program. This is due to Constraints (4) and (5). When
|K+| = 1 and |K−| = 0, the constraints are of the form
f(x) ≤ t where f(x, y) = x

1−y such that x ∈ [0, 1] and
y ∈ [0, 1[. Consequently, Constraints (4) and (5) are non-
convex.

V. APPROXIMATION OF NON-CONVEX CONSTRAINTS

A non-linear programming model refers to a mathematical
program with at least one non-linear function [15]. Non-
convex programming represents one of the most challeng-
ing fields of optimization [16] and no efficient approach
is available to derive the global optimum [17]. The best-
known method for this type of problem is the Spatial Branch-
and-Bound. It consists in dividing the program into several
convex approximations within a branch-and-bound tree. For
decades, researchers are studying the approximation of non-
linear functions [18]. The goal is to replace a difficult function

Fig. 3: Feed-forward neural network with 1 hidden layer.

by another one having a much lower complexity. Several
methods have been proposed in the literature such as the
approximation with piecewise constants, wavelets, linear and
non-linear piecewise approximation, etc.

A well-known theorem in this field is the universal approx-
imation theorem [19]. It states that an arbitrary continuous
function, defined on [0, 1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network
with one hidden layer (that contains only a finite number
of neurons) using neurons with arbitrary activation functions
in the hidden layer and a linear neuron in the output layer.
Therefore, in the rest of this section, we investigate the approx-
imation of our non-convex non-linear function f(x, y) = x

1−y
using an artificial neural network to obtain a convex function.
This will allow us to convert the mathematical model given
in Sec. III into a convex non-linear model that can be solved
optimally using Kelley’s algorithm (see Sec. VI). To the best
of our knowledge, there is no such work in the literature
for solving non-convex non-linear problems that combines
Kelley’s algorithm and a neural network based approximation.

A. Neural network based approximation

Artificial neural networks (ANNs) are composed of artificial
neurons which are conceptually derived from biological neu-
rons. Each artificial neuron has inputs and produces a single
output which can be sent to multiple other neurons.

The input of each neuron is passed through an activation
function (usually non-linear) to produce the output. Several
well-known activation functions can be used such as Relu,
Identity, arcTan, PRelu, SoftPlus, SoftMax, etc. The network
consists of connections between neurons where a weight is
assigned to represent its relative importance. A given neuron
may have multiple input and output connections.

A bias term can be added to the input of each neuron. Fig. 3
illustrates a neural network with 8 neurons. The green, blue
and yellow neurons represent, the input, hidden and output
layers, respectively. In the above example, there is only 1
hidden layer of 5 neurons.
Let x, y ∈ R be the two input values of the ANN, the estimated
function P (x, y) is given as follows:

P (x, y) =

n∑
i=1

aifi(a
i
xx+ aiyy + bi) + b

4

Fig. 4: Comparison between the original function f(x, y) and
the estimated one P (x, y) obtained from the neural network.

where aix represents the weight between input x and ith neuron
of the hidden layer; aiy represents the weight between input y
and ith neuron of the hidden layer; bi represents the bias of
the ith neuron of the hidden layer; ai represents the weight
between the output of ith neuron of the hidden layer and the
output neuron; and b : represents the bias of the output neuron.

Claim 1: If ai ≥ 0 and fi is convex for all i ∈ {1, . . . , n},
then P (x, y) is also convex.

In the following, we approximate the non-convex non-linear
function f(x, y) = x

1−y by a convex non-linear function using
a simple feed-forward neural network.

For our numerical results, we used the following artificial
neural network configuration
1- Number hidden layers: we use only 1 hidden layer.
2- Activation functions: we considered the following types of

convex functions on R : x2i for all i ∈ {0, . . . , 10}, ex,
Relu(x) = max{x, 0}.

3- Number of neurons in the hidden layers: after several
attempts, we used 5 activation functions of each type.

4- Loss function: we used the mean squared function, which
is (ytrue − ypred)

2, as commonly used for regressions.
5- Labels: we generate the data by varying the values of x and

y in the associated domains which provides the features.
The labels are obtained using the original function x

1−y

for every feature (x, y). Precisely, we consider a set Sx

(resp. Sy) of 100 evenly spaced numbers over the interval
[0.05, 1.0] (resp. [0.00, 0.99]). The features represent all
pairs (x′, y′) such that x′ ∈ Sx, y′ ∈ Sy and x′ + y′ ≤ 1.

6- Optimizer: we used Adam (Adaptive Moment Estimation
Algorithm).

7- Positive weights: to preserve the convexity of the estimated
function, weights ai for i = 1, n must be positive.

8- Number of iterations: we used 300.
Fig. 4 displays two curves representing the function values

given by the original and the approximation ones, over around
5000 points. We can see that the approximation function fits
perfectly x

1−y on all the points. However, when x is near to
0.05 and when y is near to 0.00, the gap increases a bit to
reach 6%.

As one can notice, the approximation function we
found is near or above f(x, y). This is important to
ensure the feasibility of configurations for protected load-

Fig. 5: Evolution of the loss function during the training phase.

balancing. In our case, this means that the bandwidth
reservations are slightly over-approximated (conservative).
If the approximation were below f(x, y) we could define a
custom loss function to force the approximation to be always
(almost) above f(x, y).

Fig. 5 shows the evolution of the loss value over the iter-
ations in the training phase. Clearly, the loss value converges
to 0 after 20 iterations.

B. Convex transformation for protected load balancing

The learned approximation function is as follows

P (x, y) = 0.20898512(0.84153354x − 1.2163565x −
0.1172726) + 0.11398053(−0.54810554x − 0.73203504x −
0.111881435)2 + 0.22500123(−0.32912576x − 0.4372456x −
0.10842324)2 + 0.31306696(−0.5892102x − 0.78629917x −
0.13606171)2 + 0.12807561(−0.7460143x − 0.99790335x −
0.06382404)2 + 0.13445288(0.32067707x + 0.42634684x −
0.053649783)2 + 0.08919548(−0.008583701x − 0.014321463x +

0.011760315)4 + 0.0005710255(−0.16931695x −
0.20765431x + 0.13124172)4 + 0.0006219578(−0.19715643x −
0.25719136x + 0.16870873)4 + 0.110854276(0.08626526x +

0.11822398x + 0.0036681416)6 + 0.18170816(−0.1423485x −
0.16759561x + 0.08233984)6 + 0.21071501(−0.27259338x −
0.33094826x − 0.039481297)8 + 0.017079473(0.6349315x +

0.7413781x − 0.18566795)10 + 0.04180262(0.36131313x +

0.4217615x − 0.111623645)10 + 0.023078842(0.12757984x +

0.080746045x)12 + 0.067266844(−0.29820144x +

0.051307905x + 0.08951803)12 + 0.24862847(0.49615633x +

0.5693221x − 0.08240397)14 + 0.10745613(−0.68662584x −
0.7797363x + 0.11783628)16 + 0.22991414(0.885376x +

1.0115623x + 0.016353546)18 + 0.20432162(−0.08416062x +

0.11819947x)18 + 0.19670802(0.52702695x + 0.59805554x −
0.048327893)18 + 0.13163748(−0.7192018x − 0.8070603x +

0.14870796)18 + 0.11298036(−0.59983516x − 0.6753686x +

0.050704874)20 + 0.025386946e−0.4838321x−0.6530228x−0.6168387 +

0.008721772e−2.1046681x−2.9321532x−4.5336885 +

0.010362742e−2.1843915x−3.0633261x−4.80528 +

0.002250989e−1.0597663x−1.3402514x−1.7501163 +

0.14911664e−0.028126838x−0.044313956x−0.24021097 +

0.15225288max{0.0, 0.5040369x + 0.4609523x − 0.04698109} +

0.7161469max{0.0, 0.40694946x + 0.5698667x − 0.37897623} +

0.1736147max{0.0, 0.62029403x + 0.42131162x − 0.050037168} +

0.6821202max{0.0, 0.64257723x + 0.026824359x + 0.0063459207} −
0.087192556

5

Consequently, for the protected load balancing problem,
Constraints (4) and (5) are approximated by the following
constraints, for all S ∈ S and e ∈ E:

∑
k∈K−

dk
∑

p∈Pk
e \Pk

S

xk
p +

∑
k∈K+

dkP (wek
S , wk

S) ≤ be, (7)

∑
k∈K+

dkP (wek
S , wk

S) ≤ we. (8)

By replacing the non-convex functions with convex func-
tions, we now are able to solve the protected load-balancing
problem using a convex optimization method.

VI. KELLEY’S CUTTING PLANE ALGORITHM (NKCP)

Efficient methods have been proposed for convex non-linear
programs, those composed of a concave objective function (in
case of maximization problems), or convex objective function
(in case of minimization problems) and a set of convex con-
straints. The most important one are Bundle [20], Subgradient
projection [21], Interior-point [22], Outer-Approximation [23]
and Ellipsoid [24] methods. In [8], the author suggests an
optimization method, called Kelley’s cutting plane method, to
solve optimally the convex mixed integer non-linear problems.
It consists in replacing the convex non-linear constraints
by linear outer-approximations constraints to obtain a linear
program. The outer-approximation function is a linear function
that approximate a non-linear one at a particular point. Let
f(x) ≤ 0 be a convex non-linear inequality, the associated
outer-approximation inequality at point x∗ is

▽f(x∗)⊤(x− x∗) + f(x∗) ≤ 0

Consider the following model,

min cx (9)
Ax ≥ b (10)
f(x) ≤ 0 (11)
x ∈ R. (12)

Constraints (10) represent the set of linear inequalities and
Constraints (11) the set of convex non-linear constraints. The
above model is equivalent to the following LP model,

min cx (13)
Ax ≥ b (14)

▽f(x∗)⊤(x− x∗) + f(x∗) ≤ 0 ∀x∗ ∈ X (15)
x ∈ R. (16)

where X = {x ∈ R|Ax ≥ b}.
Linear program (13)-(16) has an exponential number of

Constraints (15). Kelley’s method consists in generating In-
equalities (15), iteratively, thanks to the cutting plane algo-
rithm. Note that Kelley’s method is closely related to the outer-
approximation method that requires, in contrast to Kelley’s
method, solving non-linear sub-problems. Also, it is closely
related to the extended cutting plane algorithm that has been
proposed in [25] for MINLP. The algorithm that we developed

is for solving the non-linear non-convex model given in
Sec. III. It is based on the Kelley’s cutting plane algorithm,
after the replacement of non-linear non-convex constraints by
convex non-linear constraints (see, Sec. V).

Once the convex non-linear program is obtained, Kelley’s
cutting plane algorithm will allow solving it using a lin-
ear solver. This latter involves new constraints called outer-
approximation constraints that replace the convex non-linear
constraints. However, they may be exponential in number
which require a dynamic generation of these constraints in
the model. Hence, we apply the cutting-plane algorithm to
generate them iteratively. First, we start with a linear model
without any outer-approximation constraint, and then we solve
the sub-problem (associated to the remaining linear program).
Let x(i) be the optimal solution of the sub-problem. The next
step consists in finding the outer-approximation cut of (7) and
(8) at point x(i). If a violated cut is found, it is added to
the model and the procedure repeats until no violated outer-
approximation cut is found.

Since Constraints (7) and (8) are the approximation of the
associated original constraints, the total bandwidth reservation
may be not accurate. Therefore, after the optimization phase,
the exact bandwidth reservation is computed based on the split
ratios of the obtained solution.

Note that, the routing paths can be computed during the
optimization thanks to the column generation [26] algorithm.
Indeed, the x variables do not belong to (7) and (8) which
allows preserving the structure of the pricing problem of the
column generation algorithm. In this case, the global algo-
rithm generates both cuts (outer-approximation) and columns
(variables x). However, when producing numerical results for
the next section we considered a set of pre-calculated paths
for each tunnel.

VII. NUMERICAL EXPERIMENTS

In this section, we present the numerical results obtained
from the compact non-linear non-convex models solved using
the SCIP Optimization Suite 7.0 [9] and the Non-convex Kel-
ley’s Cutting Plane (NKCP) algorithm introduced in Sec. VI.
The linear programs in NKCP have been solved using Cplex
12.6 [27]. The algorithms have been implemented in C++
and tested on a machine equipped with an Intel(R) Xeon(R)
CPU E5-4627 v2 of 3.30GHz and 504GB RAM, running
under Linux 64 bits. We considered a time-limit of 10 minutes
and a maximum of 1 thread. Function approximation is
done with Python 2.7.16 using Keras for the neural network
optimization [28] and scikit-learn [29] for the linear regression
(used as a benchmark to highlight that a basic method to ap-
proximate the non-linear function may impact the algorithm’s
performance).

A. Test instances

To evaluate our algorithm, we use two types of instances:
Internet Topology Zoo [30] and SNDLIB [31]. The SNDLIB
instances provide all traffic information (sources, destinations
and traffic demands) with a number of tunnels between 10 and

6

Fig. 6: Number of instances solved using NKCP algorithm.

462. However, for Internet Zoo topologies, all demands have
been generated randomly (sources, destinations and traffic
demands). We have varied a total of 10, 40 and 80 tunnels1.

While our implementation and models support protection
against any set of SRLG failures, we considered q-link pro-
tection for the tests (resilience to any simultaneous q ∈ N link
failures) and we varied the following parameters:

• number of protected tunnels: 40% and 80% of the total,
• paths n ∈ N per tunnel (if they exist): 3 and 6,
• SRLGs: all combinations of q links where q is 1 and 2.
The paths are generated as follows. For every tunnel, n′ =

30×n shortest paths are first computed using Yen’s algorithm,
minimizing the number of hops (links). Then, we solve an
optimization problem in order to maximize the disjointness of
the paths, i.e, find n paths minimizing the maximum number
of paths sharing a common SRLG.

B. Test results

In the following, we compare the performance of the NKCP
algorithm against the SCIP solver (compact model). In all the
following plots, we compare the instances solved by either
NKCP or SCIP. Fig. 6 and 7 display the number of solved
instances for the different values of the number of paths per
tunnel and the protection degree, i.e. q, for NKCP and SCIP,
respectively. In the two figures, we observe that the number
of solved instances is higher when the number of paths per
tunnel is 6. Indeed, with a high number of paths per tunnel,
the traffic can be efficiently load-balanced in order to satisfy
link capacity constraints. Moreover, the higher the number of
paths per tunnel is, the smaller the bandwidth reservation is.
Also of interest, the number of solved instances is much higher
when q = 1. This was expected since q = 2 requires much
more reserved bandwidth. Also, the mathematical models with
q = 2 are larger than with q = 1. Therefore, a lot of instances
are not solved due to time-limit.

Fig. 8 and 9 compare the CPU times of SCIP and NKCP al-
gorithms, respectively on SNDLIB and Internet Zoo instances.
The instances are ranked in ascending order of CPU time
associated to NKCP algorithm. We note that the NKCP algo-
rithm solves almost all instances in a few seconds, while SCIP
reaches the time-limit on most of the instances. Moreover, we
observe that SNDLIB instances are more difficult as NKCP

1All instances are available on the following public repository:
https://github.com/MagYou/Protected-Load-Balancing.git

Fig. 7: Number of instances solved using SCIP.

reaches the time-limit multiple times. By comparing the two
algorithms, we notice that NKCP solves more instances with
6 paths per tunnel and q = 2.

Fig. 8: CPU times on SNDLIB instances.

Fig. 9: CPU times on Internet Zoo topologies instances.

Fig. 10 and 11 display the relative gap for bandwidth
reservations between NKCP and SCIP, i.e., (objNKCP−objSCIP)×100

objSCIP
,

respectively for SNDLIB and Internet Zoo instances. Red
markers represent the unsolved instances by SCIP. Note that
all instances have been solved by NKCP. For both types of
instances, we clearly see that SCIP fails to solve a lot of
instances. On 90% of the solved instances, we notice that the
gap is lower than 10%. Due to the time-limit, we also notice
that the gap is sometimes negative. Indeed, when SCIP finds
a feasible solution that it not optimal, the gap can be negative.

NKCP is an iterative algorithm, at each iteration several
cuts are added. In our experiments, NKCP generates around
27000 cuts on Internet Zoo topologies and 150000 on SNDLIB
Instances. The difference is related to the number of links in
the two types of instances. Indeed, in SNDLIB the number of
links reaches 102 while it is 45 for Internet Zoo topologies.
Hence, the number of SRLGs is much higher on SNDLIB
leading to a higher number of Constraints (4) and (5).

7

https://github.com/MagYou/Protected-Load-Balancing.git

Fig. 10: Relative gap for bandwidth reservations between
NKCP and SCIP on SNDLIB instances. Red markers indicate
the unsolved instances by SCIP.

Fig. 11: Relative gap of the bandwidth reservations given by
NKCP and SCIP on Internet Zoo topologies instances. Red
markers indicate the unsolved instances by SCIP.

In the following, we show that using a neural network allows
to approximate the non-convex function with a tight convex
one. This leads to an efficient NKCP algorithm. To do so, we
now compare two versions of NKCP, using different approxi-
mation methods: 1) a neural network and 2) a linear regression.
In our case, we exploit the linear regression to obtain a linear
function that approximates the non-linear non-convex function
x

1−y . This latter is P (x, y) = 1.299x+ 0.748y − 0.169.
Fig. 12 compares the original function f(x, y) and the

approximated one P (x, y) on a set of points (the same as
for the neural network in Sec. V). We clearly see that the
approximation function under-approximates f(x, y) = x

1−y
on most instances (particularly those where x is close to
0) with a difference reaching 0.4. On the other hand, it
over-approximates it on instances where x is close to 1.0.
Let denote by NKCP-R the version of NKCP with linear
regression method. Fig. 13 and 14 plot the relative gap for
bandwidth reservations between NKCP-R and NKCP, i.e.,
(objNKCP−objNKCP-R)

objNKCP-R
for SNDLIB and Internet Zoo topologies

instances, respectively. We can observe that the gaps reach
−15% and even −20%. On most instances, the gaps are neg-
ative, showing that a more accurate approximation is required.
All instances are solved with NKCP and with NKCP-R.

VIII. CONCLUSION

We have introduced a new protection mechanism for load
balancing that makes an efficient use of bandwidth. To cal-
culate ”safe” split ratios, we proposed a non-linear non-
convex model and solved it using SCIP solver. For the sake

Fig. 12: Comparison of the original function f(x, y) and the
approximation one P (x, y) obtained with a linear regression.

of performance, we proposed a novel method (NKCP) to
solve a non-convex non-linear program using a linear solver.
It consists in transforming the program into a convex non-
linear one using a neural network and solve it using Kelley’s
cutting plane algorithm. Our numerical experiments showed
very good performance for NKCP in terms of CPU time and
objective value. Indeed, our results indicate that the NKCP
improves, significantly, the CPU time compared to the compact
model, without a significant loss on reservation cost. This new
protected load balancing mechanism can operate on top of
any load balancing solution as long as split ratios and routing
paths can be controlled. It helps saving bandwidth compared
to legacy methods that protect each path individually. In the
future, we investigate other non-convex function related to
routing problem to generalize the approach.

Fig. 13: Relative gap of the bandwidth reservations given by
NKCP and NKCP-R on SNDLIB instances.

Fig. 14: Relative gap of the bandwidth reservations given by
NKCP and NKCP-R on Internet Zoo topologies instances.

8

REFERENCES

[1] F. Paolucci, F. Cugini, A. Giorgetti, N. Sambo, and
P. Castoldi, “A survey on the path computation element
(pce) architecture,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 4, pp. 1819–1841, 2013.

[2] P. Medagliani, J. Leguay, M. Abdullah, M. Leconte,
and S. Paris, “Global optimization for hash-based split-
ting,” in 2016 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2016, pp. 1–6.

[3] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski,
A. Singh, and A. Vahdat, “Wcmp: Weighted cost mul-
tipathing for improved fairness in data centers,” in
Proceedings of the Ninth European Conference on
Computer Systems, 2014, pp. 1–14.

[4] K. Kompella, J. Drake, S. Amante, W. Henderickx,
and L. Yong, “The Use of Entropy Labels in MPLS
Forwarding,” RFC 6790, Nov. 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6790

[5] M. Naraghi-Pour and V. Desai, “Loop-free traffic engi-
neering with path protection in mpls vpns,” Computer
Networks, vol. 52, no. 12, pp. 2360–2372, 2008.

[6] D. Zhou and S. Subramaniam, “Survivability in optical
networks,” IEEE network, vol. 14, no. 6, pp. 16–23,
2000.

[7] A. E. Kamal, A. Ramamoorthy, L. Long, and S. Li,
“Overlay protection against link failures using network
coding,” IEEE/ACM transactions on networking, vol. 19,
no. 4, pp. 1071–1084, 2010.

[8] J. E. Kelley, Jr, “The cutting-plane method for solving
convex programs,” Journal of the society for Industrial
and Applied Mathematics, vol. 8, no. 4, pp. 703–712,
1960.

[9] SCIP, “The scip optimization suite 7.0,” March 2020.
[Online]. Available: http://www.optimization-online.org/
DB HTML/2020/03/7705.html

[10] D. A. Mello, J. U. Pelegrini, R. P. Ribeiro, D. A.
Schupke, and H. Waldman, “Dynamic provisioning of
shared-backup path protected connections with guar-
anteed availability requirements,” in 2nd International
Conference on Broadband Networks, 2005. IEEE, 2005,
pp. 1320–1327.

[11] J. E. Doucette, “Advances on design and analysis of
mesh-restorable networks,” Ph.D. dissertation, University
of Alberta, 2005.

[12] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and
J. Rexford, “Efficient traffic splitting on commodity
switches,” in Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies,
2015, pp. 1–13.

[13] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and
R. Jennifer, “Niagara: Scalable load balancing on com-
modity switches,” Princeton, NJ, USA, Tech. Rep.
TR-973-14, 2014.

[14] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep
forwarding: Towards k-link failure resilient routing,” in

IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, 2014, pp. 1617–1625.

[15] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear
optimization. Siam, 2009, vol. 108.

[16] L. Liberti, “Introduction to global optimization,” Ecole
Polytechnique, 2008.

[17] M.-H. Lin, J. G. Carlsson, D. Ge, J. Shi, and J.-F.
Tsai, “A review of piecewise linearization methods,”
Mathematical problems in Engineering, vol. 2013, 2013.

[18] R. A. DeVore, “Nonlinear approximation,” Acta
numerica, vol. 7, pp. 51–150, 1998.

[19] B. C. Csáji et al., “Approximation with artificial neural
networks,” Faculty of Sciences, Etvs Lornd University,
Hungary, vol. 24, no. 48, p. 7, 2001.

[20] D. P. Bertsekas, “Nonlinear programming,” Journal of the
OR Society, vol. 48, no. 3, pp. 334–334, 1997.

[21] K. C. Kiwiel, T. Larsson, and P. O. Lindberg, “La-
grangian relaxation via ballstep subgradient methods,”
Mathematics of Operations Research, vol. 32, no. 3, pp.
669–686, 2007.

[22] Y. Nesterov and A. Nemirovskii, Interior-point
polynomial algorithms in convex programming. SIAM,
1994.

[23] M. A. Duran and I. E. Grossmann, “An outer-
approximation algorithm for a class of mixed-integer
nonlinear programs,” Mathematical programming,
vol. 36, no. 3, pp. 307–339, 1986.

[24] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid
method and its consequences in combinatorial optimiza-
tion,” Combinatorica, vol. 1, no. 2, pp. 169–197, 1981.

[25] T. Westerlund and F. Pettersson, “An extended cut-
ting plane method for solving convex minlp problems,”
Computers & chemical engineering, vol. 19, pp. 131–
136, 1995.

[26] G. Desaulniers, J. Desrosiers, and M. M. Solomon,
Column generation. Springer Science & Business
Media, 2006, vol. 5.

[27] IBM, “ILOG CPLEX Solver.” [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

[28] F. Chollet et al., “Keras,” https://keras.io, 2015.
[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[30] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The internet topology zoo,” Selected Areas
in Communications, IEEE Journal on, vol. 29, no. 9, pp.
1765 –1775, october 2011.

[31] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly,
“SNDlib 1.0–Survivable Network Design Library,”
in 3rd International Network Optimization Conference,
April 2007.

9

https://www.rfc-editor.org/info/rfc6790
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://www.ibm.com/analytics/cplex-optimizer
https://keras.io

	Introduction
	Related Work
	Protected load balancing
	Hash-based splitting
	Protection mechanism

	Optimization problem
	Definitions & notations
	Problem formulation

	Approximation of non-convex constraints
	Neural network based approximation
	Convex transformation for protected load balancing

	Kelley's Cutting plane algorithm (NKCP)
	Numerical experiments
	Test instances
	Test results

	Conclusion

