
Predicting QoE Factors with Machine Learning
Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, Mérouane Debbah

Mathematical and Algorithmic Sciences Lab, Paris Research Center - Huawei Technologies Co. Ltd.
Email: {name.surname}@huawei.com

Abstract—Classic network control techniques have as sole
objective the fulfillment of Quality-of-Service (QoS) metrics,
being quantitative and network-centric. Nowadays, the research
community envisions a paradigm shift that will put the em-
phasis on Quality of Experience (QoE) metrics, which relate
directly to the user satisfaction. Yet, assessing QoE from QoS
measurements is a challenging task that powerful Software
Defined Network controllers are now able to tackle via machine
learning techniques. In this paper we focus on a few crucial
QoE factors and we first propose a Bayesian Network model
to predict re-buffering ratio. Then, we derive our own novel
Neural Network search method to prove that the BN correctly
captures the discovered stalling data patterns. Finally, we show
that hidden variable models based and context information boost
performance for all QoE related measures.

Index Terms—Software Defined Networking, Quality of Experi-
ence, Bayesian Network, Neural Network Search Method, Graph
Clustering, Hidden Variable Model

I. INTRODUCTION

According to a recent report [1], video traffic will steadily
grow in the next years, representing 82% of the whole
Internet traffic by 2021. Therefore, handling video traffic
so as to maximize the quality perceived by final users is
becoming critical both for content and network operators.
To this end, Content Delivery Networks (CDNs) operators
have adopted coordinated control planes [2] between routing
and their streaming systems following the recent trend of
Software Defined Networks (SDN) [3], which has deeply
transformed the way network architectures are designed and
controlled. Nonetheless, Internet Service Providers (ISPs) can
also contribute to improve the perceived quality of video traffic
by optimizing network resources according to the user needs.
However, ISPs can only exploit coarse-grained information on
video flows due to the end-to-end encryption that many Over-
The-Top (OTT) operators like Facebook, Google, and Amazon
employ [4]. ISPs are therefore calling for new methods for
handling network resources in order to maximize the perceived
quality in video services, which directly reflects the opinion
customers have on the network infrastructure [5].

HTTP Adaptive Streaming (HAS), which has been stan-
dardized into MPEG-Dynamic Adaptive HTTP Streaming
(DASH) [6], represents nowadays the pillar technology for
video streaming over the Internet. Indeed, HAS connections
can easily pass through intermediate services like NATs,
gateways and proxies without the need of complex network
configurations. Videos are split into temporal segments whose
duration lasts from a couple up to hundreds of seconds. Each
segment (also knows as chunk) is encoded at different qualities

resulting in different file sizes. The availability of multiple
representations for the same video segment enables DASH
clients to scale up or down the video quality by simply
selecting the best segment to be downloaded according to
network status and video player’s buffer.

The way final users perceive the quality of a streamed video
depends on several factors that cannot be all measured. This
perceived quality is denoted as Quality of Experience (QoE).
According to [7], the user experience highly depends on two
crucial factors: (i) the visual quality and its variation and (ii)
the frequency and duration of re-buffering events (i.e., stalls
or interruptions). While the visual quality and its variation
can be measured using PSNR-based metrics when traffic is
not encrypted, re-buffering events and start-up delay cannot
be directly measured, but only predicted from classic QoS
metrics [4]. This allows to infer QoE factors by still relying
on legacy QoS monitoring systems.

Yet, the mapping between QoS and QoE metrics is highly
complex, as they often lay in high dimensional spaces and are
subject to noise. As a consequence, a closed form modeling
and its experimental validation are not practical. We therefore
resort to machine learning techniques to derive the complex
relationships between QoS and QoE metrics.

On a data set produced with a high-fidelity and fully
controllable simulation environment, we show that while lo-
cal linear relationships hold for the video quality variation
and network measurements, re-buffering events lay in high
dimension clusters of QoS metrics. For re-buffering events,
we present a Bayesian Network (BN) classifier based on two
Logistic Regressions (LR) which better balances the class
accuracy compared to the state of the art method based
on random forests [8]. Furthermore, we demonstrate that
due to the stochastic nature of re-buffering events, clusters
partially overlap, hence increasing the inaccuracy of standard
predictors. A pattern exploration model that we specifically
design using a novel Neural Network (NN) search method
confirms our intuition that other predictors incur the same or
worse inaccuracy of BN-based methods. Finally, we turn our
attention to hidden variables, namely metrics that cannot be
directly measured but can be still inferred from QoS metrics.
We show that the use of predicted hidden variables as features
can indeed improve accuracy for re-buffering events. Finally,
we show that if we have access to information about network
congestion (e.g., number of competing sessions, QoS measures
on bottlenecks) and basic characteristics on video streams
(e.g., type of device, content provider) all predictions of QoE
factors can be further improved.

The paper is structured as follow. Sec. II discusses relevant
related work. Sec. III describes the problem of predicting
QoE from QoS measurements and the data set we produced.
Sec. IV illustrates our method to classify and predict re-
buffering events, while Sec. V presents results for the video
quality and its variation. Finally, Sec. VI concludes our paper.

II. RELATED WORK

Quality of Experience (QoE) has recently gained momen-
tum as a way to assess the user opinion of the network quality
while watching videos. An additive log-logistic model that
maps video quality, freezing (i.e., stall of the video session),
and image artifacts due to compression and re-buffering events
into a QoE score has been firstly proposed in [9] and succes-
sively adopted by ITU in the Recommendation P.1202.2 as a
reference model for quantifying QoE [10]. The investigation
performed in [11] on how a user perceives the video quality
and the main factors that influence this perception resulted in
the definition of eight mathematical models of QoE. Studies
like the one presented in [12] provide quantitative methods to
measure the distortion of the received bit-stream due to video
quality and freezing. While different in the way they compute
a score for measuring QoE, all these works agree on three main
impairments that affect the QoE, namely re-buffering events,
the video quality and its variation. Furthermore, due to the
psychological effect known as memory effect, the repetition
of the same impairment during the video session such as
the experience of multiple video stalls due to re-buffering
strongly affects the quality perceived by the final user [13]. For
this reason, both client-side and network-side mechanisms [7],
[14], [15] have been recently proposed to prevent or at least
minimize re-buffering events and video quality variations.

Existing client-side DASH adaptation policies base their
decisions on several network performance and the internal
client state. Rate-Based (RB) policies base their decisions
on the measured download throughput, whereas Buffer-Based
(BB) [14] approaches use the level of the buffer containing the
downloaded segments to decide the quality of the next chunk.
A number of hybrid approaches also exist, where the explicit
formulation of the optimization problem [7] enables the use
of control theoretic methods.

Machine learning has been recently used to predict QoE
from network measurements [4], [16]. Dimopoulos et al. [4]
shows how the rebuffering ratio, and the average video quality
and its variation, can be predicted using random forests. We
consider this work as a starting point for our research and
present two further contributions: 1) a Bayesian Network
model to predict rebuffering events with a better balance in
class accuracies and 2) the evidence that additional context
information on network congestion and basic characteristics
of video streams improve predictions for all QoE factors.

III. FROM QOS TO QOE FACTORS

A. Problem Statement

We consider three main QoE factors which are commonly
used to measure user-perceived video quality [5]:

• Average video bitrate of the downloaded segments.
• Average video bitrate variation: the standard deviation

of the video bitrate. It quantifies quality changes over the
different downloaded segments.

• Re-buffering ratio: freezing (or stalling) time over the
duration of the video streaming session.

Our aim in this paper is to infer the three aforementioned QoE
factors from the observable QoS metrics described in Tab. I
using machine learning techniques.

B. Dataset Description

To build and evaluate QoS to QoE mapping functions, we
have used a high-fidelity and fully controllable simulation
environment at both network and streaming levels. The simula-
tion platform is based on the Adaptive Multimedia Streaming
Simulator Framework (AMust) [17] in ns-3 which implements
an HTTP client and server for LibDASH, one of the reference
software of ISO/IEC MPEG-DASH standard.

As streaming content, we have chosen 3 representative
open movies1 commonly used for testing video codecs and
streaming protocols: Big Buck Bunny (BBB), a cartoon with
a mix of low and high motion scenes, Swiss Account (TSA),
a sport documentary with regular motion scenes and Red Bull
Play Street (RBPS), a sport show with high motion scenes.

We have considered a star network with a bottleneck link
as shown in Fig. 1, on top of which we have simulated a
large number of scenarios varying the number of nodes (from
1 to 100), the bottleneck capacity (from 500 kbps to 10Mbps
per stream), the bottleneck delay (from 10ms to 100ms), the
bottleneck packet loss (from 0% to 3%), screen resolutions
and DASH policies (RB, BB and hybrid). After a month
of simulations, we have obtained statistics for more than
69,000 video sessions with 50 associated variables from 4
categories: Context information on network congestion and
stream characteristics, QoS metrics, Target QoE factors and
Hidden QoE variables (see Tab. I for a complete list). The
dataset is available upon request.

Fig. 1: Simulation environment with AMust in ns-3.

Arguably, out of the 3 target variables we want to predict,
RebufferingRatio is the most difficult, especially in its raw
continuous form. To simplify our task we take a similar

1http://concert.itec.aau.at/SVCDataset/

Index Name Type Description
1 RequestID Context Streaming session identifier
2 NbClients Context Maximum number of streams competing on the bottleneck
3 BottleneckBW Context Capacity of the bottleneck
4 BottleneckDelay Context Network delay on the bottleneck
5 BottleneckLoss Context Packet loss on the bottleneck
6 DASHPolicy Context DASH policy (e.g, or name of content provider)
7 ClientResolution Context Client screen resolution or device type (e.g., smartphone)
8 RequestDuration QoS metric Duration of the stream
[9, 13] TCPOut/InPacket QoS metric Number of TCP packets (In and Out)
[10, 14] TCPOut/InDelay QoS metric Average delay experienced by TCP packets (In and Out)
[11, 15] TCPOut/InJitter QoS metric Average jitter experienced by TCP packets (In and Out)
[12, 16] TCPOut/InPloss QoS metric Packet loss rate experienced by TCP packets (In and Out)
17 TCPInputRetrans QoS metric Packet retransmissions experienced by TCP
18 StdNetworkRate QoS metric Standard deviation of the network rate
[19:27] [0,5,10,25,50,75,90,95,100] QoS metric xth quantile for the network rate

NetworkRate (measured in intervals of 2s)
28 StdInterATimesReq QoS metric Std. dev. of inter-arrival times of segment requests
[29:37] [0,5,10,25,50,75,90,95,100] QoS metric xth quantile for the

InterATimesReq inter-arrival times of segment requests
38 StartUpDelay Hidden Initial time at the client to start playing the video
39 AvgVideoDownloadRate Hidden Average downloading rate for video segments
40 StdVideoDownloadRate Hidden Std. dev. of downloading rate for video segments
41 AvgVideoBufferLevel Hidden Average video buffer length.
42 StdVideoBufferLevel Hidden Std. dev. of video buffer length
43 StallEvents Hidden Number of stall events
44 RebufferingRatio Target Portion of time spent in stall events
45 StallLabel Target Discretization of RebufferingRatio variable
46 TotalStallingTime Hidden Total duration of stall events
47 AvgTimeStallingEvents Hidden Average duration of stall events
48 AvgQualityIndex Hidden Avg. normalized index of downloaded representations
49 AvgVideoBitRate Target Average video bitrate consumed by the player
50 AvgVideoQualityVariation Target Average variation of the video bitrate
51 AvgDownloadBitRate Hidden Average download rate of video segments

TABLE I: Context information, QoS metrics, hidden variables. Target
QoE factors, which we want to predict from all other variables, are
highlighted in bold.

approach as in [8]. The RebufferingRatio values are aggregated
into 3 discrete values in a new variable StallLabel. Firstly,
RebufferingRatio equals to 0 means that no stalling has
occurred, hence we set StallLabel=NoStall. If it is between
(0, 0.1) then StallLabel=MildStall. Finally, if RebufferingRatio
is above 0.1 then StallLabel is given the value SevereStall.

Fig. 2 shows the histogram of the 3 target variables. Sim-
ilarly to the target variables, all other variables’ distribution
follow an exponential pattern. For this reason we initially
apply on the input data a logarithmic transformation.

In the next sections, we use machine learning techniques to
derive accurate QoS-QoE mappings given the available data.

Re-buffering Ratio
NoStall MildStall SevereStall

C
ou

nt

#10 4

0

5

10

51155

17180
794

AvgVideoBitRate [bps] #10 6
0 2 4 6

C
ou

nt

#10 4

0

2

4

AvgVideoQualityVariation [bps] #10 6
0 1 2 3

C
ou

nt

#10 4

0

5

Fig. 2: Histograms for our 3 target variables.

Class Training Accuracy Validation Accuracy
NoStall 0.96178 0.95525
MildStall 0.7585 0.73587
SevereStall 0.43874 0.34211

TABLE II: RF class accuracies. Training to validation ratio is 4:1.

IV. STALLING PREDICTION

In this section we use a Bayesian Network (BN) [18] model
to accurately predict the StallLabel variable from the QoS
metrics listed in Tab. I. We then show that StallLabel is formed
by a mixture of 2 distributions and that if there is a model that
predicts accurately the true distribution of a data point we can
get around 97% performance with the proposed BN model.
Finally, we conjecture through a custom novel neural network
search method that there is no such model, hence achieving
higher performance with our dataset is unlikely.

As a benchmark model we use Random Forest (RF) as done
in [8]. A RF is a bagging of Decision Tree (DT) models, see
[19]. At each leaf node, DT greedily selects and splits an input
variable into non-overlapping regions, so that the resulting new
leafs gain predictive power. The bagging procedure essentially
tries to minimize the effect of local optimality that stems from
the greedy split procedure. Table II shows the performance of a
RF classifier on the StallLabel variable pruned with minimum
leaf size of 50 to prevent over-fitting and training to validation
size ration of 4:1 (the same ratio is used in all the paper).

The results show that the RF is making an accurate
prediction on the NoStall class of StallLabel while it has
worse predictions on the MildStall. The performance on the
SevereStall class is practically unacceptable. There are 2 most
commonly occurring problems with RF, i.e., 1) it greedily
make branching decisions on each feature which often results
in low quality local optimum; 2) the RF’s rectangular decision
regions have boundaries parallel to the basis of the dimensions,
which could fail to capture some dependencies among features.

For these reasons, we turn our attention to Bayesian Net-
works based on Logistic Regression (LR) predictors. LR is
a binary classification model that maximizes the likelihood
L(θ) of a target vector of binary values Y given the input
data X for a given prior distribution P (θ) (assumed to be
uniform in our experiments) of the parameter set θ, see Eq.
(1). The a-posteriory probability model is assumed to be
P (Yi|X, θ) = (σ[θ,Xi])

Yi(1 − σ[θ,Xi])
1−Yi where σ is the

sigmoid function σ[θ, x] = 1
1+e−θ·x

. In Eq. (2) we report the
gradient of the log-likelihood.

max
θ
L(θ) =

{
n∏
i=1

P (Yi|X, θ)

}
P (θ) (1)

∂ log(L(θ))

∂θ
=

{∑
i

Xi(σ[θXi]− Yi)

}
+
∂ log(P (θ))

∂θ
(2)

Using the LR probabilistic model we next define the BN
we used in Fig. 3 to predict the StallLabel variable.

θ1 6⊥ θ2|MildStall

θ1 6⊥ θ2|SevereStall
Data X

X
LR1: P (Yi|X, θ1) θ1

Y=NoStall LR2: P {Yi|X, θ2, P (Yi|X, θ1) ≥ α} θ2

If P (Yi|X, θ1) ≥ α ∈ [0, 1]

Y=MildStall Y=SevereStall

P {Yi|X, θ2, P (Yi|X, θ1) ≥ α} ≥ β

P (Y,X, θ1, θ2) =

= [P (Yi|X, θ1)P (θ1)] . [P {Yi|X, θ2, P (Yi|X, θ1) > α}P (θ2)]P (X)

Fig. 3: Bayesian Network using LR models.

Class Training Accuracy Validation Accuracy
NoStall 0.8681 0.8684
MildStall 0.7929 0.8048
SevereStall 0.9338 0.9368

TABLE III: BN class accuracy. Training vs. validation size ratio 4:1.

In the prediction step each data point is first classified by the
1st LR. If the 1st LR predicts the data to be in the SomeStall
class then the data is further classed by the 2nd LR. Observe
that the 2nd LR is dependent on the prediction of the 1st LR.

In the training phase, we first optimize the θ1 parameters
by standard gradient descent, hence obtaining the 1st LR and
a prediction for the NoStall class. Then, we select from Y
only the data that was predicted to have SomeStall by the 1st

LR and we optimize for θ2 to train the 2nd LR and gain the
prediction for mild and severe stall classes. The pseudo-code
of the training phase of our BN is shown in Fig. 4. We report
in Table III the performance of the proposed BN model, that
outperforms the SoA Random Forest approach (cfr. Tab. II).

We point out that we optimized the decision threshold of
each LR, usually set to 0.5, so that the True Positive Rate
(TPR) and the True Negative Rate (TNR) are equal. We do
this in order to achieve similar final Class Accuracies (CA).

After deriving our BN model that makes a better trade-off
between the class accuracies than the RF we would like to
know if the data classes are linearly separable.

A. Is our data linearly separable?

In this section we seek to find if there is a more accurate,
but also more complex mapping between the input data and
the target variable StallLabel. We discovered through the
experiment shown in Fig. 5 (top) that if we select only the
misclassified data by the 1st LR in Fig. 3 to train another (2nd)
LR then we can reach a 97% CA. Thus, if we find a switching
model as in Fig. 5 (bottom) that assigns the correct LR to each
data point, then we will improve the overall CA of our BN.

In the next section we train the switching model by deriving

Input: Data X , initial parameters θ1 = 0, θ2 = 0;
Output: Prediction for Y =StallLabel

Set X := log(X); Optimize the parameter θ1 of the 1st
LR by maximizing the log-likelihood via gradient descent
method, i.e.:

θt1(i) = θt−1
1 (i)− ∂ ln(L(θt−1

1))

∂θt−1
1 (i)

Optimize the decision boundary α of the 1st LR such that:

α = argminα |TPR(LR1)− TNR(LR1)|

if (P (Yi|X, θ1) ≥ α) then
Yi = NoStall

else
Yi = SomeStall

end if
Select X := X(Yi = SomeStall) and Y := Y (Yi =
SomeStall)
Optimize θ2 via gradient descent:

θt2(i) = θt−1
2 (i)− ∂ ln(L(θt−1

2))

∂θt−1
2 (i)

Optimize the decision boundary β of the 2nd LR:

β = argminβ |TPR(LR2)− TNR(LR2)|

if (P {Yi|X, θ2, P (Yi|X, θ1) > α} ≥ β) then
Yi = SevereStall

else
Yi = MildStall

end if

Fig. 4: Training algorithm for our Bayesian Network model.

Data

1st LR

QoS,StallLabel

2nd LR for wrong 1st LR

Use the misclassified only

97% CA

Data Switching model
Only use 1st LR

Only use 2nd LR
97% CA

Experiment (top)

Switching model (bottom)

Fig. 5: Exploring how to improved the 1st LR of the BN: the
experiment and the model that should yield the improvement.

a Neural Network (NN). Being able to extract the relevant
features and make accurate predictions, NN became the state
of the art technique to map and search highly complex
relations [20].

B. Neural Network Search Using an Index Invariant Graph

Generally, when applying a NN it is best to derive its setting
based on the underlying characteristics of the problem because
this reduces the parameter set that needs to be hand-picked.

V1

V2

V1

V2

V3

V1

V2

V3

IIT/Neuron Output variables

Use 1st LR

Use 2nd LR

Feature1

Feature2

Feature3

Feature4

Feature5

Feature6

Input variables X

X1

X2

X3

X4

X5

X6

Fig. 6: The Index Invariant Tree, see [21], [22].

In order to derive the appropriate NN search method let us
consider the example in Fig. 6. There we map between the
input and output variables using a feature set and a single
neuron. Notice that we do not use the classical NN model
with sigmoid activation function. Instead, we resort to the tree
structure of a neuron in order to reformulate it using an Index
Invariant Tree (IIT). For the details of ITT, we refer to [21],
[22]. Intuitively, the IIT states that each feature should map
only to a single output and all pairs of features should not
overlap. This enables to gain good prediction power while
encoding large part of the data characteristics.

Following this analysis the training of the NN reduces to a
stable set search on an appropriate graph whose vertices are
features and each edge specifies if two features overlap. Here,
a feature is any subset of the whole domain of the data, i.e.,
Feature ⊂ R#variables. As a result, the training of the NN
becomes a combination of simulated annealing [18] and graph
clustering algorithms as in [22]. It is worth noting at this point
that other clustering methods could be used based on available
time and complexity constraints.

C. Using Hidden and Simulation Variables

It is worth examining another possibility to improve the
prediction performance, namely the use of additional vari-
ables H . The additional variables are given in Tab. I as
context and hidden variables. It is possible to train a separate
model H = FH(X) for each of the simulation and hidden
variables and then use their prediction in the final model
Y = F (X,Hpredicted). In this way the final model still
uses only the input variables, but it makes an intermediate
prediction on the additional variables which are then used
along with the input to get the final target prediction. This
process is shown in Fig. 7.

Bagged [19] Regression Tree and Bagged Random Forest
are used for the additional variable prediction, depending on
whether they are continuous or discrete.

Input X

Y = F (X)

Output Y

Input X

Y = F (X,Hpredicted)

Output Y

Input H

H = FH(X)

Training ONLY

Predict H|X

Fig. 7: Our approach using hidden variables. (Left) the standard pre-
diction task. (Right) prediction procedure that includes intermediate
hidden variables prediction.

D. Results from the IIT and the StallLabel variable
Tab. IV presents the results obtained using the BN predictor

for five different cases: when only QoS metrics are available,
when additional context information is predicted or known to
the network controller, and when hidden variables are obtained
from prediction or perfectly known to the network controller.
The table shows results only with four different validation
splits, since the analysis of the standard deviation (STD)
suggests that we cannot gain in accuracy.

We observe that the usage of the hidden variable procedure
always increases accuracy and that if good model can be
available for them the expected gain is high. Indeed, accuracies
in the case where actual hidden variables are used (perfect
prediction) plots a significant improvement compared to the
one with QoS metric only. Also, the addition of context
variables, which can be retrieved in practice from the network
controller, improves prediction accuracy.

In term of the search for improvements, the IIT method
did not find any areas where there are consistent misclassi-
fication between the two LRs in Fig. 5 for all classes (NoS-
tall,SomeStall,MildStall,SevereStall). This is true regardless of
whether the context parameters and the hidden variables are
added as predicted or actual values. This finding suggests that
the proposed BN based on LR is likely the best performing
model on the considered dataset.

Case Tr. NS Tr. MS Tr. SS Val. NS Val. MS Val. SS
QoS metric Mean 0.8685 0.7946 0.9376 0.8665 0.7982 0.9267
only STD 0.0004 0.0014 0.0031 0.0018 0.0045 0.0122
Added predicted Mean 0.8691 0.7963 0.9409 0.8691 0.7996 0.9316
context STD 0.0004 0.0008 0.0031 0.0021 0.0036 0.0017
Added actual Mean 0.8689 0.7975 0.9396 0.8676 0.8023 0.9304
context STD 0.0001 0.0010 0.0027 0.0023 0.0033 0.0018
Added predicted Mean 0.8758 0.8012 0.9434 0.8735 0.7983 0.9366
hidden STD 0.0018 0.0033 0.0019 0.0034 0.0101 0.0079
Added actual Mean 0.9000 0.8399 0.9543 0.8990 0.8466 0.9530
hidden STD 0.0012 0.0023 0.0026 0.0020 0.0091 0.0113

TABLE IV: BN StallLabel training (Tr.) and validation (Val.) class
accuracies for NoStall (NS), MildStall (MS) and SevereStall (SS)
using a 4:1 training to validation size ratio and using hidden variables
[38:42,48:51] (from Tab. I).

V. VIDEO BIT-RATE AND QUALITY VARIATION

We finally focus on the prediction of the two remaining
QoE factors, namely average video bitrate (AvgVideoBitRate)

and its variation (AvgVideoQualityVariation). We remark that
this turned out to be a much easier task, as those factors
are linearly dependent on quantitative QoS metrics which are
already observable. For this reason, a classic Regression Tree
(RT) model was found to be suitable for both QoE factors.

AvgVideoBitRate can be easily predicted with high accuracy
through the use of a bagged RT with minimum leaf size of
10. Tab. V shows the RT results. Similarly to AvgVideoBi-
tRate, AvgVideoQualityVariation is efficiently predicted with a
bagged RT with minimum leaf size of 10 as shown in Tab. VI.

We observe that the prediction of both the video bitrate
and the quality variation is very accurate. Indeed, as results
show, the mean error for both variables is only of a few kbps
while the video bitrate can be up to 8 Mbps in the scenarios
we considered. As for the case of StallLabel prediction dis-
cussed in the previous Section, results in Tab V and VI also
demonstrate that the prediction error for AvgVideoQuality and
AvgVideoQualityVariation can further improves when context
information is known to the network controller and good pre-
diction models are available for context and hidden variables.
Our simple predictors for hidden variables help reducing a
little bit the error but higher gains can be obtained with better
models.

Case Training Validation
QoS metric only 58.13 (0.59) 68.78 (0.17)
Context Pred. 55.99 (0.52) 66.19 (0.10)
Context Actual 47.18 (0.75) 63.47 (0.23)
Hidden + Context Pred. 53.01 (0.75) 64.34 (0.16)
Hidden + Context. Actual 34.87 (0.60) 46.00 (0.12)

TABLE V: Mean and standard deviation (in parenthesis) for the
prediction error of the average video quality (in Kbps). We used a 4:1
training to validation size ratio and hidden variables [38:42,44,45,51]
(from Tab. I). VI. CONCLUSION

In this paper we utilize machine learning techniques to
demonstrate how QoS metrics can be exploited to accurately
estimate and predict key QoE factors. We mostly focus on
the StallLabel QoE factor as it is the hardest to predict. We
improve upon the Random Forest (RF) performance [8] by
building a more balanced model in term of class accuracy.
We discovered simple but important patterns in the StallLabel
variable and defined the BN model to take them into account.
Using a custom Neural Network (NN) based search method
we showed that any other StallLabel model is unlikely to
outperform our proposed Bayesian approach.

For all the crucial QoE factors we considered, we show
that making intermediate predictions for hidden variables can
boost the predictive performance of our approach, compared
to the case where only observable variables are used. We also
show that context information on network congestion and basic
characteristics on video streams further improves predictions.

In the future, we plan to design new features, specific to
video profiling (such as in [23]), that can be measured by
QoS monitoring systems and improve QoE predictions.

Case Training Validation
QoS metric only 43.33 (0.23) 51.73 (0.69)
Context Pred. 37.51 (0.25) 46.41 (0.59)
Context Actual 28.88 (0.17) 41.24 (0.56)
Hidden + Context Pred. 36.78 (0.26) 46.09 (0.61)
Hidden + Context Actual 26.23 (0.13) 37.78 (0.38)

TABLE VI: Same as Tab. V but for the average video quality variation
(in Kbps). Same training to validation ratio and same variables.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodology,
20162021,” June 2017.

[2] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” in Proc. ACM
SIGCOMM, 2012.

[3] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[4] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring Video QoE from Encrypted Traffic,” in Proc. ACM IMC,
2016.

[5] H. Nam, K.-H. Kim, and H. Schulzrinne, “Qoe matters more than qos:
Why people stop watching cat videos,” in Proc. IEEE INFOCOM, 2016.

[6] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proc. ACM MMSys, 2011.

[7] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,” in ACM
SIGCOMM, 2015, pp. 325–338.

[8] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring video qoe from encrypted traffic,” in Proc. ACM IMC, 2016.

[9] F. Zhang, W. Lin, Z. Chen, and K. N. Ngan, “Additive log-logistic model
for networked video quality assessment,” IEEE Trans. on Image Proc.,
vol. 22, no. 4, pp. 1536–1547, April 2013.

[10] ITU-T, “Parametric non-intrusive bitstream assessment of video media
streaming quality - Higher resolution application area ,” 2013.

[11] W. Song and D. W. Tjondronegoro, “Acceptability-based QoE models
for mobile video,” IEEE Transactions on Multimedia, vol. 16, no. 3, pp.
738–750, 2014.

[12] Z. Chen, N. Liao, X. Gu, F. Wu, and G. Shi, “Hybrid distortion ranking
tuned bitstream-layer video quality assessment,” IEEE Trans. on Circuits
and Systems for Video Technology, vol. 26, no. 6, pp. 1029–1043, 2016.

[13] T. Hoßfeld, S. Biedermann, R. Schatz, A. Platzer, S. Egger, and
M. Fiedler, “The memory effect and its implications on web qoe
modeling,” in Proc. IEEE ITC, 2011.

[14] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” ACM SIGCOMM CCR, vol. 44, no. 4, 2015.

[15] P. T. A. Quang, K. Piamrat, K. D. Singh, and C. Viho, “Video streaming
over ad hoc networks: A qoe-based optimal routing solution,” IEEE
Tran. on Veh. Tech., vol. 66, no. 2, pp. 1533–1546, Feb 2017.

[16] Y.-T. Lin, E. M. R. Oliveira, S. B. Jemaa, and S. E. Elayoubi, “Machine
learning for predicting qoe of video streaming in mobile networks,” in
Proc. IEEE ICC, 2017.

[17] C. Kreuzberger, D. Posch, and H. Hellwagner, “AMuSt Framework -
Adaptive Multimedia Streaming Simulation Framework for ns-3 and
ndnSIM,” 2016.

[18] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[19] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[20] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. ACM ICML, 2009.

[21] V. Vasilev, “Chromatic polynomial heuristics for connectivity prediction
in wireless sensor networks,” in ICEST 2016, Ohrid, Macedonia, 28-30
June 2016.

[22] V. G. Vasilev, Algorithms and Heuristics for Data Mining in Sensor
Networks. LAP LAMBERT Academic Publishing, December 2016.

[23] D. Tsilimantos, T. Karagkioules, A. Nogales-Gómez, and S. Valentin,
“Traffic profiling for mobile video streaming,” in Proc. IEEE ICC, 2017.

