
COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

Graph Convolutional Reinforcement Learning for
Collaborative Queuing Agents

Hassan Fawaz∗, Julien Lesca†, Pham Tran Anh Quang†, Jérémie Leguay†, Djamal Zeghlache∗,
and Paolo Medagliani†

∗SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
†Huawei Technologies Ltd., Paris Research Center, France

Abstract—This paper explores the use of multi-agent deep
learning as well as learning to cooperate principles to meet strict
service level agreements, in terms of throughput and end-to-
end delay, for a set of classified network flows. We consider
agents built on top of a weighted fair queuing algorithm that
continuously set weights for three flow groups: gold, silver, and
bronze. We rely on a novel graph-convolution based, multi-agent
reinforcement learning approach known as DGN. As bench-
marks, we propose centralized and distributed deep Q-network
algorithms and evaluate their performances in different network,
traffic, and routing scenarios, highlighting both the effectiveness
of our proposals and the importance of agent cooperation. We
show that our DGN-based approach meets stringent throughput
and delay requirements across different scenarios, decreasing
silver and bronze flow median waiting delays by more than 50 %
and reducing the SLA violations of the latter by nearly 60 %,
with respect to a classic priority queuing approach.

Index Terms—Smart Queuing, Adaptive WFQ, Deep Rein-
forcement Learning, MADQN, DGN, Multi-Agent Systems.

I. INTRODUCTION

Traffic scheduling is key to control how bandwidth is
shared among different applications and in particular, to satisfy
Service Level Agreements (SLA) of applications in terms of
throughput, delay, loss and jitter. In typical Software-Defined
Wide Area Networks (SD-WAN) architectures [1], a central-
ized controller maintains a set of policies deployed at edge
routers that interconnect multiple sites (enterprise branches,
data centers). Each edge router is configured to send traffic
to its peers over several transport networks (e.g., private lines
based on MPLS or cheaper broadband internet connections).
Typically, these routers are responsible for applying routing
and queuing policies to meet SLA requirements in terms of
end-to-end Quality of Service (QoS), security, etc. At a slow
pace, the controller optimizes policies, while edge devices
make real-time decisions.

Several solutions [1] have been proposed for the dynamic
selection of paths in WAN networks to satisfy SLA require-
ments. The general idea is to compare the quality of paths with
application requirements and update the path selection strategy
inside routers when needed. Beyond path selection, a number
of adaptive queuing and Active Queue Management (AQM)
techniques [2] have been proposed to help sustain delay and
throughput requirements. In particular, the dynamic adaptation
of scheduling parameters, such as the weights in Adaptive
Weighted Fair Queuing (AWFQ) [3]–[5], has been shown
to significantly improve performance. Nonetheless, existing
mechanisms are local and work at the level of individual

routers in the network, without trying to explicitly cooperate to
globally improve the QoS. In [6], for instance, an agent at the
destination informs the source node of delay limit violations,
so the upstream agent adjusts its queuing weight, but there
is no cooperation or sharing of information across agents.
In our work, we design a multi-agent system based on deep
reinforcement learning with the objective of improving queue
management in networks.

To this end, we propose a set of Deep Reinforcement
Learning (DRL) algorithms that optimize queuing parameters
to meet SLA requirements. We consider a typical SD-WAN
scenario in which routers deal with an array of classified
flow groups with different requirements in terms of throughput
and latency. We consider that all these flows can be divided,
according to their priority, into three classes: gold, silver,
and bronze [7]. The gold group contains network control
information and voice and video traffic. The silver group
contains real-time service packets, and the bronze flows consist
of batch and non-essential services. A WFQ approach is
set up to control how each flow group is served at ingress
nodes. Traffic belonging to each of these three classes is
sorted into its own queue. Our DRL algorithms are embedded
into agents controlling WFQ weights for each flow group
depending on the traffic and network status at hand. The delay
on each path, as well as the eventual achieved throughput
by the flows, depends on the interfering traffic present in
other queues and on other paths. This necessitates dynamically
tuning the weights and motivates cooperation between agents
managing the different nodes, i.e., routers. While closed-form
expressions for WFQ [5] can be used to tune weights locally, a
machine learning approach can better adapt to realistic traffic
patterns and generalize to the case where multiple agents are
interfering (e.g., sending traffic over the same links) and end-
to-end QoS requirements must be met.

We utilize a multi-agent approach to tackle the problem.
In Multi-Agent Reinforcement Learning (MARL), multiple
methods exist to govern agent communication and coopera-
tion. The MARL system could be completely centralized, fully
distributed, or semi-distributed. In a centralized MARL sys-
tem, all the agents act as one, sharing the same environment,
states, actions and rewards. In a distributed one, the agents
are completely independent, and in a semi-distributed MARL
architecture, these distributed agents are able to communicate
and cooperate.

1

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

In this paper, our main proposal consists of the application
of a graph convolutional reinforcement learning (DGN) ap-
proach to the multi-agent smart queuing problem. DGN is a
semi-distributed approach to MARL in which the collaboration
between agents can be parameterized and learned. In addition,
as benchmark solutions covering other MARL architectures,
we propose two Multi-Agent Deep Q-Learning (MADQN)
solutions based on DQN [8]. One is completely centralized
and the other is fully distributed.

In our work, we discuss how both the DGN and MADQN
agents learn. We detail their observations, actions, rewards, and
the extent of their cooperation across the different considered
approaches. We perform packet-level simulations in ns-3 [9]
and compare our proposals against traditional Priority Queuing
(PQ), in both SD-WAN and classic network topologies. We
show that our proposals are better suited to deal with classified
traffic than PQ. While DGN is always capable of meeting the
required throughput and delay demands, we illustrate how the
lack of agent cooperation in the distributed MADQN approach
can cause the latter to falter in convoluted scenarios. And
while the centralized approach to MADQN can meet the set
objectives, we show that DGN can do it without the need
for a centralized setting and with negligible overhead during
execution.

Our main contributions in this work can be summarized as
follows:

• We propose a graph convolutional reinforcement learning
based approach to smart queuing.

• The approach uses attention mechanisms and neighbor-
hood communication to set the weights per flow class
served at routing nodes.

• We propose two deep learning mechanisms, one cen-
tralized and one distributed, to serve as reinforcement
learning benchmarks to better assess our main proposal.

• We consider multiple network scenarios including an SD-
WAN topology and a classic network in the Abilene
topology. Our approach is studied for both UDP and TCP
traffic.

• We show the gains that our approach brings in terms of
decreasing SLA violations and reducing waiting delays
with respect to the considered benchmarks.

• We study both the scalability of our DGN approach and
the overhead incurred due to inter-agent communications,
showing that our proposal fairs well on both fronts.

Section II of this paper describes the related works in the
state-of-the-art. Section III discusses the system architecture,
including our SD-WAN use case and the WFQ approach
we build our agents upon. Section IV introduces our graph
convolutional reinforcement learning based proposal for smart
queue management. Section V details both our centralized and
distributed deep Q-learning approaches to the smart queuing
problem. Section VI presents the simulation results and anal-
ysis, while Section VII concludes this paper.

II. RELATED WORKS

In this section, we discuss the related works on smart queu-
ing and the utilization of deep reinforcement learning (DRL)
in network management. In this context, we first focus on
active queue management and traffic engineering. Afterwards,
we discuss graph convolutional reinforcement learning, which
our proposal in this paper is based upon, and present multiple
approaches in the state-of-the-art which utilized it. Finally, we
highlight some algorithms which revolve around the SD-WAN
environment, the system model we considered in our work.

In terms of what we aimed to accomplish in this work,
the paper of Kim, Jaseemuddin and Anpalagan [10] is the
closest. The authors propose a DQN based AQM algorithm in
a single-agent environment, wherein the agent decides which
packets to serve from the queue and which ones to drop.
Other queue-based DRL usages can be seen in the paper of
Balasubramanian et al. [11], where the agents decide which
request traffic instances are to be served first, and in the work
of Bachl, Fabini and Zseby [12], where they are tasked with
finding the optimal buffer sizes.

DRL approaches in the domain of traffic engineering in
general and Multi-Path TCP (MPTCP) specifically are also
popular. Rosello [13] proposed a DQN agent with the purpose
of selecting the optimal paths for MPTCP, while Liao et
al. [14] used an actor-critic framework to the same end. Houidi
et al. [15] proposed a multi-agent actor-critic framework to
perform path selection and optimize Quality of Experience
(QoE).

Kattepur et al. [16] used multi-agent deep reinforcement
learning to sustain differentiated service guarantees in fat tree
networks. While the agents at the spine and super-spine level
may make use of Equal-Cost Multi-Path (ECMP) routing or
intelligent load balancing, the leaf agents have other configura-
tions such as decreasing flow rate, changing priority of flows,
and increasing packet drop rates. The authors demonstrate the
utility of their proposed agents and show that their approach
achieves 6 % latency and 34 % throughput improvement with
respect to vanilla ECMP.

Yao et al. [17] also use deep reinforcement learning to
tackle the load balancing task. They formulate the latter as a
decentralized partially observable Markov decision problem,
which induces the MARL approach. They utilize experiments
on a realistic test bed to show that their approach outperforms
classic ones such as Weighted-Cost Multi-Path and Local
Shortest Queue.

In this paper, we propose a graph convolutional reinforce-
ment learning multi-agent approach for optimal weight selec-
tion in a network using WFQ schedulers. The objective is to
meet delay and throughput requirements for a set of classified
network flows. Originally proposed by Jiang et al. [18],
DGN aims at learning how agents cooperate in a MARL
environment. It uses attention [19] and adjacency matrices to
extract relevant features and relay important information where
needed. With respect to the state-of-the-art on cooperation
in multi-agent deep reinforcement learning, DGN utilizes

2

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

attention mechanisms similar to those proposed by Jiang &
Lu [20], whilst avoiding its full-scale communication. It uses
parameter sharing as done in the proposal by Zhang et al. [21],
but without assuming a fully observable environment. And
finally, while DGN was not the first proposal to utilize a graph
convolutional network, it does so in a partially observable
environment whilst allowing for a dynamic adjacency of
agents.

Multiple papers in the state-of-the-art propose graph based
deep reinforcement learning approaches. Houidi et al. [22]
use graph convolutional reinforcement learning to propose a
smart load balancing algorithm. Their approach models the
network as a graph and derives, through a graph convolutional
method, the policy that splits traffic flows across end-to-end
candidate paths while meeting application QoE requirements.
They use throughput and delay as performance metrics high-
lighting how graph convolutional deep reinforcement learning
is ideal for decision making in networks. Jiang et al. [18]
use graph convolutional reinforcement learning to propose a
hop-by-hop routing prediction policy wherein each packet is
an agent. Their approach attests to the scalability of these
deep learning approaches and yet again shows how graph-
based deep reinforcement learning is well suited for network
problems. Another graph reinforcement learning approach to
packet routing can be seen in the paper by Mai et al. [23].
In their proposal, the routers interact with the network and
learn from experience the best routing configurations. They
compare their approach to classic routing methods such as
static shortest path and Q-learning, as well as deep learning
approaches based on deep Q-networks, and show that their
proposal outperforms these benchmark algorithms in terms of
transmission delay and affordable load.

In the context of SD-WAN networks, Quang et al. [24]
aimed at optimizing routing policies from a centralized net-
work controller. As such, they integrated data-driven SLA
predictions into a local search algorithm to optimize routing
policies. Their proposed approach supports multiple intents
such as the minimization of the congestion or the maximiza-
tion of the network quality. Additionally, a dynamic con-
trol load balancing approach for SDN environments, dubbed
MARVEL, is proposed by Sun et al. [25] utilizing multi-agent
deep reinforcement learning. They use the latter to determine
switch migration actions (controller-switch mapping). The
training is done offline and the decision making is done online.
The authors attest that their proposal improves the control
plane’s general processing ability by 27 % while reducing its
processing taking time by 25 %.

Manel et al. [26] propose a multi-agent reinforcement
learning approach to optimize routing decisions in SD-WAN
networks. Mainly, they aim to ensure load balancing among
each network as well as optimized resource utilization of
inter-domain links. Their simulations show that their pro-
posal outperforms solutions such as Border Gateway Protocol
(BGP)-based routing. Finally, Troia et al. [27] develop an SD-
WAN specific traffic engineering algorithm. The objective is
to improve their performance in terms of service availability.

1 2

5 6 7 8 9 10

AR

AR

Branch 3

AR

Branch 4

Enterprise

Network
Internet

MPLS

AR

Branch 2

11 12

AR

Branch 5

3 4

AR

Branch 1

Figure 1: SD-WAN network with 5 branches

They use three different deep learning approaches: policy
gradient, TD-λ and deep Q-learning with a reward function
representing the overall network availability.

Our paper goes beyond the related works by considering
a multi-agent architecture based on reinforcement learning
algorithms for the adaptive tuning of queuing parameters.
Unlike the majority of the works in the state-of-the-art, we
don’t look for path selection, but for adapting weights to
guarantee QoS requirements. In our work, the agents are
embedded in the routing nodes themselves, giving them real-
time direct access to network decisions.

III. SYSTEM ARCHITECTURE

We consider a semi-distributed architecture where edge
devices are controlling traffic based on real-time measurements
using local agents sharing certain information with their peers.
The agents are centrally trained, but their execution is done in
a distributed manner. In this section, we detail the architecture
of the SD-WAN use case that we focus on, and afterwards
we discuss the scheduling approach on which we built our
reinforcement learning proposals.

A. SD-WAN Use Case

Figure 1 presents a typical SD-WAN use case where
an enterprise network headquarters (HQ) and five remote
branches are interconnected by MPLS and broadband internet
connections controlled by third-party operators. A controller
is placed at the headquarter site and Access Routers (ARs)
are responsible for the interconnection. Flows issued by user
applications are grouped into flow groups that correspond
to traffic classes with different SLA requirements. A typical
traffic scenario includes gold, silver, and bronze groups for
multimedia, business critical, and non-critical applications,
respectively.

The system architecture is split into two control entities
operating at different time scales. In the first control loop,
the global controller (at the headquarter site) updates policies
and communicates them to edge devices (i.e., AR devices).
In a second control loop, devices take tactical decisions to
follow the evolution of traffic and network conditions. Figure 2
depicts the architecture of an AR device. The traffic of each
flow group is first load balanced over available access networks

3

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

Routing Agent

Smart Load Balancing

QoS Agent

Smart Queuing

Monitoring /

Telemetry

Forwarding

Engine

Scheduling

Engine

 Control Plane

Data Plane

Per flow

Per path
Split ratios

Measurements Path selection Scheduling

WFQ weights

Figure 2: Access router architecture

(e.g., internet, MPLS) using a routing agent (as in [24], [25],
and others) and then a scheduling engine at each port (each
access network link), controlled by a QoS agent, applies a
QoS policy, i.e., the WFQ based RL approach we describe
later on. The monitoring block provides information on the
network at path and flow group levels such as jitter, delay, and
throughput metrics, some of which are factored into our deep
learning decision-making. The focus of this paper is on the
smart queuing part of the aforementioned architecture. In what
follows, we consider that the routing policy is already decided,
and we discuss only traffic scheduling, with the integration of
the two being the subject of our future works.

Our objective is to satisfy SLAs for classified network flows.
In particular, we aim at meeting performance targets for each
flow group in terms of minimum throughput and maximum
end-to-end delay. To do so, we enlist the aid of DRL to
continuously optimize queuing parameters. In what follows,
we discuss our WFQ approach and the QoS agent’s role.
Because of the graph-like structure of SD-WAN topologies,
a graph convolutional approach to the problem was ideal.
The different agents represent the different nodes of the
graph, and the number of convolutional layers directly relate
to the number of hop communications required to ensure
coordination between all the agents, as we detail later on.

Finally, we note that in addition to our SD-WAN use case,
we also test our proposal in a more generalized network
topology, namely the Abilene topology, and in a large scale
network topology as well. We show that our learning model is
resilient to different topologies and can adapt to the objectives
regardless of the scenario at hand.

B. Adaptive Weighted Fair Queuing and DRL Agents

While strict priority queuing is generally used to prioritize
traffic, WFQ can be used to maintain fairness, and its weights
can be adjusted so that each flow group of traffic receives a
bandwidth proportional to its weight. The latter also impacts
the resulting end-to-end delay experienced by the flows. Let
{1, . . . ,K} denote the set of flows. In a WFQ scheduler, each
flow achieves an average data rate Rk equal to:

Rk =
wk∑K
i=1 wi

R, (1)

where R is the total link capacity, and wk is the weight
associated with flow k. As such, the greater the weight of
the flow is, the higher its service rate and the lower its local
queuing delay are (see latency-rate server model [28]).

We assume that every flow in the SD-WAN network can,
based on packet priority, be classified into three groups.
These flow groups are in order of importance: gold, silver,
and bronze. Each group has its set of minimum throughput
thresholds to be attained: Tg , Ts, and Tb for gold, silver, and
bronze, respectively and an equivalent set of maximum end-
to-end delay thresholds to be respected: dg , ds, and db. The
objective of the DRL agents for QoS is to assist in meeting
these thresholds by learning how to continuously update the
weights (increase or decrease) for each flow group served by
the WFQ algorithms. Each agent in this MARL deployment is
built on top of a WFQ scheduler. While WFQ is used in our
SD-WAN use case, the proposed solution is generic enough to
handle any other scheduling architecture. The agents observe
the throughput and end-to-end delay values attained by the
flow groups, and then make individual decisions on whether
to increase or decrease the weights for the flow groups that
are served at their corresponding nodes. With the delay and
throughput values being influenced by how the packets traverse
the entire network, inter-agent communications are expected
to be a key feature.

IV. GRAPH CONVOLUTIONAL REINFORCEMENT
LEARNING FOR MULTI-AGENT SYSTEMS

The objective of the deep learning agents is to continuously
adjust the weights, either by increasing or decreasing them,
for a weighted fair queuing algorithm managing a set of
classified network flows. These agents are situated at ingress
nodes across the network, such as the numbered ones in
our illustrated scenario in Figure 1. In this paper, our main
proposal utilizes multi-agent graph convolutional reinforce-
ment learning, or DGN, to manage both how the agents learn
and communicate. DGN combines the ideas of graph neural
networks and deep reinforcement learning. The agents are
embedded in a graph G = (V,E), whose topology is related
to the computer network in our scenario. The existence of
an edge between two agents in this graph means that they
can exchange information. Each node (agent) i ∈ N , where
N denotes the set of agents, has a set of neighbors Bi with
which it can communicate. This collaboration between agents
can be parameterized and is dependent on an adjacency matrix
C that defines which agents are neighbors. Limiting agent
communication to neighbors reduces what could be costly
interactions, in terms of bandwidth and complexity, while
keeping the neighborhood present between agents that are
likely to impact each other the most.

A. Multi-agent System, Replay Buffer and Target Network

In DGN, the learning problem is formulated as a partially
observable Markov decision process. During every time iter-
ation t, each agent i receives a local observation from the
environment denoted oti. The latter consists of a set of values

4

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

Q-Network

Conv. Layer 2

Conv. Layer 1

Encoder

Q-Network

Conv. Layer 2

Conv. Layer 1

Encoder

HQ Branch 1

Agent 1 Agent 3

Figure 3: Structure of two DGN agents at HQ and Branch 1

detailing the end-to-end delay and throughput values of the
flow groups it is serving. The agent then takes an action ati,
increasing or decreasing the WFQ weight of each flow group,
and as a result is issued a reward rti determined by whether
the SLA requirements for the flows groups are met or not. The
aim is to maximize the sum of the expected rewards of all the
agents.

Multi-agent collaboration. Each agent i will run its own re-
inforcement learning algorithm, whose purpose is to learn how
the weights (wG

i , w
S
i , w

B
i), for the gold / silver / bronze flow

groups, should change with respect to the local observations
and information received from its neighbors. As displayed in
Figure 3, this reinforcement learning agent is composed of
multiple modules. The first module, a multi-layer perceptron
(MLP) referred to as an encoder, takes as input the local
observations of the agents and extracts the relevant features,
referred to as f0

i , of these observations. Once each agent i has
its computed features f0

i , it will send them to its neighbors and
receive their features, which reflect their own observations.

In Figure 3, agent 1 at the HQ sends f0
1 to all the

branches it connects to and receives f0
3 , f0

5 , etc..., from the
respective branches. Agent 1 at the HQ shares information
with all the internet branch agents as justified by its adjacency
matrix, which details its neighborhood. Recall that in our
implementation, agents that share links at the network layer are
considered to be neighbors. These features will be the input of
the second module, which is a convolutional neural network.
Similar to the encoder, the role of the convolutional network
is to extract the relevant features of the combination of the
local observations and the features received from neighbors.
As suggested by the figure, a multiple convolutional layer
module can be used. Each layer takes as input the features
computed by the preceding convolutional layer, as well as
a new set of features received from the neighbors. In our
work, we consider two convolutional layers. Similarly, as it is

performed by distance vector routing to learn the shortest path
by exchanging routing tables with neighbors, the exchange
of features between agents will permit the agents to obtain
local knowledge from agents that are at a distance h from
them, where h denotes the number of layers in the second
module. For example, the second convolutional layer of node
3 at branch 1 will receive the feature f1

1 from HQ node
1, which contains information received from the rest of the
branches. Even if these branches cannot communicate directly,
the exchange of features with the HQ nodes will permit
them to have a full view of the network information. After
several stages of convolutional layers, all the information
computed will be gathered into a vector of features. The
last module is a Q-learning algorithm. It takes as input the
features produced by each layer of the convolutional layer. The
reinforcement learning algorithm will run on this third module
and the decisions, which maximize the expected reward, on the
weights will be made by it.

Attention mechanisms. The convolutional layers of DGN
implement attention mechanisms. Convolutional kernels,
widely present in Convolutional Neural Networks (CNNs) and
image recognition, enable extracting features from images.
In DGN, these kernels integrate the features in the receptive
field in order to extract the latent features. They should be
able to learn how to abstract the relationship between agents
as to integrate their input features. DGN uses a multi-head
dot-product convolutional kernel to calculate the interactions
between different agents. A more in depth illustration of how
attention works in neural networks can be found in [19].

Replay buffer. DGN implements a replay (experience)
buffer, i.e., samples are stored in a memory and afterwards
randomly sampled for training. This removes any correlation
that might exist among consecutive samples. The experi-
ences are of the type (O,A,O′,R,C), where O is the set of
agent observations {o1, ..., oN}, A is the set of agent actions
{a1, ..., aN}, and as such O′ is the set of new observations
{o′1, ..., o′N} as a result of the taken actions. R is the set
of rewards issued to the agents {r1, ..., rN}, and finally C =
{C1, ..., CN} is the set of adjacency matrices for the agents.
The adjacency matrices essentially define the neighborhoods
for the agents. Ci, ∀ i, is constructed with dimensions (|Bi|+1)
× N , wherein the upper row is a one-hot representation of the
index of the agent i, and the kth row, k = 2,...,|Bi|+ 1, is a
one-hot rendition of the index of the (k-1)th neighbor. Note
that the time notation t is dropped from these expressions for
the sake of simplicity.

Target network. With enough samples in the replay buffer,
we are able to train the agents. The training is done with
the aid of target networks [8]. A target network is a copy
of the agent’s main Q-network. Its parameters however are
not trained every iteration, but rather updated slowly or every
while. This helps root out any instability in training the main
Q-network that could arise from consecutive states being very
similar. The replay buffer is randomly sampled for a minibatch
of size S on which each agent is trained with the purpose of

5

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

minimizing the loss:

L(θ) = 1

S

∑
S

1

N

N∑
i=1

(yi −Q(Oi,C , ai; θ))
2, (2)

where we recall that N is the total number of agents and that

yi = ri + γmax
a′

Q(O′
i,C , a

′
i; θ

′). (3)

Oi,C ⊆ O represents the observations of i’s neighbors. Q
represents the Q-function, θ′ the target network parameters,
and γ is the discount factor. The latter weighs the impact of
future rewards. The gradients of the loss of all the agents are
accumulated and used to update the main network parameters.
The target network parameters are updated smoothly (i.e.,
softly) every iteration following:

θ′ = τθ + (1− τ)θ′, (4)

where τ denotes the smoothness of the update. If τ=1, then
the update is classified as “hard” and the parameters of the
main network are simply copied onto the target network.

Finally, we note that during the training phase, as well as
during the execution period, the agents are well aware of their
neighborhoods, i.e., their own adjacency matrices. That is
to say that they know with which agents they would need
to communicate. During this communication, agents share
copies of their feature vectors, as illustrated in Figure 3. The
significance of this overhead is discussed in the results section.

Spatial and Time Complexity. Following the discussion
and details presented in [29], we can assert that the complexity
of our approach, both spatially and time wise, is of the order
of O(m2L), where L is the number of hidden layers and m the
number of neurons each layer has. That same work shows that
without the attention model and inter-agent communications
provided by DGN, the complexity would become of the order
O(m2L ·N), wherein N is the number of agents. This further
attests to the scalability of the proposed approach.

B. DGN based Smart Queue Management

In our work, we enlist DGN to help with our problematic: to
meet stringent SLA requirements for classified network flows.
The different components presented in DGN are redefined as
follows for our problem:

• The local observation, in our case, is a tuple rep-
resenting the end-to-end throughput and delay values
attained the flows served by the agent and denoted
{Tg, dg, Ts, ds, Tb, db}, where Tg represents the through-
put of the gold flows, dg the average end-to-end delay
of the gold flows, and so on. The end-to-end delays are
typically measured using in-band network telemetry.

• The actions taken by every agent throughout the learning
problem consist of either increasing or decreasing the
weight of every flow group it is serving (gold, silver,
bronze) by a preset constant value δ. Each agent will act
on the weights of all three groups simultaneously (±δ).
This means that, in total, each agent has eight possible
actions to take at every iteration.

• The reward issued for each agent after it takes an action
is relative to whether it has helped meet the requirements
for each flow group. Let ηj be the reward for meeting
required throughput values of flow group j, and ϕj the
reward for meeting the delay requirement of the group
j. For the reward we are aiming to meet the an average
end-to-end delay maximum for the flows of the groups.
The total reward rt issued for an action is then computed
as follows:

ωth
g ·ηg+ωd

g ·ϕg+ωth
s ·ηs+ωd

s ·ϕs+ωth
b ·ηb+ωd

b ·ϕb, (5)

where ωth
j is set to -1 if the required throughput for flow j

is not met and +1 otherwise. ωd
j is its delay equivalent in

regard to meeting the target delay values. Consequently,
the agent reward can be negative, i.e., a penalty.

The rewards/penalties for meeting the gold flow requirements
are set higher than that for the silver, and for this latter higher
than the bronze. That is to say, the agent is better rewarded,
alternatively penalized more, for meeting or violating the
gold flow requirements than they are for those of the silver
and bronze flows, respectively. Note that we can weight the
rewards/penalties for the delay with respect to those of the
throughput. With gold group flows, for example, ϕg = κg·ηg .
If κg < 1, the agents are incentivized to meet the throughput
requirements ahead of the delay ones, for the gold flows.

Note that the throughput and delay are continuous values.
Since we cannot learn over a space of infinite states, it is
important to discretize it. We first need to define the size
of the observation space. In our work, we set it to 20. This
means that for every observed element, we have 20 possible
values. Since our observation is made up of six different
inputs, the discrete observation space size is a sextuplet, with
each element belonging to a set of 20 different values. The
window size is computed as the maximum attainable value
minus the corresponding minimum for each element of the
state tuple. The discrete state is the integer value resulting from
subtracting the minimum observation space from the state and
dividing the result by the discrete window size.

Algorithm 1: Discretization of the States
1 Define the discrete observation space size:

DISCRETE OS SIZE = [20, 20, 20, 20, 20, 20]
2 Compute the window size: discrete os win size =

(observation space.high−
observation space.low)/DISCRETE OS SIZE

3 Function get_discrete_state(state):
4 int discrete state = (state−

observation space.low)/discrete os win size
5 return discrete state

An increased state space would mean the algorithm has
more room to explore for better solutions, but would incur
a time penalty for convergence. That is to say if we set the
discrete observation size to 100 for example, we would be

6

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

encompassing a lot of additional states/observations. Nonethe-
less, the space would be too large. Striking the correct balance
is mostly a matter of approximation and experimenting. Fi-
nally, in the annex of this manuscript we detail how the DGN
agents are trained.

V. DEEP Q-LEARNING APPROACH

We present two benchmark multi-agent solutions, based on
DQN, to the problem. While DGN is semi-distributed, one
of these DQN approaches is completely centralized, and the
other fully distributed without any inter-agent communica-
tions. Deep Q-learning revolves around the idea of attaching a
deep neural network to the traditional Q-learning problem. It
aims at solving its memory problem by removing the Q-table
and using neural networks to determine the best actions.

For the distributed approach, the agents are considered to
be fully independent. They each have their own set of states,
actions, and rewards, and they each view the environment
from their local perspective. No inter-agent communications
exist. Figure 4 shows the structure of the distributed DQN
agents in our work. Unlike DGN, wherein we have an encoder
and convolutional layers managing inter-agent relations, here
we have two fully-connected layers in between the input and
output layers. There are no built-in cooperation mechanisms.
The actions taken by the agents and the rewards they are issued
remain unchanged from before. In DQN, we again utilize
two principle deep learning mechanisms: target networks and
replay buffers. The replay buffer is filled with experiences of
the type (O,A, R,O′, done), i.e., current observation, action
taken, reward received, and the new observation. As in the case
of DGN, the variable done indicates if the learning reached
its objective or not. The target network, with parameters θ′,
is a copy of the main Q-network and is used to stabilize
the training. The predicted Q-values of the target Q-network
are utilized to backpropagate through and train the main
Q-network. However, they themselves are not trained but
regularly updated with the values of the main Q-network. In
this case, we use a hard update with θ′ = θ.

We train on positive rewards, i.e., the experiences in which
the agent does not reach a terminal state are not used to
minimize the loss. Once enough experiences are stored in
the buffer, the training process starts on randomly selected S
minibatches. For every experience, each agent acts as follows:{

yi = ri, If done = True
yi = ri + γ ·max

a′∈A
Q(o′i, a

′
i; θ

′), Otherwise

The loss, which is minimized using stochastic gradient de-
scent, is then computed as follows:

L =
1

S

∑
S

(Q(oi, ai; θ)− yi)
2. (6)

As for the approach to the weight selection problem itself,
things remain virtually unchanged from DGN. We have the
same states of states and observations, the same possible agent
actions and the reward is calculated in the same manner.

In
p

u
t L

a
y
e

r

O
u

tp
u

t L
a

y
e

r

Fully Connected Layers

Q
-N

e
tw

o
rk

Figure 4: Structure of the DQN agents

For the centralized approach, the agents are trained as
if they are one central unit, they interact jointly with the
environment, i.e., they share the same state and observations.
They also take their actions jointly, as if it is one superimposed
action, and they receive a single reward. The agents are
practically sharing a complete vision of the environment and
their individual interactions with it.

VI. SIMULATION AND RESULTS

We now evaluate the proposed multi-agent architecture for
smart queuing using ns-3 [9] with the deep learning agents
being built using Python and TensorFlow. We simulate SD-
WAN network illustrated in Figure 1. As we considered that
routing is controlled by a slower control loop, and it is
in steady state (see Section III), the adjustment of queuing
parameters inside transport networks (i.e., internet, MPLS)
can be considered independently. For this reason, we only
simulated one type of transport network at a time, with a
scenario of UDP traffic over the internet, and another of
TCP traffic over Multiprotocol Label Switching (MPLS), being
considered. We simulate HQ-branch links with propagation
delays of 10 ms with capacities of 10 Mbps each. Small
rates are chosen to speed up simulation duration, however
we verified the results are not impacted when the bandwidths
are of higher magnitude. We used on-off applications for
traffic generation and build the WFQ approach over active
queue management techniques, namely random early detection
(RED). At each branch, origin-destination (OD) flows for two
flow groups are generated towards HQ. For instance, at branch
1 we have gold and silver, at branch 2 we have silver and
bronze, and at branch 3 we have gold and bronze, etc. The
purpose of this variation is to avoid having homogeneity across
the traffic treated by the different agents, and thus create a need
for agent collaboration.

Agent communications. In the case of DGN, we recall that
the adjacency of the agents in our scenario, i.e., the neighbors
with which each agent can communicate, is defined through
the presence of links. In Figure 1, HQ agent 2 communicates
with nodes 4, 6, etc..., but not 3 or 5, and so on. In the case
of distributed MADQN, no inter-agent communications exist
whatsoever. In the case of centralized MADQN, the agents act
as if they are one unit, sharing the same environment, states,
actions and rewards.

Traffic scenario. Table I details the simulation parameters.
The transmit rate of the sources follows diurnal and sinusoidal
patterns between 0 and 20 Mbps. The HQ-branch links (ex
1-3, 2-4, etc.) have limited bandwidths and are the links
where congestion is likely to occur and impact the general

7

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

performance of the network. The simulations are done as a
series of 300 snapshots, the duration of each being 10 seconds.
The duration is enough to achieve a steady state for TCP in
our topology, and it has no impact on the eventual results.
The weights for the agents are randomly assigned at the
start, with that of the gold flow being higher than the silver
and the bronze, respectively. The agents are queried for new
weights at the same frequency of 10 seconds. It is important
that the policy refresh rate is not significantly lower than the
rate at which the traffic varies. As we verify later on in the
simulations, increasing the frequency of agent querying does
not incur any great costs in communication. The delay metric
considered is the average end-to-end delay for flow groups.

Table I: Parameters for the simulations

Parameter Value

Number of O-D pairs 10, 4 gold, 3 silver, 3 bronze
Snapshot duration / # of snapshots 10 sec / 300
Tg/Ts/Tb 30 / 10 / 5 Mbps
dg/ds/db for UDP 0.15 / 0.3 / 0.4 seconds
dg/ds/db for TCP 0.1 / 0.15 / 0.2 seconds
Delay to throughput relevance κg , κs, κb 0.8
Reward relative to flows G/S/B 3x/2x/x
WFQ weight update δ 0.03

Benchmarks. In terms of deep reinforcement learning, we
compare our proposal to two multi-agent DQN approaches.
One is fully distributed with no agent communications, and
the other completely centralized with shared states, actions,
and rewards. In comparison to the DQN approaches, the DGN
algorithm incorporates attention mechanisms and selective
inter-agent communications. In terms of traditional approaches
to QoS management in queuing, we simulate a classic priority
queuing (PQ) algorithm. The latter serves the packets in
descending order of priority. This means that all gold packets
are dequeued first, the silver second and the bronze last.

Training of agents. Tables II and III detail the parameters
for the MADQN and DGN agents, respectively. When choos-
ing this set of deep learning parameters, our objective was
to create the smallest neural network capable of converging
towards an efficient solution. This was the case for all of
our proposed learning algorithms. For instance, the DQN
algorithm’s performance would degrade if it had one fully con-
nected layer instead of two, but it wouldn’t improve if it had
three. These parameters were set intuitively following models
in the state-of-the-art and through testing. The exploration rate
ϵ dictates how often during training we take random actions,
and how often we utilize the trained model.

Table II: Parameters for MADQN agents

Parameter Value

Activation function ReLu
No of fully connected layers 2 each with 128 neurons
Exploration rate ϵ starts with 1 and decays to 0.001
ϵ - decay ϵ multiplied by 0.99955 per episode
Discount factor γ 0.99
Training batch size 32

Table III: Parameters for DGN agents

Parameter Value

No of convolutional layers 2
No of encoder MLP layers 2
No of encoder MLP units (128,128)
Scaling factor τ 0.01
Discount factor γ 0.99
Training batch size 32

A. Agent Convergence

We first assess if the agents converge or not. In this work,
we assess the convergence analytically, a more theoretical
discussion on the convergence of DGN is provided in [30][31].
For DGN, the agents are trained in a semi-centralized manner.
As such, we track the global loss averaged across all the agents
(Equation 2). The DGN approach was able to converge. This is
illustrated in Figure 5a, where at around 800 training episodes
the loss tends towards zero.

0 500 1000 1500 2000

Iterations

0

1000

2000

3000

4000

5000

6000

L
o

s
s

DGN Training Loss

(a) DGN

3000 3150 3300 3450 3600

Iterations

0

2000

4000

6000

8000

10000

12000

L
o

s
s

DDQN Loss

(b) Distributed DQN

Figure 5: Convergence of the learning approaches

For the multi-agent distributed DQN approach, Figure 5b
tracks the loss function for a DQN agent after 3000 training
iterations. The algorithm is not converging. Even if more time
is given for the training, this oscillation remains present. This
is mainly due to the completely distributed nature of this
distribution. There is a lack of communication between agents
in a scenario that requires it, and this is confirmed by the fact
that the centralized approach converges without any issues.

B. UDP Scenario

First, we consider simulations with UDP traffic. Starting
with DGN, we show a cumulative distribution function (CDF)
plot with the throughput values attained by the different flow
groups throughout all the snapshots. Figure 6a has the results.
The vertical dashed lines show the SLA requirements in terms
of throughput per class. The semi-vertical lines, for each flow
group and each DRL solution, in the plots show how the
network behaves when the traffic sources are transmitting at
a congestion causing rate on the links. It can be seen as a
sort of steady state. It is during this period that we are mainly
concerned in verifying that the SLAs are met. When there is no
congestion, in the lower parts of the diurnal traffic patterns for
instance, the traffic sources are transmitting at a rate lower than
that needed to maintain the required throughput thresholds.
As such, we do not take throughput SLA violations in this
region into consideration. We note that the DGN approach

8

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

5 10 15 20 25 30

Throughput (Mbps)

0.2

0.4

0.6

0.8

1
C

D
F

 P
lo

ts

DGN Gold

DGN Silver

DGN Bronze

DDQN Gold

DDQN Silver

DDQN Bronze

Congestion

(a)

DGN G DGN S DGN B DDQN G DDQN S DDQN B

0

0.2

0.4

0.6

0.8

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
e

c
o

n
d

s
)

(b)

0 10 20 30 40

Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F
 P

lo
ts

CDQN Gold

CDQN Silver

CDQN Bronze

PQ Gold

PQ Silver

PQ Bronze

(c)

CDQN G CDQN S CDQN B PQ G PQ S PQ B

0

0.5

1

1.5

2

2.5

3

E
n

d
-t

o
-E

n
d
 D

e
la

y
 (

s
e

c
o
n

d
s
)

(d)

Figure 6: UDP traffic: DGN vs. Distributed MADQN (DDQN) (a) and (b), Centralized MADQN (CDQN) vs. PQ in (c) and
(d). G: Gold, S: Silver, B: Bronze. SD-WAN scenario.

can always meet the required throughput. When the network
is congested, the throughput for the bronze flow is just above
6 Mbps, for the silver flow about 11 Mbps, and for the gold
flow is around 31 Mbps. All above the required throughput
values of 30, 10, and 5 Mbps for gold, silver, and bronze flow
groups, respectively.

We additionally look at how DGN performed in terms of
the delay attained by the different flows. Figure 6b has box
plots with the results. The requirements are 0.15, 0.3, and
0.4 seconds for the gold, silver and bronze flows, respectively.
We note that DGN was able to meet all of these thresholds.

We observe on the other hand the results for distributed
MADQN agents. Figure 6a has CDF plots with the results. The
latter validate what is seen in the training convergence trend.
The demands for the bronze flows are not met, and are below

the 5 Mbps mark. While the algorithm does not converge, we
did show that the average reward does go into the positives
for multiple aggregated iterations as time goes on. As such,
the algorithm still manages to meet certain demands.

In terms of the delay, the box plots of Figure 6b show
a similar trend. The delay requirements for the silver flows
are violated in more than half the instances. Out of six total
constraints, distributed MADQN violates three.

Nonetheless, the centralized version of MADQN delivers
the required thresholds. In Figure 6c, we note that the through-
put values lie around 5.5, 11.4, and at above 31 Mbps for the
bronze, silver, and gold flows, respectively. All above the re-
quired mark. Figure 6d shows that median delay values for the
centralized MADQN flows at 0.128, 0.209, and 0.298 seconds
meet all requirements. This however is not the case for PQ.

9

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

0 5 10 15 20 25 30

Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1
C

D
F

 P
lo

ts

DGN Gold

DGN Silver

DGN Bronze

DDQN Gold

DQDN Silver

DDQN Bronze

(a)

DGN G DGN S DGN B DDQN G DDQN S DDQN B
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
e

c
o

n
d

s
)

(b)

0 10 20 30 40

Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F
 P

lo
ts

CDQN Gold

CDQN Silver

CDQN Bronze

PQ Gold

PQ Silver

PQ Bronze

(c)

CDQN G CDQN S CDQN B PQ G PQ S PQ B

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
n
d
-t

o
-E

n
d
 D

e
la

y
 (

s
e
c
o
n
d
s
)

(d)

Figure 7: TCP traffic: DGN vs. Distributed MADQN (DDQN) (a) and (b), Centralized MADQN (CDQN) vs. PQ in (c) and
(d). G: Gold, S: Silver, B: Bronze. SD-WAN scenario.

We see in the same figures that its bronze flows’ throughput
is less than 1 Mbps, while the maximum delay values, for
both the silver and bronze flows, are around 2 and 3 seconds,
respectively. Both are in violation of the required thresholds.
Out of the six constraints, PQ meets only three.

In conclusion, the communication between agents was
key to addressing the problem. The centralized MADQN
approach was able to meet the demands unlike its distributed
counterpart, highlighting that it is not an issue of the deep
learning mechanism being used. DGN provides a solution
to the problem without relying on the unrealistic centralized
training and execution of the centralized MADQN approach.

C. TCP Scenario
Similarly, we now look at the results in the case of TCP

traffic. Figure 7a has the throughput results for DGN. Again,

DGN meets all the required demands. When the links are
congested, the plots show throughput values of about 5.1, 10.6,
and 31.5 Mbps for the bronze, silver, and gold flows. All above
the set requirements of 5, 10, and 30 Mbps, respectively. The
same cannot be said for distributed MADQN. Figure 7a shows
that the throughput requirement for the gold group flows,
sitting at around 28 Mbps, was violated.

We additionally observe the delay results as reported in the
box plots in Figure 7b for DGN. The required delay thresholds
are set at 0.1, 0.15 and 0.2 seconds for the gold, silver, and
bronze flows. The DGN agents meet all these requirements.
Distributed MADQN meets these demands, but in general with
higher mean delay values compared with DGN. Furthermore,
the centralized version of MADQN was able to meet all the
required throughput and delay thresholds. Figure 7c shows

10

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

throughput values at around 6.2, 10.1, and 31 Mbps for the
bronze, silver, and gold flows, respectively. The same cannot
be said regarding priority queuing. The silver flows throughput
is about 9.7 Mbps and the bronze about 0.73 Mbps, both in
violation of the requirements.

In terms of delay, Figure 7d shows that centralized MADQN
group flows have maximum delays at around 0.04, 0.12, and
0.15 seconds, respectively. All within the required margins.
As for PQ, it fails to meet the delay requirements for both
the silver and bronze flows, with maximum values recorded
at 0.23 and 0.35 seconds, respectively.

The results with TCP traffic validate the conclusions of their
UDP counterparts. The lack of agent communications in the
decentralized MADQN approach caused the algorithm to be
inefficient. The results also show that our proposals are much
more equipped to deal with the problem than priority queuing.

D. On Agent size, Complexity, and Communication Overhead

When setting neural network parameters for the deep learn-
ing agents, we always seek the smallest working configuration.
That is independent of the MARL agent setting, whether
the system is centralized, distributed or semi-distributed. In
terms of size of agents, in bytes on disk, DGN agents are
considerably larger. DGN has more layers, more structure,
and even its own Q-network. A trained DQN agent takes
an average 0.267 MBs of space, while DGN ones consume
1.9 MBs.

For DGN, during the agents’ execution phase, the agents
would need to communicate their feature vectors, i.e., the
output of the convolutional layers. The size of the latter can be
a significant concern when implementing distributed learning
approaches. We assess the incurred overhead using two meth-
ods. First, in order to quantify the amount of communications
involved, as discussed in [32], the overhead is defined as a
function the total number of pairs of agents that communicate
during a certain time instance t ∈ T , denoted gt, and the total
number of agent pairs R as:

β =

∑T
t=1 gt
RT

(7)

A ratio closer to one, would mean all the agents are talking
with each other. One closer to zero, means agents are barely
communicating. In the case of the SD-WAN scenario, the ratio
is 0.18 for our DGN approach. This indicates a very small
overhead and communications limited to where needed. In
comparison, the CDQN approach would yield a ratio of 1.

Additionally, we compute the bandwidth required for such
inter-agent communications. In our DGN scenario, the agents
refresh their policies every 10 seconds. At that time they need
to communicate messages equal to the number of convolu-
tional layers they have. The size of each message is equal to
the size of the feature vector. For our implementation, we have
2 convolutional layers. The output of each is 1x128. Assuming
a 64 bit machine, we would need 4 bytes to store each of these
values. That means on each link between two communicating
agents, we would only need around 0.8192 kbps of reserved

bandwidth for inter-agent communications.
We also note that in this work, we considered a synchronous

execution of agents so that they exchange information at the
time is it needed by their neighbors. An interesting develop-
ment would be to consider the asynchronous setting.

E. Impact of Varying the Number of Convolutional Layers

As discussed in Section IV-A, the number of convolution
layers controls the communication between agents. Indeed,
we verified experimentally the significance of the number of
convolutional layers in the DGN agent modules. To do so, we
ran the same experiment but this time with the convolutional
layer module containing only one layer. The results, showing
that the DGN approach no longer converges, can be seen in
Figure 8. The main reason being that agents controlling the
branches are not able to efficiently collaborate via the HQ.
The presence of only one convolutional layer, means that the
2-hop communications, needed for non-linked nodes (as 3 and
5) to communicate through the HQ nodes, are not available.

500 1000 1500 2000

Iterations

3500

4000

4500

5000

5500

6000

L
o

s
s

DGN Training Loss

Figure 8: DGN convergence with one convolutional layer

F. Generalized Network Topology

We are additionally interested as well in testing our proposal
in a more generalized network topology. For that, we choose
the Abilene network topology illustrated in Figure 9. Traffic

1

2

3

4

5

6

78

9

10

11

Figure 9: Abilene network topology

is generated from hosts connected to nodes 1, 2, and 3, and
collected at a destination connected to node 7. Each of these

11

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

0 10 20 30 40 50

Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1
C

D
F

 P
lo

ts

DGN Gold

DGN Silver

DGN Bronze

PQ Gold

PQ Silver

PQ Bronze

(a)

DGN G DGN S DGN B PQ G PQ S PQ B

0

0.5

1

1.5

2

2.5

3

3.5

E
n
d
-t

o
-E

n
d
 D

e
la

y
 (

s
e
c
o
n
d
s
)

(b)

Figure 10: DGN vs. PQ in terms of throughput (a), and delay (b). G: Gold, S: Silver, B: Bronze. Abilene scenario.

DGN G DGN S DGN B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
e

c
o

n
d

s
)

Figure 11: End-to-end delay values. One convolutional layer.
Abilene scenario.

sources generates three flows, one of each type: gold, silver,
and bronze. Similar to our previous scenario, we consider
that the links interconnecting the main nodes shown in the
figure are the ones with bandwidth constraints. Our DGN
agents are placed on all the nodes (one through eleven). Two
convolutional layers are considered for each agent. At each of
the source nodes, we have a gold flow, a silver, and a bronze
flow. The sources are of type UDP. Reminder that the latter
are sinusoidal and initially the transmit rates are not enough
to meet the throughput requirements. We are concerned with
SLA violations only in the period where they can.

Figure 10a compares between our approach and priority
queuing (PQ) in terms of throughput. The required thresholds
are maintained as before. During congestion on the links,

we note that our DGN approach is able to meet all the
requirements for all flows with gold flows throughput being
between 30.8 and 31.2 Mbps, the silver flows throughput at
around 12 Mbps, and bronze flow throughput values just above
5 Mbps. For PQ, the algorithm is capable of meeting the gold
flows’ requirements, but records violations in both silver and
bronze flows’ requirements.

In Figure 10b, we compare between the two approaches in
terms of the end-to-end delay. The requirements as before are
set at 0.15, 0.3, and 0.4 seconds for gold, silver, and bronze,
respectively. With DGN, all the flows meet their requirements
with maximum values recorded at 0.112, 0.242, and 0.389
for the gold, silver, and bronze flows, respectively. The same
cannot be said for PQ, which shows excessive violations for
both the silver and bronze flows.

We are also interested in measuring the impact of the
number of convolutional layers the DGN agents have on their
performance. We reduce the number of these layers per agent
from two to one, and afterwards repeat the training and the
simulations under the same settings. In Figure 11, we show
the resulting delay values achieved by the DGN agents with
the aforementioned structure.

We notice that the approach no longer uniformly meets all
the delay requirements, with several infringes recorded for
gold and silver flows, and violations in more than 18 % of the
cases for the bronze flows. As with before, the reduced number
of convolutional layers causes the DGN to fail in extracting
key relations between the different agents, that would have
otherwise enabled it to succeed.

G. Scalability
Finally, we consider a scenario based on the ION-NY

topology from the topology zoo dataset (see Figure 12). The
network has 125 nodes. We consider 20 hosts connected to
like numbered nodes. 17 of them are transmitting and three

12

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

are acting as receiving ends. The hosts are spread out to count
for different scenarios and effects. Sending hosts are placed at
nodes such as s0, s1, s9, s40, s41, s100, etc. and the receiving
hosts at nodes s4, s44, and s114. Only receiving and sending
edge nodes have agents embedded in them. The topology

Figure 12: ION network topology

is built in a Mininet testbed. Table IV has the simulation
parameters for this scenario. Figure 13 depicts a boxplot
with the average throughput results per flow. The required
thresholds were set at 600, 1200, and 3000 Kbps for the gold,
silver, and bronze flows, respectively. The figure shows gold
flows with a median realized throughput of 3280 Kbps, the
silver flows at 1316 Kbps, and the bronze at around 660 Kbps.
All flow thresholds are met by our proposal.

Similarly, we plot the values for the end-to-end delay
achieved by the flows in Figure 14. Once again, our proposal
is able to meet the set requirements, with the maximum delay
values recorded being 0.15, 0.43, and 0.87 for the gold, silver,
and bronze flows, respectively. In conclusion, we show that
our proposal scales and functions well with larger network
topologies.

Table IV: Simulation parameters for the large-scale scenario

Parameter Value

Number of O-D pairs 17 with 51 different flows
Transport protocol Mixed UDP-TCP
SLA Throughput G/S/B flows 3000, 1200, 600 Kbps
SLA Delay G/S/B flows 0.2/0.5/1 seconds
Link BWs variable 60-80 Mbps per link
Transmit rate per source 1200-1400 packets/second
Packet size 512 Bytes

VII. CONCLUSION

This paper presented a multi-agent graph convolutional
reinforcement learning approach built on top of a weighted
fair queuing algorithm with the purpose of meeting stringent
demands, in terms of throughput and delay, for a set of
classified network flows. The deep learning agents contin-
uously determine the weights with which the flow packets
are dequeued. In addition, we implemented two classic multi-
agent DQN solutions: one is completely centralized and the

Gold Silver Bronze

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Figure 13: DGN throughput results in a large scale scenario

Gold Silver Bronze

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
n

d
 t

o
 e

n
d

 d
e

la
y
 (

s
e

c
o

n
d

s
)

Figure 14: DGN delay results in a large scale scenario

other fully distributed. We compare our approaches across
different network topologies, scenarios, traffic types, and trans-
port mechanisms, highlighting both their efficiency and the
importance of inter-agent communication.

These types of solutions are still in their infancy, but as we
showed in this work, they can provide promising results. In
future works, we will consider a larger scale scenario with
multi-layer branches and non-direct connections to the HQ
network. We will consider variable neighborhoods dependent
on the links between routing nodes. Finally, we will assess
our smart queuing proposals alongside a deep reinforcement
learning assisted approach to load balancing in networks.

REFERENCES

[1] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide area
network (SD-WAN): Architecture, advances and opportunities,” in Proc.
IEEE ICCCN, 2019.

[2] R. Adams, “Active queue management: A survey,” IEEE Communica-
tions Surveys Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

13

https://ieeexplore.ieee.org/document/9969933

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

[3] T. Frantti and M. Jutila, “Embedded fuzzy expert system for adaptive
weighted fair queueing,” Expert Systems with Applications, vol. 36,
no. 8, pp. 11 390–11 397, 2009.

[4] A. Sayenko, T. Hämäläinen, J. Joutsensalo, and L. Kannisto, “Com-
parison and analysis of the revenue-based adaptive queuing models,”
Computer Networks, vol. 50, no. 8, pp. 1040–1058, 2006.

[5] M.-F. Homg, W.-T. Lee, K.-R. Lee, and Y.-H. Kuo, “An adaptive
approach to weighted fair queue with QoS enhanced on IP network,” in
Proc. IEEE TENCON, vol. 1, 2001, pp. 181–186.

[6] S. Hussain and A. Marshall, “An agent-based control mechanism for
WFQ in IP networks,” Control Engineering Practice, vol. 11, no. 10,
pp. 1143–1151, 2003.

[7] J. Follows and D. Straeten, Application-Driven Networking: Class of
Service in IP, Ethernet and ATM Networks. IBM Corporation, 1999.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[9] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15–34.

[10] M. Kim, M. Jaseemuddin, and A. Anpalagan, “Deep reinforcement
learning based active queue management for IoT networks,” Journal
of Network and Systems Management, vol. 29, no. 3, pp. 1–28, 2021.

[11] V. Balasubramanian, M. Aloqaily, O. Tunde-Onadele, Z. Yang, and
M. Reisslein, “Reinforcing cloud environments via index policy for
bursty workloads,” in Proc. IEEE NOMS, 2020.

[12] M. Bachl, J. Fabini, and T. Zseby, “LFQ: Online Learning of Per-flow
Queuing Policies using Deep Reinforcement Learning,” in Proc. IEEE
LCN, 2020, pp. 417–420.

[13] M. M. Roselló, “Multi-path scheduling with deep reinforcement learn-
ing,” in Proc. EuCNC. IEEE, 2019.

[14] B. Liao, G. Zhang, Z. Diao, and G. Xie, “Precise and adaptable: Lever-
aging deep reinforcement learning for gap-based multipath scheduler,”
in Proc. IFIP Networking, 2020.

[15] O. Houidi, D. Zeghlache, V. Perrier, T. A. Quang Pham, N. Huin,
J. Leguay, and P. Medagliani, “Constrained deep reinforcement learning
for smart load balancing,” in Proc. IEEE CCNC, 2022.

[16] A. Kattepur and S. David, “Malta: Multi-agent reinforcement learning
for differentiated services in fat tree networks,” in 2021 IEEE Conference
on Network Function Virtualization and Software Defined Networks
(NFV-SDN), 2021, pp. 129–134.

[17] Z. Yao, Z. Ding, and T. H. Clausen, “Multi-agent reinforcement
learning for network load balancing in data center,” arXiv preprint
arXiv:2201.11727, 2022.

[18] J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph Convolutional Re-
inforcement Learning,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
2020.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
NeurIPS, 2017.

[20] J. Jiang and Z. Lu, “Learning Attentional Communication for Multi-
Agent Cooperation,” in NeurIPS, 2018.

[21] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc.
ICML. PMLR, 2018.

[22] O. Houidi, S. Bakri, and D. Zeghlache, “Multi-agent graph convolutional
reinforcement learning for intelligent load balancing,” in NOMS 2022-
2022 IEEE/IFIP Network Operations and Management Symposium,
2022, pp. 1–6.

[23] X. Mai, Q. Fu, and Y. Chen, “Packet routing with graph attention multi-
agent reinforcement learning,” in 2021 IEEE Global Communications
Conference (GLOBECOM), 2021, pp. 1–6.

[24] P. T. Anh Quang, S. Martin, J. Leguay, X. Gong, and X. Huiying, “Intent-
Based Routing Policy Optimization in SD-WAN,” in ICC 2022 - IEEE
International Conference on Communications, 2022, pp. 4914–4919.

[25] P. Sun, Z. Guo, G. Wang, J. Lan, and Y. Hu, “MARVEL: Enabling
controller load balancing in software-defined networks with multi-agent
reinforcement learning,” Computer Networks, vol. 177, p. 107230, 2020.

[26] M. Manel, A. El Kamel, and H. Youssef, “DQR: An Efficient Deep
Q-Based Routing Approach in Multi-Controller Software Defined WAN
(SD-WAN),” Journal of Interconnection Networks, vol. 20, p. 2150002,
12 2020.

[27] S. Troia, F. Sapienza, L. Varé, and G. Maier, “On deep reinforcement
learning for traffic engineering in SD-WAN,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 7, pp. 2198–2212, 2021.

[28] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Transactions on
networking, vol. 6, no. 5, pp. 611–624, 1998.

[29] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level cooperation
for traffic signal control,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp.
1913–1922.

[30] J. Jiang, C. Dun, and Z. Lu, “Graph convolutional reinforcement
learning for multi-agent cooperation,” CoRR, vol. abs/1810.09202,
2018. [Online]. Available: http://arxiv.org/abs/1810.09202

[31] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully
decentralized multi-agent reinforcement learning with networked
agents,” CoRR, vol. abs/1802.08757, 2018. [Online]. Available:
http://arxiv.org/abs/1802.08757

[32] S. Q. Zhang, Q. Zhang, and J. Lin, “Efficient communication in multi-
agent reinforcement learning via variance based control,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

VIII. ANNEX

A. Training the DGN Agents

Algorithm 2: Training the DGN Agents
1 Initialize randomly the main Q network and its target
2 Initialize the agents and the environment at random states
3 while not converged do

/* Sample phase in the replay buffer */
4 for every agent i ∈ N do
5 Generate a random number e
6 if e < ϵ then
7 Choose a random action ai

8 else
9 Query the Q-network for the best action based

on observation oi

10 Agent i gets reward ri and next observation o′i

11 Store tuple (O,A,O′,R,C,done) in replay memory D
/* donei indicates if agent i reached

its set target or not */
12 if enough experiences in D then

/* Training phase */
13 Sample a random minibatch of transitions from D
14 for every (O,A,O′,R,C,done) do
15 for every agent i ∈ N do
16 if donei then
17 yi = ri

18 else
19 yi = ri + γmaxa′ Q(O′

i,C , a
′
i; θ

′).

20 Calculate the Loss
L(θ) = 1

S

∑
S

1
N

∑N
i=1(yi −Q(Oi,C , ai; θ))

2,
21 Update Q by minimizing the loss L
22 Update the target network softly using Q’s

weights: θ′ = τθ + (1− τ)θ′

In Algorithm 2 we summarize how DGN training is done.
We detail the process starting from the filling of the experience
replay buffer to the training of each agent, up until the update
of the target network. The exploration rate ϵ determines how
often the agents explore during learning, and it is kept constant
during training in our approach. Convergence can be inferred
from the training loss. When the experience buffer has enough
samples, the training phase can begin. We train on positive
rewards and the terminal state is when maximum reward is
achieved. The variable done indicates that the terminal state
has been reached.

14

https://ieeexplore.ieee.org/document/9969933
http://arxiv.org/abs/1810.09202
http://arxiv.org/abs/1802.08757

COPYRIGHT IEEE. DOI: 10.1109/TNSM.2022.3226605 IEEE XPLORE LINK

B. Acronyms

Table V lists the majority of this paper’s acronyms.

Table V: Acronyms

Acronym Definition
SLA Service Level Agreement
SD-WAN Software-Defined Wide Area Network
MPLS Multi-protocol Label Switching
QoS Quality of Service
WAN Wide Area Network
AQM Active Queue Management
WFQ Weighted Fair Queuing
AWFQ Adaptive WFQ
DRL Deep Reinforcement Learning
MPTCP Multi-Path TCP
MARL Multi-Agent Reinforcement Learning
MA/DQN Multi-Agent / Deep Q-Network
PQ Priority Queuing
QoE Quality of Experience
ECMP Equal-Cost Multi-Path
AR Access Routers
MLP Multi-Layer Perceptron
CDQN /DDQN Centralized / Distributed Multi-Agent DQN

IX. AUTHOR BIOGRAPHIES

Hassan Fawaz received his masters degree in Tele-
com Networks and Security and his Ph.D. in Wire-
less Communications from Saint Joseph University
of Beirut in 2016 and 2019, respectively. In 2020,
he was a PostDoc researcher at the University of
Versailles, Paris-Saclay, with his work revolving
around resource allocation in IoT LoRaWAN. He is
currently a researcher engineer at Télécom SudParis,
France, with his work focusing on deep learning
based algorithms for network management.

Julien Lesca is a senior research engineer at Huawei
Technologies Research and Development, France.
Previously, he was an assistant professor at Paris
Dauphine University. He works on algorithmic game
theory and more precisely on algorithmic mecha-
nism design and algorithmic cooperative game the-
ory. During his PhD at the University Pierre et Marie
Curie in Paris, France, he worked on linear program-
ming formulation for combinatorial problems where
the aggregating function is non-affine.

Pham Tran Anh Quang received the Ph.D. degree
in computer sciences from University of Rennes 1,
Rennes, France in 2017. He then joined b<>com
and INRIA, Rennes, as a research engineer. He is
currently a Senior Researcher with Huawei, Paris,
France. His research interests include network func-
tions virtualization, software-defined networking, ar-
tificial intelligence, and real-time applications.

Djamal Zeghlache (Member, IEEE) received the
Ph.D. degree in electrical engineering from Southern
Methodist University, Dallas, TX, USA, in 1987.
He was an Assistant Professor with Cleveland State
University from 1987 to 1991. In 1992, he joined
Telecom SudParis of Institut Mines-Telecom, where
he acts as a Professor and the Head of the Wireless
Networks and Multimedia Services Department. His
current research concerns architectures, protocols,
and interfaces for future networks addressing cloud,
SDN, and NFV optimization, control, and manage-

ment reinforced by data driven approaches and in network intelligence.

Paolo Medagliani received the Master’s degree and
Ph.D. degree in information technologies from the
University of Parma, Parma, Italy, in 2006 and 2010,
respectively. He is currently a Principal Engineer &
Project manager at Huawei Technologies Research
and Development, France. His work revolves around
advanced research on mathematical tools and break-
through algorithms for 5G and SDN networks.

Jérémie Leguay is Chief Expert for routing algo-
rithms and Director of the Datacom Dijkstra Lab at
Huawei Technologies. He received a Ph.D. degree
in computer science from Pierre & Marie Curie
University (Paris, France). From 2007 to 2014, he
conducted research and led the Networking Lab at
Thales Communications & Security where he devel-
oped activities on sensor networks, mobile networks
and software-defined networks for mission-critical
networked systems. In 2014, he joined at Huawei
Technologies as leader of the network and traffic

optimization team. His current research activities cover the planning and
control of IP networks using optimization and machine learning tools. He
is a Senior Member of IEEE.

15

https://ieeexplore.ieee.org/document/9969933

	Introduction
	Related Works
	System Architecture
	SD-WAN Use Case
	Adaptive Weighted Fair Queuing and DRL Agents

	Graph Convolutional Reinforcement Learning For Multi-agent Systems
	Multi-agent System, Replay Buffer and Target Network
	DGN based Smart Queue Management

	Deep Q-Learning Approach
	Simulation and Results
	Agent Convergence
	UDP Scenario
	TCP Scenario
	On Agent size, Complexity, and Communication Overhead
	Impact of Varying the Number of Convolutional Layers
	Generalized Network Topology
	Scalability

	Conclusion
	References
	Annex
	Training the DGN Agents
	Acronyms

	Author Biographies
	Biographies
	Hassan Fawaz
	Julien Lesca
	Pham Tran Anh Quang
	Djamal Zeghlache
	Paolo Medagliani
	Jérémie Leguay

