
Distributed Tactical TE with Segment Routing
Paolo Medagliani∗, Sébastien Martin∗, Youcef Magnouche∗, Jérémie Leguay∗, and Bruno Decraene†

∗Huawei Technologies Ltd., Paris Research Center, France
†Orange Innovation, France

Abstract—Tactical Traffic Engineering (TE) solutions are a
must to adapt traffic steering when unexpected congestions occur.
While already available, centralized solutions to locally optimizes
congested tunnels and links suffer from a slow reaction time of
several minutes. To address this issue, we propose a distributed
Congestion Mitigation (CM) mechanism that leverages Segment
Routing (SR) to offload traffic away from congested links using
Unequal Cost Multi Paths (UCMP) over alternative paths.

In this paper, we introduce an efficient algorithm for alter-
native paths’ computation, and two methods to compute UCMP
weights, depending on whether remote link loads are available
or not. We show that the proposed path computation method
is faster than a modified K-shortest path algorithm. For traffic
splitting, we show that the knowledge of remote link loads and
per-destination traffic is a key to mitigate congestions in loaded
scenarios, approaching the results obtained with an optimal
solution. However, when not available, a local solution can already
mitigate congestions in lightly loaded scenarios.

Index Terms—Segment Routing, Congestion Mitigation, Traffic
Engineering, Distributed routing.

I. INTRODUCTION

Routing is key to control how bandwidth is shared among
different applications in computer networks. Traffic Engi-
neering (TE) policies [1] can be optimized by a central-
ized controller and applied by routers to steer traffic with
data plane mechanisms such as Segment Routing (SR) or
MPLS (Multi- Protocol Label Switching) [2], [3]. While most
of the traffic follows shortest path and hop-by-hop routing
from Interior Gateway Protocols (IGP), a smaller portion is
generally “engineered” to improve the bandwidth utilization
or meet specific requirements (e.g, latency, security). Traffic
engineering is typically applied at two time scales. Proactively,
operators “strategically” plan and design policies to face
plausible network evolution, e.g. traffic or failure scenarios,
and meet custom requirements, e.g. Quality of Service (QoS).
Furthermore, in real-time, they can “tactically” steer traffic
by quickly re-engineering it as soon as an unexpected event
occurs. These operations are often referred to as Strategic TE
and Tactical TE, respectively.

Typical tools for Strategic TE leverage the presence of a
centralized Path Computation Element (PCE) that implements
routing algorithms, which are solving constrained shortest
path or multi-commodity-flow problems to derive efficient
policies [1]. PCE controllers can proactively re-optimize and
reconfigure the network whenever traffic differs too much
from the planned one [4]. Decisions can materialize by the
configuration of SR policies or MPLS tunnels, or the re-
optimization of IGP metrics. While Strategic TE operates
at a slow pace and optimizes network utilization for the
long-term, unexpected issues may occur. In this case, faster
reactions are required with Tactical TE solutions. Despite PCE

controllers can still be used to automatically react and adapt
traffic steering, reconfiguration operations are slow, as they
require the interaction between devices and the controller. In
addition, the presence of a centralized network controller may
not be desirable for scalability, fault-tolerance, or commercial
reasons.

Congestion mitigation with Tactical TE calls for fast reac-
tive mechanisms that are able to take control over forwarding
operations, as soon as a problem in the network is detected by
a router. It is then preferable to rely on distributed approaches
directly implemented in network devices, as some applications,
such as video streaming or VoIP, require quick reactions
against performance degradations [5]. Despite that centralized
solutions to locally optimizes congested tunnels and links
exist, such as LCM (Local Congestion Mitigation) [6] fea-
ture from Cisco’s Crosswork controller or ”Network Path
Navigation” feature in iMaster NCE-IP controller [7] from
Huawei, they check for congestions typically at a cadence of
10 minutes [8], moving down to 1 minute if responsiveness is
important. Therefore, centralized tactical TE solutions fail at
providing quick reactions to sudden network variations due to
failures or unexpected traffic bursts.

One efficient way to implement Tactical TE at device level
is using SR, as it allows steering traffic over specific paths by
adding an explicit list of network elements (i.e., segments) to
be traversed. Solutions such as Topology Independent Loop
Free Alternate (TI-LFA), which are already deployed in real
networks to provide Fast ReRoute (FRR) functionalities, are
based on SR [9]. Alternative paths are already installed in the
routing table, so that they can be quickly activated as soon as
a failure is detected. In the case of link failures, these mecha-
nisms quickly protect the traffic flowing through a failed link
and reroute it over the post-convergence shortest path towards
each destination. The effectiveness of TI-LFA comes from the
fact that the paths for rerouting are precomputed by the devices
and activated when needed, without any interaction with a cen-
tral controller, making it possible to achieve traffic protection
in less than 50ms [5]. Another local reactive mechanism that
benefits from SR is micro-loop avoidance [10], where potential
loops due to routing IGP convergence issues are managed by
explicitly listing the segments to be traversed. However, while
distributed mechanisms for FRR and micro-loop protection are
widely adopted in current networks, equivalent solutions for
congestion mitigation do not exist.

Taking those issues into consideration, we propose a dis-
tributed Congestion Mitigation (CM) mechanism based on
SR. When a router detects congestion on a link, a portion of
the traffic can be automatically offloaded and load balanced
over a set of alternative paths using UCMP (Unequal Cost

1



Multi Paths). The goal is to select lightly loaded paths to
reroute a maximum of traffic, mitigate the congestion, and
avoid creating new congestions elsewhere in the network. As
congestions need to be quickly handled, we propose to care-
fully pre-compute paths, and select, on-the-fly, the weights (or
split ratios) to load balance traffic. As for TI-LFA, alternative
paths are proactively pre-computed and stored in the Routing
Information Base (RIB). They are activated by updating the
Forwarding Information Base (FIB) as soon as a congestion
happens. Depending on the available information about local
and remote link loads and the per-destination traffic over the
congested link, different strategies can be adopted by routers.

In this paper, we introduce an alternative paths’ computation
algorithm and two methods to compute UCMP weights. We
also discuss system aspects around the mechanisms for link
load collection, traffic estimation, timer settings, etc., and
propose practical solutions for the implementation in devices.
We benchmark the performance of our solution using a packet-
based simulator we developed. We show that the proposed
Neighbor Deviation Algorithm (NDA) for alternative paths’
pre-computation is more efficient in terms of running time,
even if at the price of a lower path diversity than a K-shortest
path algorithm. We also show that in lightly loaded scenarios,
a load balancing strategy based on link capacities and local
link loads, referred to as Local, can mitigate congestions. In
high load scenarios, instead, only the Remote load balancing
solution, using remote link load information and traffic sam-
pling to estimate per-destination traffic over the congested link,
can achieve near-optimal congestion mitigations, i.e. when
compared to an ideal mechanism, called Optimal. We also
show how the congestion mitigation mechanism can help in
reducing packet losses and queue latency in the case of high
link utilization. Finally, we show via realistic simulations how
the freshness of collected statistics can impact the congestion
mitigation mechanism. To the best of our knowledge, this is
the first paper approaching the congestion mitigation problem
from a completely distributed perspective with SR, making
it suitable for implementation in existing devices for fast
congestion mitigation.

This paper is structured as follows. Sec. II presents an
overview of the state of the art and Sec. III introduces the
proposed mechanism. Sec. IV describes algorithms for alter-
native paths computation and traffic splitting. Sec. V presents
numerical results and Sec. VI concludes this paper.

II. RELATED WORK

Several mechanisms have been proposed for tactical uses
of SR. TI-LFA has been proposed to handle single failures
(nodes, link or SRLG [9], [11]). For multiple failures, [12]
proposed to compute several backup paths to consider different
failure scenarios. SR extensions have also been proposed for
micro-loop avoidance [10], [13].

Several works in the literature have introduced routing
optimization to mitigate congestions. In very recent works,
such as [14], [15], the authors suggest to leverage midpoint
SR optimization to mitigate congestion in the network. This
approach is based on a PCE to compute alternative SR policies
for congestion mitigation. At the same time, as the PCE has

the complete view of the network, the authors aim at keeping
the number of deployed policies as low as possible. However,
this centralized approach fails to guarantee fast reaction times
due to required interactions with a central element.

Centralized load balancing solutions have been proposed for
Unequal Cost Multi-Pathing (UCMP) [16] or Weighted Cost
Multi-Pathing (WCMP) [17]. Decentralized load balancing
solutions have also been developed to dynamically adjust
routing in case of congestion or link failure. For instance,
CONGA [18], and HULA [19] can dynamically adjust at
ingress nodes load balancing policies based on path-based
measurements to reduce network congestion. However, they
assume that paths are given, they are not designed to offload
traffic from a congested link so as to not create new conges-
tions elsewhere.

Also of interest and based on SR, a semi-distributed
load balancing solution has been proposed for application-
awareness [20]. In this case, SR is used to direct data packets
from each incoming flow through a chain of candidate servers,
until one decides to accept the connection, based on its local
state. A controller takes care of installing the mapping between
a virtual IP (VIP), identifying a given application, and the set
of addresses of servers capable of serving that VIP. The main
benefit is that the controller does not need anymore to care of
healthchecking backend servers, and removing them from the
pool of available servers if unresponsive.

III. DISTRIBUTED TACTICAL TE

This section introduces from a use case and system perspec-
tive the distributed tactical TE solution, referred to as CM.

A. Use Case

Service providers typically plan their transport networks to
provide customer satisfaction and resilience. They typically
size them to operate at low load, e.g., with a Maximum
Link Utilization (MLU) of 30-50%, to sustain at least all
possible 1-link failures. However, as real traffic can differ from
the expected one, and multiple failures (e.g., of an SRLG)
may occur simultaneously, link congestions can still happen.
One possible approach to mitigate congestions is to use a
centralized PCE, but this solution can be ineffective for large
backbone transport networks, where the geographical distance
can impact the reaction speed to handle local congestions.
The need for quick congestion mitigation calls for fast and
local reaction mechanisms that can steer traffic away from the
congested resources.

Fig. 1 depicts a typical service provider backbone network
where CM can be useful. Several Customer Edges (CEs) are
connected to the backbone via Provider Edge (PE) nodes, i.e.,
the routers that are at the boundary of the backbone network.
The PE nodes are responsible for forwarding the different
types of traffic to the Provider (P) nodes, which route traffic
inside the network. In case of failure or traffic variations, one
or several links may become congested, and P nodes need
to quickly react locally. However, to keep network operations
safe and avoid any impact on critical traffic, part of the traffic
must not be re-routed. Indeed, a subset of the traffic may be

2



Figure 1: Example of a backbone network.

Figure 2: An example of the CM mechanism within a link.
When the link load exceeds ThH = 70%, the CM mechanism
reroutes traffic over alternative paths to reach ThT = 50%.

already routed with specific TE policies. In case of congestion,
”engineered” traffic should not change path as TE policies
have been selected based on specific requirements, such as
QoS assurance, which are unknown to P nodes. In addition,
a wide variety of control plane traffic is exchanged between
backbone routers and should not be touched. For instance,
STAMP [21], BFD [22], traffic to monitor the performance of
the network, OSPF LSA messages to broadcast the network
status, etc. Also of interest, some routers may have specific
functions, e.g. BGP Router Reflectors (RR), and may not be
used to detour traffic.

B. Overall principle

Whenever the load on a link exceeds a given congestion
threshold, the Congestion Mitigation (CM) mechanism can be
immediately activated by the P node detecting the congestion,
in order to quickly react locally, without interacting with an
external controller. As soon as a P node detects a congestion
on a link, it activates the CM mechanism and steers a portion
of the traffic traversing the congested link over a set of paths,
referred to as alternative paths. In order to avoid creating
congestions elsewhere in the network, the CM mechanism
must carefully choose which traffic and what amount should
be rerouted, and the split ratios that should be applied.

As mentioned above, only the low priority traffic should
be steered by the CM mechanism, while high priority or
engineered traffic must remain on their original path. Once
the traffic to be moved has been quantified, the CM mecha-
nism load balances the traffic over available alternative paths
following the UCMP mechanism. The details on alternative
paths computation and weights (split ratios) assignment will
be provided in Sec. IV.

In Fig. 2, we show an example to illustrate how CM
operates on a link. When the link load exceeds a congestion
Activation threshold ThA, e.g., 70%, part of the traffic is
rerouted on alternative paths. The CM mechanism defines a

second threshold, referred to as Target threshold (ThT), which
indicates the target link load (e.g., 50%). More precisely, this
second threshold is used in combination with the current link
load to define the amount of traffic that should be rerouted
over alternative paths when congestion happens. We point out
that if routers only have local information, ThT is set to a
static value, while if they also have remote information on
link loads and per-destination traffic, this threshold can be
dynamically set to maximize the distance from ThA for each
link on the alternative paths. Link load statistics are updated
according to a given frequency that depends on the hardware
implementation, meaning that the CM mechanism may not be
activated immediately when the link load exceeds ThA and
the amount of traffic to be steered away can be larger than
ThA − ThT. A third threshold, referred to as Deactivation
(ThD), is defined to determine when the CM mechanism must
be switched off, i.e. when the traffic on the link becomes
sufficiently low to avoid any further congestions. In case a
significant amount of traffic is routed over alternative paths,
this threshold needs to be set to make sure traffic stays below
ThT after congestion mitigation is deactivated. In a more
advanced implementation, the deactivation threshold could be
set dynamically, but we leave this improvement for future work
and consider a low threshold, as the portion of rerouted traffic
is expected to be much lower than that on the original path.

C. System Considerations

In this paper, we focus on a totally distributed CM mech-
anism, as we want to provide a solution that is agnostic to
the presence of a PCE for reliability and scalability concerns.
We also point out that the CM mechanism can either compute
alternative paths towards each destination PE or only towards
the other endpoint of the congested link. In this paper, we will
focus only on the first case.

Basic requirements for alternative paths are as follows:
(i) they should allow reaching all destination nodes (towards
which the offloaded traffic is directed), (ii) they should avoid
any failed link, (iii) they cannot use forbidden nodes and links
(such as PE nodes), and (iv) they should bypass the congested
link. On top of that, alternative paths should be designed and
utilized to solve the original congestion problem and avoid
creating any additional congestions elsewhere in the network.

In order to ensure a fast response to congestion events,
alternative paths need to be pre-computed. Therefore, as the
actual link loads at congestion time cannot be known a
priori, we propose to consider, as path computation metric,
the link costs, which are typically designed to be inversely
proportional to the capacity, to capture the willingness of the
operator to attract traffic over large capacity links. In this
way, it is possible to prioritize the use of alternative paths
with large capacity and minimize the use of links that are
prone to be quickly congested. More complex alternative paths
computation procedures can be developed to account for future
evolutions of traffic or failure scenarios at the cost of some
complexity. In this case, a centralized controller may assist
routers to pre-compute paths. In the rest of this paper, we
stick to fully distributed solutions.

3



Figure 3: An example of the CM mechanism with 3 alternative
paths towards the PE node connected to F::1.

On top of path computation, the UCMP weights assigned
to each set of alternative paths for every destination need to
be decided at congestion time, depending on the available
information. Ideally, the knowledge about all link loads in
the network and about the per-destination traffic demand over
the congested link is required to take an optimal decision.
In backbone networks, LSA messages may be configured to
collect remote link loads, but it is not a desirable solution
in practice. Typically, the rate, at which LSAs are issued, is
kept very low to avoid congestions to happen in the control
plane and to process topology changes in case of failures
more quickly. Two main alternatives can be used by routers to
collect link load statistics: (i) via centralized approaches, such
as BGP with Link State (BGP-LS) [23], and (ii) via distributed
telemetry methods for path tracing, such as SR-PT [24] or
iFit [25]. In the remaining of the paper, we will assume,
without loss of generality, that BGP-LS can be deployed
to collect and obtain link load statistics, so each node can
immediately retrieve the full network view. However, in one
specific simulation scenario, we will leverage the broadcast of
LSA messages to highlight the need for consistent operations
between monitoring and congestion mitigation. However, for
the sake of completeness, we will also consider the case where
remote link loads cannot be obtained.

D. Congestion Mitigation (CM) Mechanism

Fig. 3 presents an example to highlight how CM operates
inside routers. As soon as the link B::1 - E::1 becomes
congested, i.e., its load exceeds ThA, part of the traffic is
rerouted over the three alternative paths. For each P node, up
to K alternative paths are pre-computed for each destination
PE node. In the example in Fig. 3, K = 3 alternative paths
towards the node E::1 are depicted in green, purple, and
orange.

Forwarding operations. The CM mechanism steers traf-
fic over alternative paths which are encoded using Segment
Routing IDs (SIDs). This mechanism is applied only to Best
Effort (BE) traffic. Traffic cannot be rerouted more than once
when multiple routers activate CM as traffic is recognized as
”engineered” after a first CM is applied. To recognize TE
traffic, we can classify packets based on whether SIDs from P
nodes or from their adjacent links are used. Simpler solutions
based on CoS or flow label fields can also be used.

When the CM mechanism is not active, the packet for-
warding is based on standard RIB/FIB (Routing Information
Base/Forwarding Information Base) mechanism. As shown in

Fig. 4, on top of the standard entries populated by protocols
such as OSPF, the RIB, which stores control plane information,
also contains the alternative paths, the weights, and the SID
lists as pre-computed by the devices. When a congestion is
detected, the forwarding information for the alternative paths
is written down into the FIB. As the activation of alternative
paths may impact TCP flows, due to jitter and re-ordering
issues, additional constraints on the end-to-end delay or length
of alternative paths should be considered. In the rest of the
paper, we consider a maximum elongation in number of hops.

For each incoming packet to be forwarded over a congested
link, the FIB table is queried. If the packet must not be rerouted
(e.g., TE or control plane traffic), it follows the standard
forwarding (e.g., packets to F::1 continue to be sent via C::1).
Otherwise, the FIB indicates that a group table must be used
for UCMP. As presented in Fig. 4, the FIB states to apply the
group table 1 for the destination E::1 and each entry for the
destination E::1 is associated with a hash value, computed over
the standard 5 tuple of the IP header (i.e., source port, source
address, destination port, destination address, and protocol).
Once a specific entry of the group table has been selected, the
packet is forwarded and the specific SID list is injected into
the Segment Routing over IPv6 (SRv6) header of the packet.

UCMP strategies. While link capacities and IGP link costs
are learned from LSA messages, the information about link
load is not always be available, as discussed above. For
this reason, we propose to pre-compute alternative paths by
prioritizing paths with the largest capacity, and we study three
approaches for the computation of UCMP weights (see Sec. IV
for more details):

• Local: where only the load of adjacent links is used to
compute split ratios.

• Optimal: where all link loads and per-destination traffic
information is available. In this ideal target, which is hard
to put in practice and considered as a benchmark, routers
can get all data to perfectly mitigate congestions.

• Remote: where local and remote link loads are used to
compute split ratios, but the per-destination traffic over
the congested link is unknown. In this case, we propose
a sampling method derived from the Local strategy to
estimate it and accurately compute split ratios according
to the optimal strategy.

When remote link loads are used, their freshness has an
impact how accurate split ratios can be initialized and updated.
If information is too old, it may lead to inconsistent decisions,
while if the frequency update is too high, it may introduce
overhead. We analyze the impact of monitoring later in the
evaluation section.

We assume that the congestion threshold ThA is the same
for all routers and given by the management system. In case
different per-link thresholds should be used, an additional
mechanism to distribute them to routers should be developed
so that UCMP split computation algorithms can take them into
account. However, we believe that static thresholds are fine for
a first implementation.

Handling multiple congestions. Multiple congestions can
be locally observed at the same time. In our current solution,
CM is applied in sequence over congested links. Based on

4



Figure 4: The CM mechanism implementation in RIB/FIB.

available link load, if CM expects that a new congestion will
be induced, it simply steps back and does not activate. CM es-
timates the congestion it may induce based on the information
it disposes. The Local strategy, where remote link loads are
unknown, can only estimate locally induced congestions. A
more advanced policy could be to solve multiple congestions
at the same time. In addition, even when remote link loads
are known, distant routers may experience a congestion at the
same time and decide to offload traffic to alternative paths
sharing the same bottleneck link. To mitigate synchronization
effects, specific timers need to be designed. We let these
extensions for future work.

In the next section, we will describe how to compute both
alternative paths and UCMP weights for the load balancing of
detoured traffic.

IV. CORE ALGORITHMS

The proposed CM solution consists, in a first phase, of
alternative paths computation, which is carried out offline, and
in a second phase, of UCMP weight adjustment, carried out
online, i.e. when congestion happens. This section presents
algorithms for the two steps.

For the computation of alternative paths, we consider two
algorithms: a first one based on the K-Shortest Path (KSP)
algorithm, considered as a benchmark, and a second one based
on an extension of the Dijkstra algorithm to provide local
diversity. For the assignment of UCMP weights, we present
three approaches: local that considers only local link loads,
optimal that provides optimal split ratios as it disposes of
remote link loads and per-destination traffic, and remote, our
practical proposal in which remote link loads are available
to adapt split ratios in two steps: a first one to sample per-
destination traffic and a second one to compute the best split
ratios according to the input data from the first step.

In the remaining of this section, we will focus on a
congested link (u, v) and we will denote by D the set of des-
tinations that are reached by the node u on the ”original” path
traversing the congested link. We also denote the ”original”
path as the OSPF path used before congestion.

A. Path Computation

The alternative paths’ computation problem consists in
finding at most K paths from node u to each destination node
d ∈ D. Remark that the number of pre-computed paths for a
router is equal to K×|V |, where V is the number of nodes. As
OSPF is used for BE traffic, only one egress link of u is used
before congestion to reach a given destination. The following
requirements must be considered for alternative paths: (i) they
must avoid the congested link as well as any other critical
/ failed resources, (ii) they must provide a high minimum
remaining capacity, and (iii) they should have a length similar
to the one of the original path. This latter constraint, referred
to as max hop elongation, is introduced to ensure that the
alternative paths have similar characteristics compared to the
original path. We point out that we refer to the minimum
capacity of a path as the smallest capacity over all the links
of this path. As alternative paths are pre-computed and load
information is not available, we consider the capacity instead
of the remaining capacity in the rest of this paper. Also, as
we must provide a solution in a short amount of time, we
first neglect any constraint on path disjointness and we let this
aspect for future improvements.

We consider two different algorithms for the alternative
paths’ computation problem. The first one, used as baseline
algorithm, is an adaptation of KSP algorithm [26]. The sec-
ond algorithm, referred to as Neighbor Deviation Algorithm
(NDA), is an extension of the Dijkstra algorithm to enforce
locally-disjoint paths (over the egress links of u), in order
to improve the local diversity. In addition to improving local
diversity over KSP, NDA is also much faster as its polynomial
complexity is even better than Dijkstra algorithm.

Let us consider the following inputs:

• K: the maximum number of alternative paths,
• G = (V,A): a network graph, where V is the set of nodes

and A the set of links,
• ca ∈ R+: the capacity of the link a ∈ A,
• d: a considered destination in the set D,
• (u, v): the congested link,
• pd: the original path from u to d,

5



• P̃d: the set of alternative paths from u to d.
• P = {pd : d ∈ D} the set of ”original” paths from u.
• md: the max hop elongation between the path pd and any

alternative path.
• mh: the max hop of alternative paths.
For both algorithms, in order to prioritize links with large

capacity, we consider IGP costs, which are normally used
to let BE traffic follow the preferred (shortest) path in the
network. They are typically set to the inverse of link capacity,
i.e., 108/ca for each link a ∈ A [27] or they follow a step
function [28].

1) KSP-based algorithm: The KSP alternative paths’ com-
putation algorithm consists, for every destination node d ∈ D,
in generating K paths from u to d, using a modified version
of Yen’s algorithm [26], after removing the congested link
from the graph. Yen’s algorithm computes shortest paths
successively by forbidding some links or by merging paths. To
ensure that the maximum hop elongation constraint is satisfied,
we replaced, in Yen’s algorithm, the subroutine for computing
the shortest path with a constrained shortest path algorithm.
This latter is based on a bounded-depth dynamic programming
algorithm. The complexity of the maximum hop constraint
shortest path algorithm is in O(mh|V |maxv∈V |Nv|). Fig. 5a
shows an example of K = 3 paths provided by the KSP
algorithm. Each path is given by a color.

2) Neighbor Deviation Algorithm (NDA): Let us consider
the set of neighbors of u denoted Nu. The algorithm consists
in solving a Dijkstra algorithm from the destination d in the
reverse graph to reach each node of Nu \ {v}, where u is
filtered out. This allows generating one path per egress link of
u, different from (u, v), to the destination d.

Moreover, the Dijkstra algorithm has been modified to
take into account the maximum hop elongation constraint.
The depth of the Dijkstra tree is kept less than or equal to
|pd|+md−1. We use the constrained shortest path algorithm
presented previously to solve the maximum hop constraint
shortest path problem.

If the number of generated paths is higher than K, i.e.
because of the number of neighbors, we select the best K paths
(those maximizing the smallest link capacity in the path). On
the other hand, if the number of paths is smaller than K, we
keep them as it is. Fig. 5b shows an example with K = 3
paths provided by the NDA algorithm.

B. Split Computation for UCMP

We now provide three methods for determining how much
traffic to reroute over each alternative path. We point out
that the three presented strategies apply no matter the path
computation strategy used for generating the alternative paths.
Motivating example. In Fig. (5c), we show two alternative
paths, associated with the congested link (u, v), from u to
two different destinations d1 and d2. Based on this example,
we analyze the impact of the amount of information available
in router u on congestion mitigation. The values on links
represent the link load over the link capacity. The original path
from u to d1 crosses v with associated traffic of 10 and the
original path from u to d2 crosses v with associated traffic of

1

1
1

1

1
4 2

1

4

1
1

u v
1

4

d

(a) Three paths given by the KSP algorithm to reach d (blue, green,
yellow) from u. Link labels indicate the link weights. Congested link
is in red,

1
1

1

1

1
4 2

1

4

11

u v d
1

4

(b) The three paths given by the NDA algorithm to reach d (blue,
green, yellow) from u. Link labels indicate the link weights. Con-
gested link is in red,

u v

d1

d2

5/20

10/20

55/80
40/80

40/60

30/60
40/60

40/60

65/80

v1

v2
(c) Example of four alternative paths to reach two different desti-
nations d1 and d2 from u. Congested link is in red, The first link
label indicates the link load before the congestion mitigation and the
second one the link capacity. The alternative paths (1 blue and 1
green) to d1 are depicted with solid lines, while those for d2 are
depicted with dashed lines.

Figure 5: Examples on (a) alternative paths computed by KSP,
(b) alternative paths computed for NDA, and (c) alternative
paths for 2 different destinations considering different infor-
mation available at node u.

55. We consider ThA = 70% and ThT = 50%, as congestion
and target thresholds, respectively.

We consider three levels of available information (in all
cases we also have information about link capacities):

a) Local link loads: while local link loads are available
to detect congestions, only link capacities and the load
of the congestion link are useful to derive split ratios.
In the example of Fig. (5c), we can remark that the
two alternative paths, in green and blue, to reach d1
(resp. d2) have the same minimum capacity 20 (resp. 60).
We remark that this value corresponds to the minimum
capacity over all the links of a path. For instance, both
alternative paths with solid lines, i.e., those to d1, have
a minimum capacity of 20, while the two depicted with
dashed lines, i.e. to d2, have a minimum capacity of 60.

6



The best solution is to send the same quantity of traffic on
each alternative path for each destination. Clearly, without
information about remote link loads, it can induce new
congested links. To reduce the congestion of the link
(u, v) to 50% of its capacity (i.e. to 40), CM needs to
reroute 25/65 = 38.46% of the traffic of (u, v). Thus,
3.85 (resp. 21.15) units of traffic for destination d1 (resp.
d2) with a 50/50 split on alternative paths. This implies
two new congestions on links (u, v1) and (u, v2) with,
respectively, a load of 40 + 21.15/2 + 3.85/2 = 52.5
for 60 of capacity, i.e., a link load of 87.5%, and
30 + 21.15/2 + 3.85/2 = 42.5 out of 60, i.e., a link
load of 70.8%.

b) Local and remote link loads: we consider that link loads
ℓa of all links a in the original and alternative paths,
i.e., a ∈ A(P ∪

⋃
d∈D Pd), are available. However, by

considering only the link capacity and the link load of
each link, we cannot avoid new congestion on alternative
paths. In our example, if we replace the capacity with
the remaining capacity to compute the split for alter-
native paths, we obtain the following splits: 15/25=60%
(resp. 30/50=60%) for the blue path to d1 (resp.d2) and
10/25=40% (resp. 20/50=40%) for the green path to d1
(resp. d2). Thus, the link (u, v1) becomes congested with
40 + 21.15× 0.40 + 3.85× 0.6 = 50.7 of bandwidth for
60 of capacity, that represents 84.5% of utilization. To
take a better decision we need to know the quantity of
traffic sent towards each destination to compute the right
quantity of traffic to offload for each destination.

c) Traffic per destination: we now consider that the amount
of traffic sent over the original (congested) path bwd

towards each destination d ∈ D is also available. If we
know link capacities, link loads and the quantity of traffic
per destination, then we can find the optimal solution that
minimizes the worst link load on the network. By solving
the ”optimal” split ratio, we can get the following:
• for destination d1, 83.5% stays on the ”original” path

and 16.5% units of traffic is rerouted on the blue path.
• for destination d2, 82% stays on the ”original” path

and 18% of traffic is rerouted on the blue path.
This solution induces a maximum link utilization of 69%
and, therefore, no link is congested, i.e. above ThA.

Algorithm solutions. The split ratio computation problem
consists in finding, for each destination d ∈ D, the ratios for all
alternative paths. The total split ratios over all alternative paths
and original must be equal to 100%. The primary objective
is to decrease congested traffic as close as possible to ThT

while avoiding creating new congestions, i.e. that the load of
remote links do not increase above ThA. We now present three
approaches to tackle the split ratio computation.

The first approach we describe here is called Local. The
splits are computed based on link capacities and the quan-
tity of traffic to offload from the congested link when the
congestion happens. The second approach, called Optimal,
requires perfect link load knowledge over the network, as well
as the ”traffic per destination” that flows through the congested
link. The last approach, referred to as Remote, combines the

local mechanism, to estimate per-destination traffic, and the
optimal approach This method allows providing a good-quality
solution when remote link loads are also available.

1) Local: we first consider that we only know the capacity
of links and the load of local links, in particular the load of
the congested link, denoted as ℓ(u,v).

The computation of split ratios is the combination of two
levels. The first level, which is static and depends only on link
capacities, is to derive the split ratios SRp

d over alternative
paths p ∈ Pd to reach a destination d ∈ D as follows:

SRp
d =

mina∈p ca∑
p′∈Pd

mina∈p′ ca

The second level, computed on-the-fly when the congestion
is detected, consists in determining the fraction of traffic,
referred to as RT (Removed Traffic), to be offloaded from
the link.

RT =
ℓ(u,v) − ThT

ℓ(u,v)

We can then derive the split ratio for each alternative path
p as SRp

d.RT .
2) Optimal: we propose a strategy for the UCMP weight

computation to optimize split ratios for all destinations.
Let us define the following variables
• xd: is the quantity of traffic sent to d on the original path.
• ya,dp′ : is the quantity of traffic sent on the alternative path
p′ when the link a is congested to reach the destination
d, for all d ∈ D, p′ ∈ Pd.

• z: fraction of the available capacity over all links that
remains unused after CM.

Let us define the maximum available capacity aca on a link
a ∈ A.

aca = max(ca.ThA − ℓ̄a, ℓa − ℓ̄a)

where ℓ̄a is the quantity of traffic on the link a not associated
with the paths P and Pd, d ∈ D (e.g., TE or monitoring
traffic). The first term of the maximum function ensures that
the link will not become congested by our method, whereas
the second term allows considering remote congested links.

As the traffic on links of alternative paths varies over
time, we introduce the variable z to maximize the minimum
normalized distance, in terms of load, from ThA on all links
in alternative paths, as well as those in the original path. This
allows us to ensure fairness between links to manage future
traffic fluctuation.

The following linear program solves the split ratio compu-
tation optimally.

max z

xd +
∑

p′∈P(u,v),d

y
(u,v),d
p′ = bwd ∀d ∈ D (1)

∑
d∈D

xd +
∑
d∈D

∑
p′∈Pd:a′∈p′

y
(u,v),d
p′ + z.aca′ ≤ aca′ ∀a′ ∈ A

(2)
xd ≥ 0 ∀d ∈ D

y
(u,v),d
p′ ≥ 0 ∀d ∈ D,∀p′ ∈ Pd

7



where the objective function is similar to the one for the
minimization of the maximum link utilization. Inequalities
(1) ensure that the quantity of traffic for each destination is
respected. Constraints (2) are the capacity constraints.

3) Remote: for this algorithm, we consider that we know
the utilization of links belonging to the original path and the
alternative paths. Let us introduce Ā ⊂ A the set of links
covered by at least one alternative path or the original path.

The first step consists in estimating the traffic sent to each
destination of D over the congested link, as this information
is not available. Let ℓba be the link load on each link a ∈ Ā
before congestion is detected. We first apply the Local strategy
to offload a small amount of traffic, denoted as RT , from the
congested link (e.g., RT =5%). Then, after a short amount
of time, we observe the new link loads ℓca induced by our
congestion mitigation for each link a ∈ Ā. Thanks to the
variation of the link loads (i.e. ℓba and ℓca values), the removed
traffic RT , and the split ratio applied for the Local strategy,
we can estimate the quantity of traffic sent to each destination,
referred to as local traffic matrix, by solving the following
linear programming model.
Inputs:

• ℓba: the link load of a before the CM.
• ℓca: the link load of a induced by CM (Local strategy).
• srp: the split ratio given by the Local strategy for path
p (sum of srp on alternative paths and the original path
for one destination is equal to 1).

Variables:
• xd: estimated quantity of traffic sent to d before CM over

the original path.
• xod: estimated quantity of traffic sent to d on the original

path after CM is applied (Local strategy).
• zpa: the positive slack variables for each link a ∈ Ā.
• zma : the negative slack variables for each link a ∈ Ā.

min
∑
a∈A

(zpa + zma )

xod +
∑
p∈Pd

(xd − xod)srp = xd ∀d ∈ D (3)

∑
d∈D

∑
p∈Pd:a∈p

(xd − xod)srp −
∑
d∈D

xod

= ℓca − ℓba + zpa − zma ∀a ∈ Ā (4)

xod ≤ ℓba −RT (5)∑
d∈D

∑
p∈Pd:a∈p

(xd − xod)srp ≤ RT (6)

0 ≤ xd, 0 ≤ xod ∀d ∈ D

0 ≤ zpa, 0 ≤ zma ∀a ∈ Ā

where inequalities (3) are the traffic conservation constraints,
ensuring that the sum of the traffic sent on the original path
and alternative paths corresponds to the traffic sent to the
destination. Constraints (4) ensure that link load variations
before and after the sampling phase, applying congestion
mitigation with the Local strategy, are taken into account.
We need to consider slack variables to ensure that we find a
solution. Inequalities (5) and (6) are bounded constraints. As it
tries to maximize the distance from ThA of all the links on the

original and alternative paths, the objective function minimizes
the impact of the traffic fluctuation. Remark that this model
optimizes the amount of traffic sent to each destination so
that it corresponds to the observed link load variation on Ā.
However, it is possible that no local traffic matrix fits with
the observed link load variation as ℓca values can account
for fluctuations of background traffic and traffic from other
congestion mitigations. For this reason, we consider the z
variables that minimize the violation of the local traffic matrix
generated by our model. Our goal is to find the most probable
local traffic matrix that minimizes the violation with regards to
the observed link load variation. Note that a possible drawback
of this model is that equivalent solutions generally exist.
Indeed, the problem is related to traffic matrix estimation [29]
where an under-determined inverse problem must be solved.
To obtain a unique solution, routing information and some
assumptions about the traffic are typically used to constrain
the problem (e.g., gravity model [30]). In the current imple-
mentation, we arbitrarily select a solution. Similarly to traffic
estimation, we expect that a better estimation can be realized
if additional information (e.g., traffic models) can constraint
the solution. To solve this linear program, we used CPLEX
12.6.3 as for the Optimal scenario. With this estimation, we
can run the Optimal algorithm. The whole process is repeated
periodically.

V. PERFORMANCE EVALUATION

This section presents numerical results for the evaluation of
our CM solution.

A. Packet Based Simulator

To test the behavior of the different congestion mitigation
approaches, we have developed a packet based simulator on
top of the Python Simpy Discrete Event Simulator (DES) [31].
We leveraged a dedicated simulator to implement only the
relevant SR and IGP features for the evaluation of our solution.
In this way, we managed to scale out our simulation framework
to tens of nodes and hundreds of links, while evaluating the
network dynamics in terms of link utilization, queue latency,
and packet losses.

We developed three main modules: (i) an SR-enabled
source, (ii) an SR-enabled sink, and (iii) an SR-enabled router.
We point out that SR sources and sinks correspond to PE
nodes, while SR routers correspond to P nodes. As PE nodes
are not considered in our network, we directly connect them
to the SR routers as sources/sinks of traffic. We considered
that the outgoing buffer of each port can be modeled as a
FIFO queue. In order to avoid any synchronization effect on
the results, the starting time of each node is randomly chosen.

The source module is in charge of generating packets with
a given rate and according to a given traffic distribution (e.g.,
constant rate). It inserts into packet headers either the SID
list (for TE traffic) or the destination node (for BE traffic). A
timestamp and a sequence number is inserted for the sake of
statistics collection.

Link failures are triggered in simulations, and instantaneous
IGP convergence is considered to re-route traffic on post-

8



convergence paths. We made this assumption as the conver-
gence time of the IGP is between hundreds of milliseconds
and a few minutes for large scale network with more than
100 nodes [32]. As the traffic variations at the scale of a link
are slowlier, and the statistic collection process periodically
checks each interface and updates the link utilization statistics
by averaging the sent data over a given time window, the
detection of a congestion is not instantaneous and may take
a few seconds. In addition, as the traffic is highly dynamic
during the reconvergence phase, it may happen that the CM
mechanism is activated only for short time intervals. For these
reasons, we assume that, during the reconvergence phase of the
IGP, no CM can be carried out, meaning that this phase can be
neglected in simulation. In real implementations, we will need
to set and configure specific timers to avoid CM during IGP re-
configuration. The SR router has three main functionalities: (i)
forwarding packets, (ii) queuing and transmitting packets, and
(iii) computing statistics. They are implemented as different
processes that coexist inside a router. The forwarding process
periodically checks if there is a packet to be processed, in this
case, it inserts it into the egress interface queue determined
by the FIB. This process is also responsible for forwarding
packets over alternative paths if the CM mechanism has been
activated. If the load exceeds the ThA, it activates the CM
mechanism. Finally, a dequeuing process is associated with
each interface: if a packet is available, it sends it over the
link.

In the simulations we consider either an ideal monitoring
mechanism or a realistic monitoring mechanism based on
Link State Advertisement (LSA). In the former case, each
node is instantaneously aware of the load of other links. In
the latter case, instead, each node periodically broadcasts an
LSA message containing the link loads of each interface. The
other nodes, which keep a local representation of the network,
update the local statistics with the received information and
broadcast the message over the other interfaces. The nodes are
fully asynchronous and their starting time is randomly tossed,
meaning that the generation and the propagation of the LSAs
does not happen at the same time in the network, introducing
an offset between the statistics broadcasted in the network.

We also considered a perfect load balancing where all
packets towards a destination PE are randomly assigned to
alternative paths according to weights. In a real implementa-
tion, more advanced solutions should be applied to deal with
imbalance issues or packet disordering. However, our goal is
primarily evaluate the overall benefit of the solution.

B. Considered Scenarios

We consider two networks: a real backbone network from a
regional operator in China and a topology from SND Lib [33].
The chinese regional operator network is composed of 30 core
P routers interconnected by 348 links. The second network is
germany50 from SND Lib and is composed of 50 P routers and
176 links. To keep simulation times reasonable, we considered
that link capacities are distributed between 100Mb and 1Gb.
For the sake of simplicity, we assume that we only have link
aggregates, so there are no parallel links between two nodes

(for instance, parallel links are aggregated and managed by a
Link Aggregation Group). The PE nodes are filtered out from
the graph to avoid using them for load balancing of traffic.

In our setting, all the P nodes can be associated with SR
sources or sinks (i.e. with PE nodes). For each pair of nodes,
we consider an Origin-Destination (OD) flow, but we neglect
pairs that are too close (less than 2 hops on the shortest
path). We consider a packet size of 1250 Bytes. The packet
arrival distribution can either be constant or follow a Poisson
distribution.

The alternative paths are computed offline and loaded into
the routers at network startup. Up to K = 5 alternative paths
can be computed for each pair congested link-destination.
We consider ThA = 70% as congestion threshold activation,
ThT = 50% as static target threshold (for Local), and
ThD = 40% as congestion deactivation threshold. The statistic
collection frequency is set to 250ms for each node. We point
out that the traffic “engineered” on alternative paths is encoded
as SR strict, i.e., as a SID list corresponding to the adjacent
interfaces traversed by the packet, to avoid being rerouted at
other nodes. During the forwarding operation, if the next SID
corresponds to one of the outgoing interfaces, the congestion
mitigation is not applied. In order to keep it into account in
the computation of the splits, the bandwidth of the engineered
flows is removed from the link capacity, so that split decisions
are taken only the flows that can be rerouted.

For the Chinese operator, we consider four scenarios: (i)
low load, where the rate of the OD pairs have been designed
so that the MLU is 30% before failure and 80% after re-
convergence, (ii) high load, where the MLU is 40% before
failure and 80% after reconvergence, (iii) high load with LSA
propagation, and (iv) extreme load, where the MLU is 40%
before failure and above 100% after reconvergence. The packet
arrival distribution of the first two scenarios is constant, while
for the last two is Poisson. We consider a total of 136 different
link failures that introduce at least a congestion in the network.
Each simulation lasts for 10s (of simulated time). After 4s,
we introduce a random failure of a link into the network.
As we neglect the reconvergence time, the traffic immediately
reconvergences to a new set of IGP shortest paths.

For the germany50 topology, we consider the following
setting: before failure, the MLU is 40%. After 3s, a link fails
and the network reconverges immediately. The MLU after
reconvergence is 80%. At t=7.5s, a new traffic matrix with
MLU=40% is loaded. For this scenario, we consider a sim-
ulation duration of 12s, a Poisson packet arrival distribution,
and a congestion deactivation treshold ThD = 0.4.

We evaluate the network performance, in terms of MLU
improvement, time to solve the congestion, link utilization
impact, packet losses, and queue latency.

Throughout this section, some results are presented in the
form of box plots that account for the points between the
1st (Q1) and the 3rd quartile (Q3), while in the bar in the
middle of the box plot represents the median (Q2). The
whiskers represent Q1 − 1.5IQR and Q3 + 1.5IQR, where
IQR = Q3 −Q− 1. The points represent the outliers.

9



C. Numerical results

We first provide an analytical comparison of alternative
paths’ computation algorithms in terms of path capacity, path
cost, computational time, and number of paths found. For all
our tests, we have used an Ubuntu 22.04 server with 104
Intel(R) Xeon(R) Platinum 8164 CPU @ 2.00GHz cores and
1.5Tb of RAM.

1) Experimental results on Split Computation for UCMP:
For the numerical results we used CPLEX 12.6 [34] to solve
the two linear programs presented in the algorithmic section
to compute weights for UCMP. In the case of Optimal, the
maximum computation time is 10.5 ms and 1.149 ms on
average. To solve the linear program associated with the
Remote solution, the maximum computation time is 2.6 ms
and 1.195 ms on average. Solving the Optimal model (1)-(2)
in a Huawei Router using a basic internal linear solver requires
an average of 56 ms on the China topology. On average, the
computational time slowdown between a Huawei Router with
an internal solver and CPLEX on a powerful server is around
50 times.

2) Comparison between KSP and NDA: In this section, we
compare the quality of alternative paths computed by KSP
and NDA. We consider the following KPIs to compare the
two algorithms:

• Total time (s): the total computational time for all con-
gested links scenarios.

• #paths: the total number of paths for all congested links
scenarios.

• Max #paths: the maximum of paths computed by each
algorithm.

• Sum Path Cap: the total sum of the minimum capacity of
each alternative path towards a destination in Mbps.

• Total Cost: the total cost of the alternative paths.
• Avg Path Cap: the average minimum capacity of alterna-

tive paths in Mbps.
• Avg Cost: the average cost of the alternative paths.
We compare NDA and KSP algorithms with max hops

elongation md ∈ {2, 3}. Let us denote by NDA (X) and KSP
(X) the algorithms with a max hops elongation md = X .

Tables I and II show the value of each KPI on China and
germany50 topologies, respectively. For each line and setting,
we put in bold the best value. Note that the two algorithms
find the same alternative paths for germany50 when md = 2.
For all other instances, the KSP algorithm generates more
paths than the NDA algorithm, less than 1% when md = 2
and less than 14% when md = 3. For md = 2, the two
algorithms cannot find more than 3 different alternative paths.
This is due to the too-tight md value. When md = 3 then
the two algorithms diverge more in terms of the number of
alternative paths found. KSP algorithm finds a better value for
the Sum Path Cap criterion since it generates more paths. In
comparison, the average path capacity is better for the NDA
algorithm. For the cost, it is not always the case. KSP finds
a slightly better average cost for the md = 2 on the China
topology. Otherwise, NDA provides better cost than KSP
because this latter can find more paths which are, however, less
interesting in terms of cost and capacity. For the computational

NDA (2) KSP (2) NDA (3) KSP (3)
Total time (s) 0.016488 0.050005 0.022320 0.104395
#paths 1368 1380 3232 3718
Max #paths 3 3 4 5
Sum Path Cap 34500000 34800000 140800000 149600000
Total Cost 956000 964000 3141900 3829100
Avg Path Cap 25219.2 25217.3 43564.3 40236.6
Avg Cost 698.8 698.5 972.1 1029.8

Table I: Performance comparison between KSP and NDA
algorithms for China instance. NDA (X) and KSP (X), X
represents the max hops elongation md = X .

NDA (2) KSP (2) NDA (3) KSP (3)
Total time (s) 0.048506 0.135189 0.064532 0.245721
#paths 1924 1924 4729 5731
Max #paths 3 3 4 5
Sum Path Cap 1298010 1298010 3638030 4198140
Total Cost 4107.3 4107.3 14308 18139.4
Avg Path Cap 674.6 674.6 769.3 732.5
Avg Cost 2.1 2.1 3 3.1

Table II: Performance comparison between KSP and NDA
algorithms for germany50 instance.

time, NDA obtains better performances in comparison with the
KSP algorithm and the computational time gain is between 3
and 5 times. The experiments have been done on a powerful
server. However, on a router, the algorithms will need more
time to find alternative paths. For the simulation, we consider
the setting md = 2 which is typically recommended by traffic
engineering experts. As the performances of NDA and KSP
are comparable for md = 2 for cost and capacity, we will
consider NDA in the simulation section.

Remark that if alternative path computations can be done in
a centralized way, more advanced algorithms, such as the one
described in [35], could be used to provide a better capacity
and cost. These algorithms need more resources and cannot
be run in each router.

3) Packet simulations: In this subsection, we present sim-
ulation results in terms of MLU, congestion duration, gap of
link utilization to ThA after CM, and link load variations,
considering different 1-link failure scenarios that induce con-
gestion over some post-convergence paths. We assume that
link load updates can be available every 250ms at each node.

a) Low load scenario: In Fig. 6, we present the results
for the low load scenario, i.e., with MLU=30% before failure.
We compare against the case without the congestion mitigation
mechanism (No CM). The MLU is measured at the end of the
simulation, i.e., after that the congestion mitigation has con-
verged to a new stable MLU. Without congestion mitigation,
we can observe that post-convergence MLU is indeed above
ThA = 70%. In terms of MLU reduction, both the Local and
the Remote methods manage to solve all the congestions in the
network. In particular, the Remote mechanism provides almost
the same performance as the Optimal one. In Fig. 6b, we
show the time required to mitigate the congestion. The Remote
mechanism requires a longer time to reduce accurately the
load of the congested link. Indeed, as explained in Sec. IV-B,
the Remote mechanism needs to sample link loads, over a
given time interval, in order to compute the final split ratios.
Instead, as the Local method does not take into account for
the per-destination traffic, it can apply directly the splits to
reach ThT, achieving a shorter congestion mitigation phase.
In Fig. 6c, we show the distribution of link load variations

10



(a) Maximum Link Utilization. (b) Congestion duration. (c) Link load variations. (d) Gap to ThA after CM.

Figure 6: Low load scenario: (a) MLU distribution with and without CM, (b) congestion mitigation duration, (c) link load
variations after CM, and (d) gap from ThA for each link after CM.

(in [%]), i.e. difference link loads after and before CM. We
point out that a negative variation means that the traffic has
been moved away from the link, while a positive one means
that a part of the traffic has been rerouted on the link. We
have filtered out the links where the variation is smaller than
0.1%. As the Local mechanism only focuses on the reduction
of the congested link load to ThT = 50%, only a few links
change their load. However, in the Remote case, which targets
the maximization of the gap from ThA for all the links on the
alternative paths and the original path, CM reduces the load
on several links, at the price of a larger variation for a few
of them, which receive much more traffic, allowing a better
load balancing. The performance of the Remote mechanism is
close to the Optimal one, which achieves a slightly better link
load variation to improve the MLU. In Fig. 6d, we present
the gap (in [%]) from ThA after congestion mitigation for all
the links in the network. In order to restrain the number of
observed links, we have filtered out the links whose variation
is smaller than 0.1% after CM. The Local mechanism, as it
solves the congestion locally, keeps the gap from ThA for
almost all the links, while the Remote mechanism plots smaller
gaps, as several links in alternative paths receive more traffic
to balance the load among them. For the case without CM, we
can observe that the majority of links lie around 40% gap to
ThA (as the MLU was 30% for the low load scenario before
congestion). The points below 0 mean that a congestion is
happening for the different instances.

b) High load scenario: In Fig. 7, we show the perfor-
mance achieved for the high load scenario, i.e., when the MLU
before link failure is 40%. In terms of MLU, as shown in
Fig. 7, the median of the MLU is moved from 77% to 60%. In
particular, while the MLU distribution lies below 70% for the
Remote and the Optimal method, meaning that the congestion
have been mitigated in all the instances, the Local mechanism
fails in a few instances, remaining above 70%, as shown by
the top whisker.

Due to the different nature of the split mechanisms, the
average reduction of the Remote mechanism is larger than the
Local one, and close to the Optimal one. This is because the
Local split mechanism tries to reach ThT = 50% locally,
while the Remote one tries to better distribute traffic over
alternative paths’ links.

In Fig. 7b, we show the duration of the congestion mit-
igation phase. By design, the Local mechanism solves the

congestion quickly, due to its policy of targeting an MLU
of 50%. Similarly, the Optimal strategy manages to solve the
congestion quickly. However, the Remote mechanism takes a
longer time to solve the congestion, as it first needs for 1s to
sample traffic before applying the final CM strategy.

In Fig. 7c, we present the link load variations. As for the
low load scenario, variation of link loads induced by the Local
mechanism is smaller than the one of the Remote mechanism.
In Fig. 7d, instead, we show the gap (difference) between link
utilization and ThA after CM. While the Remote mechanism
has a behavior similar to the one experienced for the low
load scenario, the Local mechanism has some value below 0,
meaning that it fails to mitigate congestion on some instances.
As for the low load scenario, the points below 0 for the case
without CM means that a congestion is happening.

c) Impact of monitoring frequency: In Fig. 8, we show
the impact of the monitoring mechansim on the CM decisions.
We consider the same network load as for the high load
scenario, a Poisson packet arrival distribution, and we com-
pare two transmission frequencies for the LSA messages for
monitoring: (a) 0.5s, i.e., below the duration of the sampling
phase of the Remote mechanism, and (b) 4s, i.e., above the
sampling duration. We point out that the Optimal method
disposes of ideal statistics over the link load, while the Local
method only has local statistics as, by construction, does
not need for remote information. For the case with t=0.5s
frequency, the Remote method well approaches the Optimal
one, while for the case with t=4s, the Remote method fails
to solve the congestion, as it takes decisions blindly. This
highlights the importance of a statistic collection mechanism
with a transmission frequency coherent with the sampling
phase duration. More specifially, if no statistic update happens
during the sampling phase, the split decisions are not reliable
as taken on outdated statistics. Vice versa, the higher the
frequency, the better the accuracy of decisions.

d) Extreme load scenario: In the extreme load scenario,
we consider an MLU after failure that may exceed the link
capacity. In this scenario, a Poisson packet arrival distribution
is considered. In Fig. 9a, we show the packet loss performance
of the three methods compared against the scenario without
congestion mitigation. In the absence of the CM mechanism,
losses may rise up to 4% of the traffic transmitted over the
congested link. In the case of CM, instead, as traffic is rerouted
over alternative paths, the packet loss remains almost 0, as

11



(a) Maximum Link Utilization. (b) Congestion duration. (c) Link load variations. (d) Gap to ThA after CM.

Figure 7: High load scenario: (a) MLU distribution with and without CM, (b) congestion mitigation duration, (c) link load
variations after CM, and (d) gap to ThA for each link after CM .

Figure 8: MLU evolution over time.

it only impacts a few packets when the congestion peak is
experienced.

In Fig. 9b, we present the queuing delay evolution for
the congested link without the CM mechanism and with the
Remote CM mechanism. When the congestion happens at
t=4s, the queuing delay without CM explodes up to 50 ms
and then stabilizes as packet losses are starting to appear. Vice
versa, the Remote mechanism manages to keep the queuing
delay smaller, up to 20ms, as traffic is successfully rerouted
over alternative paths.

e) Germany50 network: In Fig. 10, we show the per-
formance on the germany50 instance. In terms of MLU, as
shown in Fig. 10a and Fig. 10b, the three CM approaches
manage to efficiently solve the congestion and lower the MLU
below 70%., except for a few cases where the Local method
fails to mitigate the congestion due to lack of information.
In a few cases, the Optimal method fails as well as the
decision of the split is taken only at the CM activation phase,
while it should be updated periodically to keep track of traffic
evolution. In Fig. 10c we show the link load evolution of the
congested link for the cases without the CM and with the
Remote method. While in the former case, the congestion
remains till a new traffic matrix is installed at t=5.5, in the
latter case the congestion is correctly mitigated, and when a
new traffic matrix arrives, the CM mechanism is deactivated,
as shown in Fig. 10d, which refers to the CM activation over
the same link for the Remote method. When the load goes

(a) Packet loss.

(b) Congested-link queue latency with the CM Remote mechanism
and without CM.

Figure 9: Extreme load scenario: (a) packet loss and (b)
congested-link queue latency behavior over time.

below ThD = 0.4, the CM is deactivated.

VI. CONCLUSION

We proposed a distributed tactical TE solution leveraging
SR to efficiently mitigate congestions with quick and local
reaction, without requiring any interaction with a centralized
controller. When a router detects a congestion on a link,
a portion of the traffic can be automatically offloaded and

12



(a) Maximum Link Utilization. (b) Congestion duration. (c) Congested link load. (d) CM activation.

Figure 10: Germany50 scenario: (a) MLU distribution with and without CM, (b) congestion mitigation duration, (c) congested
link load variations after CM and after traffic matrix update, and (d) CM activation over time over the congested link for the
Remote method.

load balanced over a set of alternative paths using UCMP.
We presented the Neighbor Deviation Algorithm (NDA) for
alternative paths’ pre-computation and showed that it solves
alternative path computation faster than KSP algorithm. We
also proposed two approaches to compute split ratios on top
of alternative paths, depending on whether remote link loads
are available or not. We showed that a strategy based on link
capacities and local link loads can already mitigate congestions
in lightly loaded scenarios. Moreover, a strategy using remote
link load information and traffic sampling to estimate per-
destination traffic over the congested link can achieve near-
optimal congestion mitigation in all scenarios. We also show
how the congestion mitigation allows reducing the packet loss
in the case of highly congested link as well as reducing the
queuing latency. By testing the mechanism under a realistic
setting, we highlight that an efficient monitoring mechanism
is required to provide accurate congestion mitigation.

We believe that the work presented in this paper is a first
step, and it paves the road for many additional contributions
(system, algorithm, standardization) to provide a comprehen-
sive SR-based Tactical TE solution for congestion mitigation.
For future work, several extensions will be considered. To
improve reliability and routing diversity, disjointness and fault
tolerance can be considered for alternative paths’ computation.
As highlighted by the results, efficient telemetry solutions
must be designed to provide efficient congestion mitigation
and reduce the reaction time. Furthermore, if some predictions
about the traffic can be made available, then we can consider
them to provide more robust alternative paths and split ratios.
To better coordinate distant routers reacting at the same time,
IGP protocol extensions can be proposed. Also of interest, as
some routers can measure the N most important flows over
an interface, e.g. on congested links, alternative paths can
be selectively activated (only for N destinations) or the per-
destination traffic about top-N flows can be used to refine the
estimation for all destinations.

REFERENCES

[1] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications
Surveys Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[2] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,
C. Filsfils, P. Camarillo, and F. Clad, “Segment routing: a comprehensive
survey of research activities, standardization efforts, and implementation
results,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp.
182–221, 2020.

[3] D. Wu and L. Cui, “A comprehensive survey on segment routing traffic
engineering,” Digital Communications and Networks, 2022.

[4] A. Destounis, S. Paris, L. Maggi, G. S. Paschos, and J. Leguay,
“Minimum cost sdn routing with reconfiguration frequency constraints,”
IEEE/ACM Transactions on Networking, vol. 26, no. 4, 2018.

[5] K. Qiu, J. Zhao, X. Wang, X. Fu, and S. Secci, “Efficient recovery path
computation for fast reroute in large-scale software-defined networks,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 8, pp.
1755–1768, 2019.

[6] “Local Congestion Mitigation (LCM) White Paper,”
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-
management/crosswork-network-automation/local-congestion-
mitigation-wp.pdf.

[7] “Huawei iMaster NCE,” https://e.huawei.com/es/products/network-
analysis/imaster-nce-ip.

[8] “Cisco Crosswork Optimization Engine 4.1 User Guide - Local Conges-
tion Mitigation (LCM),” https://www.cisco.com/c/en/us/td/docs/cloud-
systems-management/crosswork-optimization-engine/4-
1/UserGuide/b cisco-crosswork-optimization-engine-
4 1 userguide/m mitigate-congestion-locally.html.

[9] L. Roelens, O. G. d. Dios, I. d. Miguel, E. Echeverry, and R. J. D.
Barroso, “Performance evaluation of ti-lfa in traffic-engineered segment
routing-based networks,” in 2023 19th International Conference on the
Design of Reliable Communication Networks (DRCN), 2023, pp. 1–8.

[10] A. Bashandy, C. Filsfils, S. Litkowski, B. Decraene,
P. Francois, and P. Psenak, “Loop avoidance using Segment
Routing,” Internet Engineering Task Force, Internet-Draft
draft-bashandy-rtgwg-segment-routing-uloop-15, Jun. 2023, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-bashandy-rtgwg-segment-routing-uloop/15/

[11] S. Litkowski, A. Bashandy, C. Filsfils, P. Francois, B. Decraene,
and D. Voyer, “Topology Independent Fast Reroute using
Segment Routing,” Internet Engineering Task Force, Internet-
Draft draft-ietf-rtgwg-segment-routing-ti-lfa-12, Nov. 2023, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-rtgwg-segment-routing-ti-lfa/12/

[12] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid, “Ti-mfa: keep
calm and reroute segments fast,” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2018.

[13] S. Hegde and P. Sarkar, “Micro-loop avoidance using
SPRING,” Internet Engineering Task Force, Internet-Draft draft-
hegde-rtgwg-microloop-avoidance-using-spring-03, Jul. 2017, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-hegde-rtgwg-microloop-avoidance-using-spring/03/

[14] A. Brundiers, T. Schüller, and N. Aschenbruck, “Midpoint optimization
for segment routing,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 2022, pp. 1579–1588.

[15] A. Brundiers, T. Schuller, and N. Aschenbruck, “Tactical traffic
engineering with segment routing midpoint optimization,” in IFIP
Networking, 2023.

[16] P. Medagliani, J. Leguay, M. Abdullah, M. Leconte, and S. Paris,
“Global optimization for hash-based splitting,” in Proc. IEEE Global
Communications Conference (GLOBECOM), 2016.

[17] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “Wcmp: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems, 2014, pp. 1–14.

[18] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al.,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in Proceedings of the ACM conference on SIGCOMM, 2014.

13

https://datatracker.ietf.org/doc/draft-bashandy-rtgwg-segment-routing-uloop/15/
https://datatracker.ietf.org/doc/draft-bashandy-rtgwg-segment-routing-uloop/15/
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-segment-routing-ti-lfa/12/
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-segment-routing-ti-lfa/12/
https://datatracker.ietf.org/doc/draft-hegde-rtgwg-microloop-avoidance-using-spring/03/
https://datatracker.ietf.org/doc/draft-hegde-rtgwg-microloop-avoidance-using-spring/03/


[19] C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz, “Mp-hula:
Multipath transport aware load balancing using programmable data
planes,” in Proceedings of the 2018 Morning Workshop on In-Network
Computing, 2018, pp. 7–13.

[20] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen, “6lb:
Scalable and application-aware load balancing with segment routing,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 819–834,
2018.

[21] G. Mirsky, G. Jun, H. Nydell, and R. F. Foote, “Simple Two-Way
Active Measurement Protocol,” RFC 8762, Mar. 2020. [Online].
Available: https://www.rfc-editor.org/info/rfc8762

[22] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
RFC 5880, Jun. 2010. [Online]. Available: https://www.rfc-editor.org/
info/rfc5880

[23] H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-
Bound Distribution of Link-State and Traffic Engineering (TE)
Information Using BGP,” RFC 7752, Mar. 2016. [Online]. Available:
https://www.rfc-editor.org/info/rfc7752

[24] C. Filsfils, A. Abdelsalam, P. Camarillo, M. Yufit, T. Graf, Y. Su,
S. Matsushima, M. Valentine, and A. Dhamija, “Path Tracing in SRv6
networks,” Internet Engineering Task Force, Internet-Draft draft-filsfils-
spring-path-tracing-05, Oct. 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-filsfils-spring-path-tracing/05/

[25] H. Song, F. Qin, H. Chen, J. Jin, and J. Shin, “Framework
for In-situ Flow Information Telemetry,” Internet Engineering Task
Force, Internet-Draft draft-song-opsawg-ifit-framework-21, Oct. 2023,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-song-opsawg-ifit-framework/21/

[26] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[27] “Understand Open Shortest Path First (OSPF),” https://www.cisco.com/
c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html.

[28] “Huawei documentation: How Do I Calculate the
Cost of an IGP Route?” https://support.huawei.
com/enterprise/en/doc/EDOC1100112352/d33e78c5/
how-do-i-calculate-the-cost-of-an-igp-route.

[29] Y. Vardi, “Network tomography: Estimating source-destination traffic in-
tensities from link data,” Journal of the American statistical association,
vol. 91, no. 433, pp. 365–377, 1996.

[30] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
computation of large-scale IP traffic matrices from link loads,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 206–
217, 2003.

[31] “Simpy,” https://simpy.readthedocs.io/en/latest/.
[32] N. Rybowski and O. Bonaventure, “Evaluating ospf convergence with

ns-3 dce,” in Proceedings of the 2022 Workshop on Ns-3, ser. WNS3 ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
120–126. [Online]. Available: https://doi.org/10.1145/3532577.3532597

[33] “SND Lib,” https://sndlib.put.poznan.pl/home.action.
[34] IBM, “ILOG CPLEX Solver.” [Online]. Available: https://www.ibm.

com/analytics/cplex-optimizer
[35] S. Martin, Y. Magnouche, P. Medagliani, and J. Leguay, “Alternative

paths computation for congestion mitigation in segment-routing net-
works,” in IEEE 10th International Conference on Control, Decision
and Information Technologies (CoDIT) - accepted, arXiv:2404.19314.,
2024.

14

https://www.rfc-editor.org/info/rfc8762
https://www.rfc-editor.org/info/rfc5880
https://www.rfc-editor.org/info/rfc5880
https://www.rfc-editor.org/info/rfc7752
https://datatracker.ietf.org/doc/draft-filsfils-spring-path-tracing/05/
https://datatracker.ietf.org/doc/draft-song-opsawg-ifit-framework/21/
https://datatracker.ietf.org/doc/draft-song-opsawg-ifit-framework/21/
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html
https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html
https://support.huawei.com/enterprise/en/doc/EDOC1100112352/d33e78c5/how-do-i-calculate-the-cost-of-an-igp-route
https://support.huawei.com/enterprise/en/doc/EDOC1100112352/d33e78c5/how-do-i-calculate-the-cost-of-an-igp-route
https://support.huawei.com/enterprise/en/doc/EDOC1100112352/d33e78c5/how-do-i-calculate-the-cost-of-an-igp-route
https://simpy.readthedocs.io/en/latest/
https://doi.org/10.1145/3532577.3532597
https://sndlib.put.poznan.pl/home.action
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

	Introduction
	Related Work
	Distributed Tactical TE
	Use Case
	Overall principle
	System Considerations
	Congestion Mitigation (CM) Mechanism

	Core Algorithms
	Path Computation
	KSP-based algorithm
	Neighbor Deviation Algorithm (NDA)

	Split Computation for UCMP
	Local
	Optimal
	Remote


	Performance Evaluation
	Packet Based Simulator
	Considered Scenarios
	Numerical results
	Experimental results on Split Computation for UCMP
	Comparison between KSP and NDA
	Packet simulations


	Conclusion
	References

