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Abstract— Software-defined network (SDN) controllers include
mechanisms to globally reconfigure the network in order to
respond to a changing environment. As demands arrive or leave
the system, the globally optimum flow configuration changes over
time. Although the optimum configuration can be computed with
standard iterative methods, convergence may be slower than
system variations, and hence it may be preferable to interrupt
the solver and restart. In this paper, we focus on the class of
iterative solvers with an exponential decrease over time in the
optimality gap. Assuming dynamic arrivals and departures of
demands, the computed optimality gap at each iteration Q(t) is
described by an auto-regressive stochastic process. At each time
slot, the controller may choose to: 1) stop the iterative solver and
apply the best found configuration to the network or 2) allow
the solver to continue the iterations keeping the network in its
suboptimal form. Choice 1) reduces the optimality gap leading
to smaller routing costs but requires flow reconfiguration which
hurts QoS and system stability. To limit the negative impact of
reconfigurations, we propose two control policies that minimize
the time-average routing cost while respecting a network recon-
figuration budget. We experiment with realistic network settings
using standard linear programming tools from SDN industry.
In the experiments conducted over the GEANT networks and fat
tree networks, our policies provide a practical means of keeping
the routing cost small within a given reconfiguration constraint.

Index Terms— Communication system traffic control, network
optimization, software defined networking.

I. INTRODUCTION

SOFTWARE-DEFINED Network (SDN) architectures
unleash the potential to compute routing at a powerful cen-

tral controller and then reconfigure the network accordingly in
real-time [1]. An SDN controller centrally decides traffic engi-
neering (TE) rules to meet performance requirements such as
QoS and resilience, which mirrors the past TE techniques [2]
but with a new global and online twist. To maintain the best
network flow configuration, the SDN controller has to solve
variants of the classical Multi-Commodity Flow (MCF) prob-
lem [3] in real-time, which may involve millions of variables
and constraints in large network instances. As the problem
instance itself evolves over time due to time-varying demands,
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the SDN controller solves a sequence of routing problems and
needs to constantly reconsider the flow configuration. Finally,
to satisfy application requirements, the controller needs to
solve these problems under tight timing constraints.

To cope with the above challenges, state of the art one-shot
approaches propose methods to schedule routing configura-
tions [4], [5]. Alternatively, research ideas from the community
of online algorithms [6] can be leveraged to yield a static
configuration that fares well in the future when unknown
demands have arrived. In this work we depart from the static
approach and we propose a purely dynamic one. New demands
are tentatively treated in a suboptimal way in order to meet
timing requirements. Then the controller continuously re-
computes global routing and reconfigures the network from
time to time with the goal to maintain low running cost.

In particular, this paper considers a general class of iterative
routing optimization solvers which yield a sharp improvement
of the objective function during the very first iterations and
exhibit diminishing returns, in the sense that the smaller
the optimality gap, the longer it takes to improve it. In our
dynamic setting, while the iterative solver converges to the
solution, new demands arrive and old demands leave the
system, changing the instance of the optimization. These
considerations lead naturally to an autoregressive model for
the evolution of the optimality gap, whereby the gap decreases
exponentially at each iteration of the solver and increases
whenever the demands change. Although our model assumes
exponential improvement of the optimality gap, and therefore
the optimality of our control is established in this context, our
simulations with an actual LP solver show that the proposed
policies perform well on problems on the GEANT and fat tree
networks, which mimic real scenarios, therefore suggesting
that they may be good policies to use in practice.

There might be a discrepancy between the best found
solution of the solver and the actual network configuration.
At each time slot the SDN controller has the option to
reconfigure the network flows as per the current computed
solution. However, flow reconfigurations degrade QoS and
introduce inertia into the system, hence in some time slots it
may be preferable to avoid them. Motivating use cases include
optical transport networks, where changing the reconfiguration
has repercussions on the stability of the optical system and
takes a given amount of time and datacenter networks, where
flow programing on hardware is slow as recently mentioned
in [7]. In these cases, even disruption-free reconfigurations
are undesirable if performed frequently. Protocols like TCP
could be used to mitigate the effects of path changes, however
we consider flow aggregates that from an operator perspective
might need to be re-routed to reduce the cost. On the other
hand, the solver generates a sequence of routing configurations

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0420-3430
https://orcid.org/0000-0003-3643-8349


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

with decreasing cost. Therefore leaving the network in its
current status costs money to the operator. For Internet Service
Providers (ISPs), network reconfiguration is beneficial to avoid
blocking of new connections even though it might result in
service disruption [8], [9]. Therefore, reconfiguration of large
ISP networks must be performed only when it is beneficial for
the system.

The cheapest average cost over time would be obtained by
reconfiguring the network according to the solution provided
by the solver at each iteration. However, as already mentioned
reconfiguring the network at such a frequency comes at
the cost of stability. Motivated by the above considerations,
in this paper we study a fundamental question for online SDN
routing: when to reconfigure the network in order to minimize
routing cost subject to reconfiguration frequency constraints.

To provide a partial answer we formulate a stochastic
optimization problem where we want to minimize the actual
network cost by selecting the reconfiguration instances subject
to a budget. The budget refers to a time-average constraint on
the frequency of network reconfigurations, so that no more
than hmax < 1 network reconfigurations occur per iteration
of the solver. Thinking of the reconfiguration as sampling,
the problem refers to sampling an autoregressive process with
a given sampling frequency so that the extra surcharge incurred
by non-sampled instances is minimized.

We restrict ourselves to a subclass of control policies that
always “sample” after the optimality gap has increased. This
constraint leads to a renewal structure, which in turn permits
the characterization of the best policy of the subclass. The
policy works in two levels: (i) a virtual queue captures the
price of sampling as it evolves over renewal frames, and
(ii) a dynamic programming method is used to find the optimal
“sampling” within a frame subject to the current price. Finally,
we have tested our approaches on scenarios that mimic real
scenarios with a network and traffic patterns widely used by
the research community in order to compare the performance
of the optimal renewal policy to a heuristic method which
minimizes a drift-plus penalty function at each time slot and
a policy that periodically reconfigures the network.

II. SYSTEM MODEL

In this section, we present the routing system model that
we consider.

A. System Architecture

We consider an online routing system with two main stages
1) a stage where we accept new demands and 2) a stage
where we re-consider flow configuration over time. This two-
step structure is typical for admission control systems, since
solving a multi-commodity flow can take a significant amount
of time (typically minutes for large network instances) and
delaying the establishment of a path until this computation
is over can lead to undesirable delays. The target is to
minimize routing cost which is motivated in the domain of
data center interconnection or enterprise networks, where the
goal is leasing the cheapest connections from Internet Service
Providers.

Fast Connection Setup (FCS): When connection requests
arrive at ingress nodes, the controller finds a feasible path
satisfying multiple constraints (e.g., capacity, and QoS). For
QoS purposes, the time requirements for finding a solution
might be very strict. Hence at this stage, the goal is not to

Fig. 1. Example of an online SDN routing optimization with two demands.
Edge labels represent link costs. All links have capacity of 1 Mb/s. The cost
evolution is computed according to the allocation performed by FCS and GC.

optimize the network, but rather to find a quick feasible solu-
tion. Example of FCS methods include (constrained) shortest
path algorithms which run on residual graphs.

Garbage Collection (GC) of Network Resources: The
sequence of sub-optimal network configurations obtained from
FCS, poses significant concerns on the evolution over time of
the global objective function. Therefore, periodic or event-
based reconfiguration of the overall flow can help reduce
the optimality gap. We call this mechanism Garbage Collec-
tion (GC) of network resources since it mirrors the way a Java
virtual machine collects garbages and reorganizes the memory.
Example of GC methods include algorithms that solve the
minimum cost MCF problem.

Fig. 1 shows an example of an SDN controller which strives
to minimize cost. The FCS uses a shortest path algorithm,
while the GC uses a min-cost MCF solver. Edge labels
indicate the link costs, while all link capacities are 1Mb/s.
In the example two demands arrive subsequently. First, the red
demand arrives and requires 0.5Mb/s, while the FCS allocates
it to the low cost path. Then the black demand arrives and
requires 1Mb/s. Since the low cost path does not have enough
remaining capacity, the FCS allocates the black demand to the
high cost path. The network configuration after step 2 is subop-
timal and leads to higher running costs. Hence, the controller
employs GC, which computes the optimal solution shown at
step 3. The SDN controller ultimately reconfigures the network
with the optimal solution, saving in this way 33% of the cost.

B. Min-Cost Optimization

In the following, we turn our attention to the GC step and
explain our model for globally optimize routing.

We model the network infrastructure with an undirected
graph G = (N ,L), where set N represents the set of network
nodes and set L models the links e = {i, j}, connecting
network nodes i, j ∈ N . Each link e ∈ L has a limited
capacity be and a cost ce, which refer to the maximum amount
of flow that can be routed and the price paid per unit of routed
flow, respectively.

A unicast demand k ∈ K is identified by a source-
destination pair (sk, dk) ∈ N 2, and the amount of traffic rk

that has to be transmitted from sk to dk. The set K represents
the active demands on this problem instance that need to
be routed through the network. To satisfy the demands in
the cheapest way, the controller needs to solve an evolving
instance of the minimum cost Multi-Commodity Flow (MCF)
problem which can be formulated at a given time as the linear



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DESTOUNIS et al.: MINIMUM COST SDN ROUTING WITH RECONFIGURATION FREQUENCY CONSTRAINTS 3

program (1)-(3), where real variables (xp)p∈P and (ye)e∈L
represent the path and link utilization and take values in [0, 1].
In this model, P is the set of all network paths, while Pk ⊆ P
represents the set of all paths which connects the source sk

to the destination dk of a demand k ∈ K. In contrast, the set
Pe ⊆ P contains all paths that use link e ∈ L.

COPT = min
(xp),(ye)

∑

e∈L
yece (1)

s.t.
∑

p∈Pk

xp = 1 ∀k ∈ K (2)

∑

k∈K

∑

p∈Pe:k∈Pk

xprk ≤ yebe ∀e ∈ L. (3)

The objective function (1) models the overall price paid for
using the network links and results in a resource allocation that
spreads the traffic across network links and keep the link flows
away from maximum link capacity [10]. The constraints (2)
ensure that the entire demand rk is routed through a set of
paths with routing splits xprk , and the constraints (3) are the
link capacity constraints.

C. Iterative Solver With Diminishing Returns

Due to the immense size of the problem instance (net-
work graph and set of demands), we resort to the Column
Generation (CG) method coupled with the simplex algorithm,
which has been proposed as a key method for solving large
MCF problems [11]. Such an approach is powerful because it
iteratively improves the solution by considering only a small
number of variables at each step, without considering the
set of all possible network paths, whose size is exponential.
To simplify the analysis, we assume that the optimality gap
is reduced exponentially fast. Our analysis applies to other
iterative techniques with exponential convergence rate, includ-
ing the full gradient and the stochastic gradient methods for
strongly convex objective functions [12]. We leave as future
work the analysis of solution techniques with sublinear and
linear convergence rates [13], [14].

At every iteration t = 1, 2, 3, . . . of the CG solver we obtain
a feasible flow solution with cost C(t) ≥ COPT (t), where
COPT (t) is the cost obtained when the solver reaches the
optimum. Let us denote the absolute optimality gap with Q(t):

Q(t) � C(t) − COPT (t) ≥ 0.

Q(t) is an indication of the amount of surcharge an operator
needs to pay for not having the network completely optimized
at time t, hence we would like Q(t) to be as small as possible.
Although the iterations monotonically decrease the optimality
gap Q(t), we observe “diminishing returns”, in the sense that
the smaller the gap, the longer it takes to improve it. To model
this situation we assume that the evolution of the optimality
gap follows an exponential decay:

Q(t + 1) = (1 − ρ)Q(t), (4)

where ρ ∈ (0, 1) is a constant that relates the volume of
the next improvement to current optimality gap values. This
corresponds to an exponential improvement function of the
type ( 1

1−ρ )−t, t = 1, 2, . . . .
Throughout the paper we assume that each iteration has the

same duration, and matches squarely a time slot. In practice
iterations take a random amount of time, however they consist

Fig. 2. Evolution of the optimality gap Q(t) in the GEANT scenario. The
50 and 99 percentiles are computed considering 500 simulations.

on operations that do not fluctuate a lot, especially for large
network instances (i.e. matrix inversions and shortest paths).
Therefore assuming that each iteration has the average duration
is practically meaningful.

We validate our model (4) using the CG solver in different
traffic conditions in the GEANT network topology [15]. The
traffic matrix is generated by randomly selecting source-
destination pairs and rescaling their demand according to the
capacity of the bottleneck link. Fig. 2 shows the evolution of
the optimality gap as a function of the number of iterations.
Specifically, red and black solid lines represents 50 and
99 percentiles obtained over 500 simulations. The optimality
gap Q(t) obtained in numerical simulations is always lower
and upper bounded by two exponential functions, namely 9−t

and 2−t, which are depicted as green and blue dashed lines
in the figure.

D. Modeling Event Arrivals

In the above section we defined the MCF instance for a
given set of demands K. Next, we consider the arrival of “new
events” in the system which potentially lead to a different
set of demands K(t). The new events correspond to arrivals
of new demands, or departure of old demands and in both
cases they result in a “jump” in the optimality gap Q(t), due
to the suboptimal network status resulting from the occurred
event.1 We remark that we consider flow aggregates rather than
end-to-end connections, therefore considering the nominal rate
instead of the actual consumed bandwidth is more realistic.
To simplify the considerations here, we assume that all events
incur the same “jump” (i.e., the same extra cost), which is
denoted by e. Our work can be extended to consider more
elaborate models. More precisely, we describe the influence
of new events (arrivals and departures of demands) on the
optimality gap Q(t + 1) via an additive term A(t) which
follows an i.i.d. stochastic process with mean E[A(t)] = λ,
and variance Var[A(t)] = σ2

A, both finite.
The controller will perform the t-th iteration of the GC pro-

cedure by solving the K(t)–instance of the optimization (1)-
(3). The optimality gap evolution can now be rewritten to
include the addition of the cost due to changing demands

Q(t + 1) = (1 − ρ)Q(t) + eA(t). (5)

This is a first order auto-regressive stochastic process with
discrete non-Gaussian disturbance. It is known that Q(t) is

1A newly arriving demand is treated by the FCS procedure. We will assume
that such a path can always be found. This assumption is not restrictive in
practice because (i) systems are often overprovisioned, and (ii) in the case
of a network overload, a congestion controller may reject some demands to
make the system feasible.
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strongly stable as long as ρ > 0 (see for example [16, Sec.
2.1.1]). Conclusively, the mean optimality gap Q(t) remains
finite irrespective of how high the arrival rate of events
is, or how slow the exponential slope of our solver is. We
can derive the stationary mean and variance:

Q = lim
t→∞ E [Q(t)] =

eλ

ρ
,

σ2
Q = lim

t→∞ Var[Q(t)] =
e2σ2

A

ρ(2 − ρ)
.

However, note that Q is in fact the gap between the optimal
routing and the computed solution at the solver. To achieve
this routing cost in the real network, the SDN controller must
reconfigure the network at each iteration of the solver. The
objective of the next sections is to derive control policies that
yield small optimality gap without reconfiguring continuously
the network.

III. CONTROL PROBLEM FORMULATION

Flow reconfigurations take time and cause small distur-
bances that affect the QoS, hence we would like to minimize
them. However, the goal of minimizing flow reconfigurations
conflicts with the goal of minimizing the routing cost. For
example, always applying the new solver iteration yields the
best possible average optimality gap Q, but incurs at the same
time the maximum number of reconfigurations (one every
iteration). On the other hand, we may decide to periodically
reconfigure once every ten iterations, which limits the recon-
figuration frequency to 10% but results in operational cost
higher than Q, since in many iterations improved solutions
are available but not applied to the network.

We consider a controller which at each time slot decides
whether to use the improved solution of the iterative
solver or not. By selecting u(t) = 1 the controller decides
to “spend” one reconfiguration to bring the network into
a form that agrees with the current output of the iterative
solver. If u(t) = 0 is selected, then the network is left
untouched.2

While the solver’s solution has an optimality gap Q(t)
which evolves according to (5), the actual operational optimal-
ity gap is higher when we do not apply the best solution at each
iteration, since the distance from the optimal point increases
as illustrated in Fig. 3, where the “surcharge cost” between
the solid black line (the output from the solver) and dashed
green line (the cost of the current network configuration) keeps
increasing as long as the u(t) = 0. We denote by S(t) the
surcharge cost at time slot t caused by not using the most
recent improved solution. The evolution is given by

S(t) = (S(t − 1) + ρ Q(t − 1)) (1 − u(t)), (6)

where we note that (i) if u(t) = 1 then S(t) becomes zero,
while (ii) if u(t) = 0 then S(t) increases by a term ρQ(t−1)
which is the new cost improvement computed by the solver
but not applied to the network.

The objective is to find a control policy that selects u(t)
at each time slot in order to minimize the average sur-
charge cost subject to a constraint on the average number
of flow reconfigurations (i.e., the number of times we select

2Without loss of generality, we leave for future work other granularities of
reconfiguration like per-device and per-flow.

Fig. 3. Evolution of the optimality gap obtained using the MCF solver
(red points) and the control policy with renewals (dashed green curve). The
black curve is the interpolation of the points computed by the MCF solver at
each iteration. Solid dots show where the solution computed by the solver is
applied.

u(t) = 1). We may formalize a stochastic optimization
problem as follows.

Problem P (Minimum Surcharge Subject to Reconfiguration
Frequency):

min
{u(t)}t

lim sup
T→∞

1
T

T−1∑

t=0

E{S(t)} (7)

s.t. lim sup
T→∞

1
T

T−1∑

t=0

E{u(t)} ≤ hmax. (8)

where 0 < hmax ≤ 1 is the constraint on the frequency
of time slots where we reconfigure. There exist potentially
other objectives or constraints with which we would like to
generalize problem P , such as for example to minimize the
number of routers that become reconfigured. In this paper we
focus on the solution of P which is fundamental for SDN
controllers.

Problem P is a stochastic online optimization that admits a
class of policies Π. Here, we are interested in causal policies,
that is policies with no knowledge/prediction about the time
instances of future arrivals. A policy π will be called “feasible”
if the long-term average reconfiguration rate that results from
applying this policy to the system satisfies the constraint (8).
In more detail, at the beginning of time slot t, the controller
is given the optimality gap Q(t) as computed by the solver.
Additionally, the controller knows the past evolution of the
system, i.e., the values (A(τ), Q(τ)), ∀τ < t. Any new flow
arrivals/departures that occur at time slot t are taken into
account for computing the (new) optimal flow allocation from
time slot t + 1 and onwards. The system is then Markovian,
with state vector

S(t) = [Q(t), S(t − 1), Q(t − 1)]

(the last two state variables are needed to find the cost (6) at
each time slot) for t = 1, 2, 3, . . . and the problem is a con-
strained Markov Decision Process (MDP) with infinite hori-
zon and time-average cost and constraint, where the system
dynamics and the cost at every slot are given by (5) and (6).
It is known [17, Th. 6.2] that we can restrict to the set of
Markov controls (i.e. one that makes the control decision at
time slot t based only on S(t) and knowledge of statistics of
the arrivals) without any loss of optimality; this means that
policies that use older information or are allowed to depend
on the time slot index do not lead to a better performance than
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those that make decisions based only on the current state of
the system and its statistics. Nevertheless, since P includes the
solution of a constrained MDP with infinite state space, it is
not efficiently solvable using standard methods. In the next
section we restrict our attention to a subclass of policies that
invoke a renewal structure and include an efficient solution.

As before, we have

Q(t + 1) = (1 − ρ)Q(t) + eA(t).

The evolution of the operational cost X(t) is then

Xπ(t + 1) = (1 − ρ)Q(t)Iπ(t) + Xπ(t)(1−Iπ(t)) + eA(t),
(9)

where Iπ(t) ∈ {0, 1}, and π is used to denote the control
policy we are using. We define the control policy to be a
mapping from the state of the system (Xπ(t), Q(t), D(t)) to
the action set {0, 1}.

Based on the simple model explained above, the total
number of reconfigurations under policy π by time t is simply

Rπ(t) = h

t∑

τ=1

Iπ(τ)

We define the frequency of reconfigurations as

R
π � lim sup

t→∞
E[Rπ(t)]

t

We are interested in the following optimization

min
π

lim sup
t→∞

∑t
τ=1 E[Xπ(τ)]

t
(10)

s.t. R
π ≤ rmax (11)

where we pick a control policy with decisions {Iπ(t)}, t =
1, 2, . . . in online fashion to minimize the average operational
error lim supt→∞

�t
τ=1 E[Xπ(τ)]

t while keeping the reconfig-
uration frequency less than rmax.

Even in the case where centralized algorithms can optimize
paths within seconds as shown in [18] and [19], the problem
of limiting the number of reconfigurations in a dynamic
scenario remains. If the controller quickly (ideally instanta-
neously) computes an optimal allocation every time a demand
join or leave the system, the evolution of the optimality gap
Q(t) can be modeled as a sequence of Dirac delta functions
with the amplitude equal to the difference between the cost
paid before and after the optimization. In this case, the problem
boils down to dynamically select the largest impulses accord-
ing to a target reconfiguration frequency set by the operator.

IV. CONTROL POLICY WITH RENEWALS

We say that a Markov process has a renewal structure
if the system visits states where it “statistically restarts”,
cf. [20, Ch. 7]. In more detail, our system (described by
S(t)) has a renewal structure if there exists a state s such that
the return time to that state, as well as the cost and number
of reconfigurations during this are identically distributed and
independent of the past history. The time period between
two successive returns to that state will be called a “renewal
frame”. Such systems are much easier to analyze since the
online problem can be broken down to smaller control prob-
lems within each renewal frame. Unfortunately, the problem
P we are interested in does not have such a renewal structure.

Our approach in this section is to use an artificial constraint to
invoke a renewal structure into our system. We will later show
that subject to this constraint, there is an efficient policy that
optimizes problem P , thus providing a complete performance
characterization of the system under this constraint.

Policy Constraint 1 (Reconfigure After Demands Change):
Consider the constrained set of policies Πc ⊂ Π. For any
policy π ∈ Πc the reconfiguration is applied whenever there
was a change in the demands, i.e., at any t

uπ(t) = 1 if A(t − 2) > 0, ∀t, ∀π ∈ Πc.

The delay of 2 time slots in A(t−2) relates to our notation and
ensures that the controller is forced to reconfigure at the first
iteration after the arrivals have been considered, see the blow-
up box of Figure 3. In the figure, A(tA) represents arrivals
in [tA; tB) that are soon handled by FCS using the network
configuration in state S(tA). These arrivals are handled by
GC at time tA+1 = tB (i.e., their paths are integrated in the
problem (1)-(3) at tA+1) and only at tA +2 the benefit of GC
is available. Intuitively the constraint is justified since the first
step of the solver has the steepest decrease in the optimality
gap and hence by choosing u(t) = 1 in such time slots a great
extra cost is avoided.

Note that for Πc to be feasible, it must be P{A(t) > 0} <
hmax. If otherwise, the reconfiguration constraint (8) will be
violated by any policy in Πc.

Under a policy π ∈ Πc the time interval between two
consecutive time slots t with the property “A(t − 2) > 0”
constitutes a renewal frame. Let t0 = 0, denote tn the n−th
slot satisfying A(t − 2) > 0, and denote Tn = tn+1 − tn the
number of time slots in the n−th frame (note that Tn is a
random variable).

In the remaining of this section we propose RP (Renewal
Policy), a policy that satisfies the Constraint 1 and hence RP ∈
Πc. By exploiting the renewal structure that policies in Πc

induce, we will prove that RP is a feasible policy that achieves
near-optimal value of (7) over all policies in class Πc.

A. Renewal Policy (RP)

A standard way to solve stochastic optimization problems
involves the use of policies that greedily balance the penalty in
a time slot with the instability of virtual queues; see the drift-
plus-penalty algorithm [20]. In fact, this dynamic algorithm
can also be applied to systems with renewals. In this case,
the policy keeps track of the budget spent thus far and puts
a price per unit of budget to be spent in the next renewal
frame; in our system we have a price per reconfiguration.
This budgeting method guarantees the satisfaction of the limit
constraint (8). Within the renewal frame, an oracle policy is
used to decide the control taking into account the price per
reconfiguration. When the uncontrolled states of the system
are i.i.d. renewals, the problem is tackled in [20] and [21].
Here we extend it to our non-i.i.d. framework.

To introduce a “price” into our system we define a virtual
queue U(tn) whose value we track only at the end of each
renewal frame:

U(tn+1) =

[
U(tn) − Tnhmax +

tn+Tn∑

t=tn+1

u(t)

]+

, (12)

where the term
tn+Tn∑
t=tn+1

u(t) equals the number of reconfigu-

rations used in the last renewal frame, while Tnhmax is the
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product of the last renewal frame length Tn times the average
constraint on reconfigurations from (8).

Mean rate stability of U(tn), that is

lim
N→∞

E{U(tN−1)}
N

= 0,

see [20, p. 17], guarantees the property “arrivals ≤ departures”,
hence

lim sup
T→∞

1
T

T−1∑

t=0

E{u(t)} ≤ hmax

which satisfies (8). Hence, any policy that stabilizes U(tn) is
a feasible policy. To track in real-time the stability of U(tn),
we define the quadratic Lyapunov drift as

Δ(s, U(tn)) = E
[
U2(tn + Tn) − U2(tn) |S(tn) = s, U(tn)

]

For a given policy, Δ(s, U(tn)) measures how the Lyapunov
function L(x) = x2 of the changes over a renewal frame.
The idea is that the Lyapunov function measures how large
is the queue U(t) and its drift is a means of quantifying the
immediate impact of a policy on the constraint satisfaction.
Any policy that yields bounded Δ(s, U(tn)) for any (s, U(tn))
can be shown to stabilize U(tn) in the mean rate sense, hence
such a policy is feasible.

Apart from feasibility, we are also interested in minimizing
the cost (7), thus we combine the drift Δ((s, U(tn)) with the
cumulative penalty (7) within a renewal frame:

DPP (s, U(tn)) = Δ(s, U(tn)) + V E

{
tn+Tn∑

t=tn+1

S(t)

}
, (13)

where V is a constant that plays an important role in
any Lyapunov optimization-based scheme, since it controls
the tradeoff between utility optimality and expected delay
[20, p. 48-49]. The metric (13) is often called Drift-Plus-
Penalty (DPP). Minimizing drift-plus-penalty includes two
conflicting goals, (i) to minimize the drift Δ(s, U(tn)) thereby
satisfying in the long term the constraint (8), or (ii) to
greedily minimize the penalty in the next renewal frame.
In fact, u(t) = 0 favors (i) and u(t) = 1 favors (ii). A policy
that minimizes drift-plus-penalty at each renewal frame is
essentially striking a good balance between the two in a greedy
fashion.

If we perform standard calculations and expand (13) we
obtain an upper bound expression on DPP (s, U(tn)) which
is optimized at every renewal by a policy that solves the
following optimization problem:

J∗(tn; V ) = min
u

E

{
tn+Tn∑

t=tn+1

V S(t) + U(tn)u(t)

}
(14)

This optimization seeks to find an appropriate sequence of
controls u(tn + 1), . . . , u(tn + Tn) within the n–th renewal
frame to balance the expected price of the extra cost V S(t)
with the price of reconfigurations U(tn)u(t).

Next, we propose RP which is designed to solve (14) at
every renewal frame, subject to Constraint 1. The RP policy
works as follows. Following a time slot with an arrival,
it always selects u(t) = 1 and notes the beginning of a renewal
frame. The virtual queue (12) is used to track the evolution
of the price across renewal frames. At the beginning of the
n–th renewal RP observes the value U(tn) and calls a routine

ε–OPT(U(tn)) which approximately solves (14). The routine
returns an infinite sequence of controls u(tn+1), u(tn+2), . . . .
RP uses this sequence until the n–th renewal is over at which
point it discards the remain subsequence and starts over. The
next section describes the RP policy and proves its near-
optimal performance from the class Πc.

B. Performance Analysis of RP

In this subsection we build intuition about why RP is
optimal in class Πc.

1) Q(t) Is an Ergodic Markov Chain: For the analysis we
will make the following assumption

Assumption 2: If Q(t) = qε for some small constant 0 <
qε � 1, then we can approximate Q(t) = 0.

In practice the assumption implies that tiny optimality gaps
may be disregarded, hence it is mild. Technically, it is used to
prove the following intermediate result:

Lemma 3: The process Q(t) evolves in a countable state
space. In addition, under Assumption 2, Q(t) is irreducible
and aperiodic.

Proof: Refer to Appendix A for the proof.
2) Optimal Cost of Πc: Consider the optimization problem

P over all policies belonging to Πc. The problem can still
be seen as a constrained MDP, with state space S̃(t) =
[Q(t), S(t − 1), Q(t − 1), A(t − 2)]. From the general theory
of constrained Markov Decision Processes (see e.g. [17]) we
can show the following:

Lemma 4: The optimal policy π∗ ∈ Πc is one where
the controller is a (possibly randomized) function of only
[Q(t), S(t − 1), Q(t − 1)] if A(t − 2) = 0 and u(t) = 1 if
A(t − 2) > 0 (the latter is due to the constraint of class Πc).

Denote the incurred cost of π∗ with S
∗
, where

S
∗

= lim sup
T→∞

1
T

T−1∑

t=0

E{Sπ∗
(t)}.

Although we cannot directly characterize π∗, we will use its
existence to prove the optimality of RP.
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3) Analysis of RP: The setting we have here is slightly
different with respect to optimization over renewal processes
as presented in [20] and [21], since Q(tn+1) depends on Q(tn)
(in the references the uncontrolled process is i.i.d. at renewal
periods). In order to resolve this, we use the idea of T−slot
drifts as employed in [20] and [22] for Markovian dynamics
of the uncontrolled state processes, extending it over renewal
frames this time.

Specifically, define I(t) = �{A(t−2)>0} and the Markov
chain Z(n) = [Q(tn), I(tn)] (note that S(tn) = 0 since
u(tn) = 1 ∀n, therefore S(tn − 1), Q(tn − 1) do not matter).
Then choose any of the states z = [q, 1]. Since we also need an
arrival to happen at states z, we are essentially looking at the
beginning of renewal frames of the initial problem. Starting
from a point in time where Z(n) = [q, 1] and denoting Nq the
return time to that state, we consider a variable drift for these
Nq renewal frames. Assuming a routine that solves (14) with
an ε error and standard analysis from Lyapunov optimization
theory [20], we compare the drift-plus-penalty of RP to π∗ to
obtain

S
RP ≤ ε + Bq

V
+ S

∗
. (15)

where

Bq =
E
{
T 2

n

}
(1 − hmax)
2

E {Nq}

+
E {Tn} (1 + hmax)

2
E
{
N2

q − Nq

}
.

For every q ∈ Q we prove in Appendix B that the return time
has bounded second moment:

Lemma 5: E
{
N2

q

}
< ∞, ∀q ∈ Q.

which asserts that Bq < ∞. Hence (15) shows that the cost
achieved by RP is near-optimal (consider for example large
values of V ). Feasibility is shown by using the same drift
analysis to prove that U(tn) is mean rate stable. Formally:

Theorem 6 (RP Is Near-Optimal in Πc): Let J∗(tn; V ) be
the optimal value of (14) and Uε be an ε−optimal control
policy for every renewal frame, i.e. a control policy that
for every renewal frame n achieves a cost J(tn; V ) ≤
J∗(tn; V )+ε, for a constant ε > 0. Then, for RP the following
hold:

1) The constraint of eq. (8) is satisfied.
2) S

RP ≤ S
π∗

+ B+ε
V (i.e. the average cost (7) is O(1/V )

close to the optimal one, achieved by π∗), where B =
min
q∈Q

[Bq] is a finite constant.

Proof: Refer to Appendix C for the full proof of the
Theorem.

C. A Polynomial Approximation Algorithm Within
Renewal Periods

Above we required a routine that approximately solves (14)
at every renewal period. We now describe such routine,
which is based on a Dynamic Programming (DP) optimization
technique. As we will show, the proposed DP method is partic-
ularly appealing since it produces a polynomial approximation
scheme.

To begin with, we define the following auxiliary variable:

β = 1 − P{A(t) > 0}, ∀ t. (16)

Next, we observe that the stochastic control problem (14) is
equivalent to the deterministic control problem of finding a

control sequence u(t) ∈ {0, 1} for t = tn + k, with k ≥ 1,
that solves the following program for each tn:

min
{u(t)}t>tn

∞∑

t=tn+1

βt−tn (V S(t) + U(tn)u(t)) := g(u), (17)

where the system evolves over time steps t ≥ tn according
to the laws described in (4) and (6). For notation simplicity,
we drop the dependency of u and g on the time instance tn.

1) ε-Optimality Formulation: In order to come up with a
ε-optimal strategy for the problem (17) we simply truncate at
time step T the infinite time window over which the optimal
control is evaluated. In Lemma 7 below we show that the
correctness of this approach is ensured by the boundedness of
the cost function. Moreover, the ε-optimal truncated horizon T
is a logarithmic function of ε−1. This observation will prove
to be crucial to show that the resulting policy provides a
polynomial approximation scheme for the problem (17).

Lemma 7: Let ε > 0. Let ũ′ be the optimal solution of the
following T -truncated version of (17):

ũ′ = argmin
u′

T∑

k=1

βk (V Sk + U(tn)u′
k)

s.t. Qk = (1 − ρ)Qk−1, 1 ≤ k ≤ T

Sk = (1 − u′
k) (Sk−1 + ρQk−1) , 1 ≤ k ≤ T

u′
k ∈ {0, 1}, 1 ≤ k ≤ T

S0 = 0, Q0 = Q(tn) (18)

where the truncated time horizon T is computed as

T =
⌈
log
(

(V Q(tn) + U(tn))
ε(1 − β)

)
/ log(β−1) − 1

⌉
. (19)

Then, any policy u′ such that u′(tn + k) = ũ′
k for 1 ≤ k ≤ T

is ε-optimal, i.e., g(u′) ≤ g(u′) + ε, where u′ is optimal for
the original problem in (17). �

The truncated problem defined in (18) is a deterministic
control problem in finite time horizon and finite state space.
We next show that it can be efficiently solved via a Dynamic
Programming (DP) algorithm, which results in a polynomial
approximation scheme for the original problem (17).
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Fig. 4. State evolution of ε–OPT(U(tn)) routine.

2) Dynamic Programming (DP): We now turn to the actual
computation of the ε-optimal strategy ũ′ defined in Eq. (18).
To this aim, we use a forward induction Dynamic Program-
ming (DP) algorithm that we dub ε–OPT(U(tn)). Typically,
the amount of memory required by DP grows exponentially
over the iteration steps, which then makes the DP implementa-
tion a daunting task. This phenomenon is commonly referred
to as the “curse of dimensionality” [23]. Fortunately, our case
is tractable, as the state space grows linearly over time, as we
illustrate in Fig. 4 and explain next.

The ε–OPT(U(tn)) routine iterates over all possible values
that the surcharge cost Sk may take on at each step k,
that we denote by the set of DP states {sk,i}i. At step
k = 0, the ε–OPT routine is initialized. The set of states is a
singleton, i.e., {s0,i}i = s0,1 = 0 with relative accumulated
cost c(s0,1) = 0.

At step k = 1, . . . , T , if no reconfiguration is applied and
u′

k = 0 (see items (a.k),(b.k)), then state sk−1,i evolves into
sk,i+1 = sk−1,i + ρQk and a cost βkV sk,i+1 is incurred.
We then store in c(sk,i+1) = c(sk−1,i) + βkV sk,i+1 the cost
accumulated by state sk,i+1. Then, state sk,i+1 has only one
predecessor, namely sk−1,i.

Otherwise, if u′
k = 1 (see item (c.k)) then all states

{sk−1,i}i converge to sk,1 = 0 and the incurred incremental
cost equals βkU(tn). In fact, the surcharge cost becomes null
after a reconfiguration is applied. Consequently, state sk,1 = 0
has multiple candidate predecessors, {sk−1,i}i. By Bellman
optimality principle, it suffices to select the one with minimum
accumulated cost, hence the predecessor of state sk,1 = 0 is
computed as argmini c(sk−1,i).

Finally, for k = T (see item (d)) the state with final state s̄T

with minimum cost is selected. The ε-optimal control ũ′ can be
then read backward, by recursively applying the predecessor
operator pred from the final state s̄T back to the initial state
s0,1.

It is easy to see that there are k+1 states at step k. Therefore,
the number of operations carried out at time k (i.e., the state
creation at items (a.k),(b.k) and the state selection at item (c.k))
is linear in k. This allows us to claim that the ε–OPT routine
solves the optimization problem (17) within a factor ε with
complexity Θ(T 2). Finally, this suggests that the complexity
of ε–OPT is polynomial in the length of the input (as T is a
logarithmic function of V, Q(tn), U(tn) and 1 − β) and even
sub-polynomial with respect to the approximation factor ε (as
T = Θ(log2 ε−1)). This proves the following result.

Theorem 8: The ε–OPT(U(tn)) routine is a polynomial
approximation scheme for the original optimization prob-
lem (17) within a renewal period.

D. Properties of RP

Using Constraint 1, we converted the original problem
of a constrained MDP in a very large state space to a

stochastic control problem which is amenable to Lyapunov
optimization solutions. In particular, it is possible to solve
the constrained problem optimally by a two level approach:
(i) A virtual queue is used to capture the evolution of price
of reconfiguration (and monitor the long-term feasibility of
the frequency constraint) and (ii) inside the renewal frame we
use deterministic optimal control taking into account the price.
We have shown that the latter is a feasible methodology since
it can be solved in polynomial time with respect to T , which is
lower than the complexity of a single iteration executed by the
solver. Another advantage of the proposed methodology is that
only the probability that a flow arrives/departs is needed and
not the whole distribution of A(t). Apart from P (A(t) > 0)
which needs to be estimated, the RP policy is purely adaptive
and oblivious to past events or other system statistics. Fur-
thermore, the exponential decrease of the optimality gap is
necessary to prove the near-optimality of RP, but it does not
affect the constraint on the reconfiguration frequency. From
a practical perspective, this means that the reconfiguration
frequency is always satisfied even if the routing solver exhibits
a different convergence rate. Finally, we observe that the con-
straint is not very harmful since the surcharge S(t) increases
significantly when the traffic in the network change due to
demand arrivals and departures. Therefore, it is desirable to
reconfigure the network according to the solver solution at
these time instances.

V. GREEDY POLICY (GP )

It is tempting to propose a heuristic approach which uses
the drift-plus-penalty method at every time slot instead of
every renewal frame. The virtual queue that corresponds to the
constraint (8) on the reconfiguration budget is then updated at
every time slot as

U(t + 1) = [U(t) − hmax]+ + u(t) (20)

and we seek a policy that observes U(t),S(t) and tries to min-
imize the right-hand-side of the drift-plus-penalty expression
E

{
U2(t+1)−U2(t)

2

}
+V E{S(t)}. Expectations are conditional

on U(t), S(t) and possible randomizations of the policy. Since
u(t) ∈ {0, 1} and ([x]+)2 ≤ x2, we have U2(t + 1) =
u2(t) + ([U(t) − hmax]+)2 + 2[U(t) − hmax] ≤ 1 + h2

max +
2U(t)(u(t)−hmax). Using (6), the drift plus penalty quantity
can then be bounded as:

E

{
U2(t + 1) − U2(t)

2

}
+ V E {S(t)}

≤ h2
max

2
+ 1 + U(t)(E{u(t)} − hmax)

+ V (S(t − 1) + ρQ(t − 1))E {(1 − u(t))}
≤ h2

max

2
+ 1 + U(t)hmax + V (S(t − 1) + ρQ(t − 1))

+ (U(t) − V (S(t − 1) + ρQ(t − 1)))E{u(t)} (21)

Minimizing the above bound on the drift-plus-penalty
expression is achieved by the following threshold policy:

Although GP minimizes the right hand side of (21), it is
not a provably near-optimal policy for problem P within Π.
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The reason is the following: drift-plus-penalty algorithms can
be proven to be near-optimal for cases where the cost that is
added at every time slot depends only on the control taken at
that slot and state variables that evolve independently of the
control actions [20]. This is not the case in our problem, since
the evolution of the cost to be added at time slot t depends on
the control policy taken in the previous slot, as seen by (6).

On the other hand, GP has numerous advantages. (i) Using
the drift-plus-penalty we may show that it stabilizes U(t)
and hence it is a feasible policy (i.e., the reconfiguration
constraint is satisfied). (ii) Contrary to RP, GP can be applied
for constraints smaller than the probability of arrival of a flow
and (iii) it does not require any information on the statistics of
how the demands change-e.g. it does not need P (A(t) > 0).
(iv) Similar to RP, it is oblivious to Q(t) and can be applied
without knowledge of the optimal value of the optimization.
To implement GP we only need to keep track of the virtual
queue U(t), and the costs Q(t), S(t) from the previous time
slot. The constant V is chosen high enough to approximate
well the optimal solution; a typical value is V = 1000.

By weak duality CDUAL(t) ≤ COPT (t). Therefore, we can
use the value of the objective function of the dual problem
CDUAL to bound the optimality gap Q(t), as we did in
the simulations presented in Section VI. We observe that
CDUAL(t) converges to COPT (t), hence Q̂(t) = C(t) −
CDUAL(t) converges to Q(t) = C(t)−COPT (t) as iterations
go by. Since dual variables are computed by the Simplex
algorithm as a byproduct, the computational complexity of
the iterative solver does not change.

VI. NUMERICAL RESULTS

To evaluate the performance of our control policies on a
realistic online SDN routing optimization system, we have
implemented a scalable algorithm based on column generation
to solve iteratively the linear program (Eq. (1)-(3)). In what
follows, we first describe the experimental methodology and
then illustrate the results of our experiments in two network
settings that mimic realistic scenarios and are widely used by
the research community.

A. Experimental Methodology

Since we are interested in solving large MCF problems, our
implemented SDN solver works as follows. It first computes a
feasible solution using FCS, allocating the demands that arrive
to the system on cheapest paths over the residual graph. After
this initialization phase, the solver proceeds by considering
only a subset of paths and iterates by adding and removing
paths (i.e., xp variables) to a restricted version of the problem
until it converges to the optimal point. At each iteration,
the solver typically uses the dual costs of Eq. (1)-(3) to add
only those paths that can improve the objective function.

In order to evaluate our policies we consider the real-life
dataset captured in 2006 by Uhlig et al. [15] on GEANT,
the high bandwidth pan-European research and education
backbone and a fat-tree topology, a typical interconnection
used in data-centers. GEANT contains a topology of 22 nodes
and 36 high capacity 40G bidirectional links. The link cost
has been rescaled in the range [1; 100]. The Fat-Tree topology
consists of 4 pods. Link bandwidth and cost increase inversely
with the tree depth in order to mimic the higher performance
of network devices closer to the core. Table I shows the link
parameters.

TABLE I

LINK BANDWIDTH AND COST OF FAT-TREE NETWORK

In all our numerical experiments, we perform 50 indepen-
dent measurements by generating as many traffic patterns and
then present the averaged results over the measurements. The
number of 50 different trials is large enough to yield very
narrow confidence intervals.

B. Performance Evaluation of Rate-Limited Policies

In this set of experiments, we compare our control
schemes RP and GP against a Periodic Policy (PP) that
consists in reconfiguring the network periodically with a
period equal to 1

hmax
, where hmax denotes the bound on the

reconfiguration rate. To this end, we generate random traffic
demands according to a Poisson process with inter-arrival time
of 2 s and fixed duration of 20 s. The total simulation time
is fixed to 10 min. In the following, we first present the
results obtained over GEANT. Then, we show the performance
obtained over the fat-tree topology.

1) GEANT Network: Fig. 5(a) illustrates the total surcharge

(i.e.,
T∑

t=0
S(t)) while 5(b) shows the reconfiguration rate h =

lim supT→∞
1
T

T−1∑
t=0

E{u(t)} used by the control policies as a

function of the bound on the reconfiguration rate hmax. Note
that for RP we can only show the results for hmax ≥ 0.7,
which is slightly larger than the arrival rate λ in our scenario.
Indeed, by definition RP needs to reconfigure at least as many
times as the number of arrivals/departures.

Fig. 5(a) shows that RP and GP achieve performance
almost identical to continuously reconfiguring the network
(S(t) = 0) even with a reconfiguration rate lower than 100%.
Furthermore, as illustrated in in Fig. 5(b), we can observe that
both RP and GP satisfy the constraint on the reconfiguration
rate, namely h < hmax and achieve the same cost. Due to the
imposed constraint “reconfigure after demand change” the RP
requires a reconfiguration rate slightly larger than the arrival
rate to obtain such a result, while GP seems to work well even
with smaller arrival rates. Differently from RP which respects
the constraint but optimally selects reconfigurations subject to
it, GP selects the iterations with the largest improvement in
terms of cost reduction. In our simulations, we observe that
selecting the very first iterations of the column generation
algorithm after an arrival/departure provides a very good
performance.

From the figures, it can be further observed that the PP
policy performs poorly when the SDN operator has a low
budget on the reconfiguration rate. Specifically, when the
controller operates with a limit on the reconfiguration rate
in the [0.1; 0.4] interval, using a periodic policy incurs in a
surcharge 3 times larger than using the GP scheme. As the
reconfiguration rate approaches 1, then all policies are allowed
to reconfigure continuously, leading to the same cost.

Fig. 5(c) shows a snapshot of an evolution over time of
the surcharge S(t) for GP (solid line) and PP (dashed line)
among the 50 trials with hmax = 0.1. While PP blindly
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Fig. 5. Performance evaluation of the proposed control policies over GEANT as a function of the bound hmax on the reconfiguration rate. (a) Total surcharge.
(b) Reconfiguration rate. (c) SPP (t) vs SGP (t) with hmax = 0.1.

Fig. 6. Comparative evaluation of RP and GP over GEANT with low
arrival rate and long demand duration. Each bar represents the increase of
the surcharge of GP with respect to RP.

selects which iterations to use, leading to bad performance, GP
“waits” until a big increase in the surcharge before applying
the configuration of the solver, thus reducing the surcharge
cost paid by the network operator.

As illustrated in the previous set of experiments, GP per-
forms very closely to RP when demand arrivals and depar-
tures rarely move the optimal operational point. In this case,
the routing solver can compute the optimal solution in few iter-
ations, with the very first iteration providing a huge decrease
in the optimality gap followed by small improvements.
To illustrate the gain of RP over GP, we reduce the demand
arrival rate and increase the demand duration. This permits
to increase the time during which multiple demands coexist,
thus increasing the number of iterations executed by the
solver to converge to the optimal routing configuration. More
specifically, demands are generated according to a Poisson
process with inter-arrival time of 10 s. The demand duration
ranges between 70 s and 100 s, while the total simulation
time is fixed to 100 min in order to offset the lower demand
arrival rate. Fig. 6 shows the percentage of extra surcharge
paid using GP with respect to RP as a function of the demand
duration. While GP is not optimal it performs very close to
the RP policy (the surcharge is only 3%-11% higher than the
optimal), thus representing a simple yet effective policy to
decide which reconfigurations to apply to the network.

2) Fat-Tree Network: We now illustrate the results obtained
in the Fat-Tree topology composed of 4 pods. Source and
destination nodes of the arriving demands are selected among
the leaves of the Fat-Tree.

As for GEANT, we measured the total surcharge (Fig. 7(a))
and the reconfiguration rate really used by our control policies
(Fig. 7(b)) as a function of the bound on the reconfiguration
rate hmax. As in the previous scenario, for all policies the total
surcharge fades away as the reconfiguration rate increases.
However, RP and GP perform consistently better than PP,
since they select the best reconfiguration timeslots instead of
deciding blindly when to reconfigure the network. We can
further observe that GP achieves the same total surcharge
as RP with a smaller reconfiguration rate. This is mainly
due to negligible impact that demand departures cause to

Fig. 7. Performance evaluation of the proposed control policies over a Fat-
Tree network as a function of the bound hmax on the reconfiguration rate.
(a) Total surcharge. (b) Reconfiguration rate.

the optimality gap. These events are usually ignored by GP,
whereas by construction RP always reconfigures the network
when a demand leaves the system.

C. Performance Evaluation of Fixed-Threshold Policy

In this set of experiments, we compare our GP against
the Fixed-Threshold Policy (FTP) proposed in [24]. Fig. 8
illustrates the total surcharge obtained in this comparative eval-
uation. In our setting, FTP reconfigures the network whenever
the decrease rate of the optimality gap is larger than a fixed
threshold, namely Q(t)

Q(t−1) > α, since we are interested in the
minimization of the surcharge. As with other policies, a new
arrival is firstly handled by the FCS, which quickly selects
a path, and then FTP decides whether to reconfigure the
network. Therefore, we always have Q(t) ≤ Q(t− 1). Since
FTP does not limit the reconfiguration rate, we executed this
policy with several thresholds, which are illustrated on the
x-axis at the bottom of Fig. 8. At the end of each simulation,
we computed the reconfiguration rate that in turn is used as an
input for the hmax parameter of our GP. The reconfiguration
rates, which corresponds to the thresholds that have been used
as input for FTP, are illustrated on the x-axis at the top of
Fig. 8.

We can observe that GP always outperforms FTP, since
FTP does not update dynamically the threshold that triggers
the reconfiguration like our GP, thus skipping important
network reconfigurations that can contribute to reduce the
surcharge. Furthermore, FTP cannot be easily tuned by a
network operator. As it can be observed in the figure, slightly
increasing the threshold on the relative optimality gap to obtain
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Fig. 8. Performance evaluation of the proposed Greedy Policy (GP) against
the Fixed-Threshold Policy (FTP) over GEANT. On the x-axis we show
the threshold on the relative optimality gap used by FTP (bottom) and the
corresponding reconfiguration rate computed at the end of each simulation
run (top).

the same surcharge of GP causes the violation of the constraint
on the reconfiguration rate.

VII. RELATED WORK

SDN enables a global and online routing optimization to
improve link utilization and increase reactivity to failures.
Google has showed in 2013 that they could achieve nearly
100% of link utilization [7] with their OpenFlow WAN
controller. Two main factors are behind this architectural
evolution: programmable data planes and logically centralized
controller platforms. Several propositions have emerged in
recent years to make data plane elements programmable and
offload the control logic to external units. To name a few:
Forces [25], PCEP [26] and OpenFlow [27].

Recent research on routing problems has been carried-
out along many lines, which can be broadly divided into
solving large problem instances, solving online versions of
the problem, and computing consistent flow migration. Solving
large routing problems has received a lot of interest from the
traffic engineering community [28]. Several approaches have
been proposed using column generation to solve large problem
instances [3]. However, they have been mostly developed
for offline network planning tools considering the worst case
scenario and do not consider their use in a dynamic routing
system.

The online multi-commodity flow version of this problem,
where the parameters are revealed over time, has been studied
for throughput maximization or load minimization, as detailed
by Even and Medina [6]. In more general settings, the prob-
lem has been formulated as an online packing and covering
problem [29], where the objective function as well as the
packing constraints are not known in advance. While these
works show sublinear competitiveness ratios, they have been
mainly designed for admission control and do not propose any
re-optimization of the flow allocation.

The network updates problem, which consists in computing
the sequence of intermediary steps to move the network
from an initial to a final flow configuration, has recently
gained momentum [30]–[33]. In [30] Brandt et al. show that
finding a sequence of reconfiguration steps for the migration
of unsplittable flows without violating capacity constraints
is NP-Hard. Similar results have been demonstrated in [31],
where Xin et al. study the problem of jointly minimizing
the reconfiguration steps and the network resource overhead
during the migration process. Wang et al. [32] analyze the
problem of deciding the order of flow table updates in order
to avoid routing loops or deadlocks during the switch from an
old to a new path. A complete survey on the network updates

problem can be found in [33]. We would like to observe that
the network updates problem is orthogonal and complementary
to our problem. Indeed, we can envisage a SDN controller
where our control policy selects the best routing configurations
according to a limited budget for the reconfiguration rate and
an algorithm for network updates schedules the sequence of
steps necessary to set up the selected configuration.

VIII. CONCLUSION AND PERSPECTIVES

Software-Defined Networking enables efficient utilization
of network resources by dynamically adapting the routing
configuration over time. In this context, this paper addresses an
important question about the interplay between the high degree
of configuration flexibility and the computational limits of the
SDN controller logic.

Specifically, we examine the problem where the optimality
gap of iterative routing algorithms decreases exponentially fast
and we want to minimize the average routing cost subject
to a constraint for the average reconfiguration frequency.
Furthermore, we present two control policies working on top
of the online routing optimization engine to decide whether
to apply or not the current yet not optimal global network
configuration. Numerical results on the GEANT network and
fat-tree network topologies show that our control schemes can
effectively track the evolution of the system using a bounded
number of reconfigurations, thus pursuing the double objective
of optimizing the performance and the system stability.

APPENDIX A
PROOF OF LEMMA 3

The state space is countable due to A(t) taking integer
values and the form of eq. (5). Indeed, at time t, Q(t) can
be characterized completely from the vector [A(τ)]τ=0,1,..,t,
which is a t−dimensional vector with elements from a count-
able space (non-negative integers).

For proving irreducibility of Q(t), note that under Assump-
tion 1, state Q(t) = 0 is reachable from any state with
positive probability (e.g. if there are no arrivals for a very
long times), and every other state is reachable from state 0
with an appropriate sample path of A(t).

Aperiodicity follows from irreducibility and the fact that
state 0 is aperiodic (since A(t) is i.i.d. over time, the return
time to state 0 can be one with positive probability).

APPENDIX B
PROOF OF LEMMA 5

Defining L(x) = x2 and taking its drift for Q(t), we have

ΔL(Q(t)) = E
{
L(Q(t + 1)) − L(Q(t))

∣∣Q(t)
}

= e2
E{A2(t)} + 2(1 − ρ)eλQ(t) − ρ2Q2(t).

From the above, we can show that for all κ1, κ2 > 0 such that

κ2 < κ1 < ρ2 and q0(κ1, κ2) = max
[

2(1−ρ)eλ
ρ2−κ1

,
√

e2σ2
A

κ1−κ2

]
it

holds

ΔL(Q(t))≤−κ2Q
2(t) = −κ2L(Q(t)), ∀Q(t)>q0(κ1, κ2).

The above implies that Q(t) is geometrically ergodic, i.e. there
exist positive constants M0 < ∞, r ∈ (0, 1) such that

|μt − μ|TV ≤ M0r
−t,
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where μ is the invariant distribution of Q(t) and μt is its
probability distribution at time slot t. For state q we then have

|μt(q) − μ(q)| ≤ 2|μt − μ|TV ≤ 2M0r
−t. (22)

For the second moment of return time, define
μt(q, a) = P (Q(t) = q, A(t − 2) = a), μt(q|a) =
P (Q(t) = q|A(t − 2) = a) and μt(q|a2, a1) =
P (Q(t) = q|A(t − 2) = a2, A(t − 1) = a1). We then have

μt(q, a2) = μt(q|a2)μt(a2) = μt(q|a2, a1)μt(a2)μt(a1)
= μt−2(q′(a1, a2))μt(a2)μt(a1),

where we have defined q′(a1, a2) is the state such that q =
(1 − ρ)2q′(a1, a2) + (1 − ρ)ea1 + ea2. Eq. (22) then implies

μt(q) =
∞∑

a2=1

∞∑

a1=0

μ(a2)μ(a1)μt−2(q′(a2, a1))

≤
∞∑

a2=1

∞∑

a1=0

μ(a2)μ(a1)
(
2M0r

t−2 + μ(q′(a2, a1))
)

(23)

and

μt(q) ≥
∞∑

a2=1

∞∑

a1=0

μ(a2)μ(a1)
(−2M0r

t−2 + μ(q′(a2, a1))
)

Taking in addition into account that∑∞
a2=1

∑∞
a1=0 μ(a2)μ(a1) = 1 − β, we have

E
{
N2

q

}

=
∞∑

t=1

t2μt(q) (1 − μt(q))
t−1

≤ 2M0(1 − β)
∞∑

t=1

t2r−t+2 (1 − μt(q))
t−1

+
∞∑

t=1

t2
∞∑

a2=1

∞∑

a1=0

μ(a2)μ(a1)μ(q′(a2, a1))(1−μt(q))t−1

:= S1 + S2.

The first series S1 converges to a finite number (can be seenby
e.g. a ratio test), therefore we need to bound S2. Denoting
r̃ =

∑∞
a2=1

∑∞
a1=0 μ(a2)μ(a1)μ(q′(a2, a1)), it holds

S2

≤
∑

t,a2,a1

t2μ(a2)μ(a1)μ(q′(a2, a1))
(
1 + 2(1 − β)M0r

−t+2

−
∑

a2,a1

μ(a2)μ(a1)μ(q′(a2, a1))
)t−1

≤
∞∑

t=1

t2r̃ (1 − r̃)t−1 + r̃

∞∑

t=1

t2
(
2(1 − β)M0r

2−t
)t−1

Both series above are convergent: For the first one we can
show it by a ratio test, and for the second by noting that
there exists a t0 < ∞ such that 2(1 − β)M0r

2−t < 1, ∀t >
t0. Therefore S2 is convergent, which implies that at the end
E {Nq} < ∞.

APPENDIX C
PROOF OF THEOREM 6

The setting we have here is slightly different with respect
to optimization over renewal processes as presented in [20]
and [21], as Q(tn+1) depends on Q(tn) (in the references the
uncontrolled process is i.i.d. at renewal periods). In order to
resolve this, we use the idea of T−slot drifts as employed
in [20] and [22] for Markovian dynamics of the uncontrolled
state processes, extending it over renewal frames this time.
Specifically, define I(t) = �{A(t−2)>0} and the Markov
chain Z(n) = [Q(tn), I(tn)]. Then choose any of the states
z = [q, 1]. Note here that since we also need an arrival to
happen at states z, we are essentially looking at the beginning
of renewal frames of the initial problem. Starting from a point
in time where Z(n) = [q, 1] and denoting Nq the return time
to that state, we write the variable drift for these Nq frames
(all expectations are conditioned on Z(n) = [q, 1]):

DPP (q, U(tn))
= E

{
L(U(tn+Nq))

}− E {L(U(tn))}

+ V E

⎧
⎨

⎩

n+Nq−1∑

m=n

tm+Tm∑

t=tm+1

S(t)

⎫
⎬

⎭

≤ (ε + Bq) + U(tn)E

⎧
⎨

⎩

n+Nq−1∑

m=n

tm+Tm∑

t=tm+1

(u∗(tn) − hmax)

⎫
⎬

⎭

+ V E

⎧
⎨

⎩

n+Nq−1∑

m=n

tm+Tm∑

t=tm+1

S∗(t)

⎫
⎬

⎭, (24)

where

Bq =
E
{
T 2

n

}
(1 − hmax)
2

E {Nq}

+
T̄ (1 + hmax)

2
E
{
N2

q − Nq

}
.

Since no arrivals occur within a renewal frame, the running
cost at the beginning of a renewal frame is always zero and the
solver is always applied the expected budget spent and cost
accumulated within a renewal frame depend only on Q(tn).
In addition, the state [q, 1] is also a renewal state for the
process Z(n). Defining

ūπ∗
= lim sup

T→∞
1
T

T−1∑

t=0

E {u∗(t)}

the optimal average budget used by π∗ we have (using the
renewal theorem)

1
E {Nq} T̄

E

⎧
⎨

⎩

m+Nq−1∑

m=n

tm+Tm∑

t=tm+1

u∗(t)
∣∣∣∣Q(tn) = q

⎫
⎬

⎭ = ū∗,

which implies

E

⎧
⎨

⎩

m+Nq−1∑

m=n

tm+Tm∑

t=tm+1

(u∗(t) − hmax)
∣∣∣∣Q(tn) = q

⎫
⎬

⎭

≤ E {Nq} T̄ ū∗ − E {Nq} T̄ hmax ≤ 0, (25)

since by construction of π∗ it is ūπ∗ ≤ hmax. We fur-
ther define n′

q = min {n ≥ 0 : Z(n) = [q, 1]}, Nq(m) =



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DESTOUNIS et al.: MINIMUM COST SDN ROUTING WITH RECONFIGURATION FREQUENCY CONSTRAINTS 13

min {k ∈ Z+ : Z(m + k) = z,Z(m) = z} with Nq(0) = 0
and σq,m =

∑m
k=0 Nq(k). Using (25) and summing (24) over

M periods where Z(n) returns to state [q, 1], we have

E

{
L(U(tn′

q+σq,M ))
}

MV T̄
−

E

{
L(U(tn′

q
))
}

MV T̄

+
1

MT̄

M−1∑

m=0

E

⎧
⎨

⎩

n′
q+σq,m+1−1∑

n=n′
q+σq,m

tn+Tn∑

t=tn+1

S(t)

⎫
⎬

⎭

≤ ε + Bq

V
+

1
MT̄

M−1∑

m=0

E

⎧
⎨

⎩

n′
q+σq,m+1−1∑

n=n′
q+σq,m

tn+Tn∑

t=tn+1

S∗(t)

⎫
⎬

⎭.

In addition, starting from t = t0 = 0, we get

E

{
L(U(tn′

q+
�

M
m=0 Nq(m)))

}

MV T̄
− E {L(U(0))}

MV T̄

+
1

MT̄

M−1∑

m=0

E

⎧
⎨

⎩

n′
q+σq,m+1∑

n=n′
q+σq,m

tn+Tn∑

t=t+1

S(t)

⎫
⎬

⎭

+
1

MT̄
E

⎧
⎨

⎩

n′
q−1∑

n=0

tn+Tn∑

t=tn+1

S(t + 1)

⎫
⎬

⎭

≤ ε + Bq

V
+

1
MT̄

M−1∑

m=0

E

⎧
⎨

⎩

n′
q+σq,m+1∑

n=n′
q+σq,m

tn+Tn∑

t=tn+1

S∗(t)

⎫
⎬

⎭

+
1

MT̄
E

⎧
⎨

⎩

n′
q−1∑

n=0

tn+Tn∑

t=tn+1

S∗(t)

⎫
⎬

⎭ (26)

We first prove part 2) of the Theorem. Using again the fact
that [q, 1] is a renewal state for process Z(n), we have (for
the rest of the proof, Nq denotes the generic random variable
describing the return time)

S̄π = lim sup
T→∞

1
T

T−1∑

t=0

E {S(t)}

= lim sup
M→∞

1
E{Nq}T̄M

M−1∑

m=0

E

⎧
⎨

⎩

n′
q+σq,m+1∑

n=n′
q+σq,m

tn+Tn∑

t=tn+1

S(t)

⎫
⎬

⎭

(27)

and

S̄π∗
= lim sup

T→∞

1
T

T−1∑

t=0

E {S∗(t)}

= lim sup
M→∞

1
E{Nq}T̄M

M−1∑

m=0

E

⎧
⎨

⎩

n′
q+σq,m+1∑

n=n′
q+σq,m

tn+Tn∑

t=tn+1

S∗(t)

⎫
⎬

⎭.

(28)

Note now that the first term of the left hand side of (26)
is nonnegative. In addition the expectations of the costs
accumulated for any policy before Z(n) reaches state [q, 1]
for the first time are finite. Assuming, as is usual in this kind
of problems [20], that E {L(U(0))} is also finite (e.g. starting
with U(0) = 0), taking limits as M → ∞ in (26) and using
(27), (28) we get

S̄π ≤ ε + Bq

V
+ S̄π∗.

For every q ∈ Q, Bq < ∞, as asserted by the Lemma 5.
Since any state [q, 1] can be used (it follows from the above
and Lemma 5 that the second moment of return to any of
these states is finite), the best provable tradeoff constant is
B = infq∈Q [Bq], which completes the proof of part 2).

Finally, we prove part 1), that is the constraint for the budget
we have for reconfigurations is satisfied. It is sufficient to
prove that queue U(tn) is mean rate stable under the proposed
policy [20]. Indeed, using (24) and (25) we have

E
{
L(U(tn+Nq)|q)

}− E {L(U(tn)|q)}
≤ (ε + Bq) + T̄E {Nq}

(
S̄∗ − S̄

)
< ∞, ∀q ∈ Q, ∀U(tn).

Since L(x) is a Lyapunov function, the above implies mean
rate stability of the virtual queue.

APPENDIX D
PROOF OF LEMMA 7

We first observe that the formulation in (18) is equivalent
to the original problem (17) with k := t − tn and boundary
conditions Q0 = Q(tn) and S0 = 0. Let us define the instan-
taneous cost at step k as gk(Sk, u′

k) := βk(V Sk + U(tn)u′
k).

We then notice that gk is bounded for all k ≥ 1:

0 ≤ gk(Sk, u′
k) ≤ βk

(
V Q(tn) + U(tn)

)
. (29)

Then, for any T ≥ 1 and control u′,
∞∑

k=T+1

gk(Sk, u′
k) ≤ βT+1

1 − β

(
V Q(tn) + U(tn)

)
:= ε. (30)

Let us now define u′ as the optimal control of the non-
truncated version of the optimization problem in (18). We then
denote u′ such that u′

k = ũ′
k for 1 ≤ k ≤ T and u′

k = {0, 1}
for k > T . Then we call Sk and Sk the state evolution
generated by the controls u′ and u′, respectively. We can now
bound the optimality gap of the control u′ as follows:

g(u′) − g(u′) =
∞∑

k=1

gk(Sk, u′
k) −

∞∑

k=1

gk(Sk, u′
k)

=
T∑

k=1

gk(Sk, ũ′
k) −

T∑

k=1

gk(Sk, u′
k)

+
∞∑

k=T+1

gk(Sk, u′
k) −

∞∑

k=T+1

gk(Sk, u′
k)

≤
∞∑

k=T+1

gk(Sk, u′
k) ≤ ε.

In fact,
∑T

k=1 gk(Sk, ũ′
k) ≤ ∑T

k=1 gk(Sk, u′
k) since ũ′ is

optimal over the finite time horizon [1; T ], and moreover∑∞
k=T+1 gk(Sk, u′

k) ≥ 0. By rewriting T as a function of
ε in equation (30), the thesis is proven.
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