THALES

Hervé Aïache, Vania Conan, Jérémie Leguay, Mikaël Levy

XIAN: Cross-Layer Interface for wireless Ad hoc Networks

Herve.Aiache@fr.thalesgroup.com

MedHocNet 2006 - 16th June 2006 Lipari - Italy

Why XIAN?

- Technical background
- XIAN Motivations

XIAN design

- XIAN software architecture and implementation
- Madwifi 802.11 metrics
- XIAN interfaces
- QoS routing: a use case
 - Experimentation description
 - How can XIAN help routing decision?
 - Radio Signal Strength measured by XIAN
- Conclusion and future work

- Why XIAN?
 - Technical background
 - XIAN Motivations
- XIAN design
 - XIAN software architecture and implementation
 - Madwifi 802.11 metrics
 - XIAN interfaces
- QoS routing: a use case
 - Experimentation description
 - How can XIAN help routing decision?
 - Radio Signal Strength measured by XIAN
- Conclusion and future work

- Well known issues of Mobile ad hoc networks (MANETs)
 - Spontaneous set up of wireless communication system
 - Set of mobile nodes sharing one or more wireless channels
 - No centralized control
 - Network topology and resources subject to variations with time
 - Dynamic and unpredictable distributed environment
- In such a context, traditional network system conception is challenged
 - Recent research work and studies explore new promising and more flexible designs → Cross-Layer approaches
 - More flexible exchange of status or control information between the different components of the communication system
 - System expected to be more reactive to the wireless environment and more responsive to quality required by applicative-oriented elements

- When compared to usual layer model
 - Different Cross-Layer models have been investigated
 - A wide spectrum of options have been proposed
 - Can be classified depending on their impacts or differences
 - Global exchange of information between components [Conti et al., 2004]
 - Limitation to adjacent layers interactions [Kawadia et al., 2003]
- Cross-Layering calls for a software architecture that allows access to wireless air interface parameters and status
 - Need for a software implementation supporting more flexible sharing of information and status exchanges
 - But experimenting cross-layer design for MANETs remains difficult
 - Most of ad hoc testbeds based on 802.11 cards lacking appropriate API support
- XIAN implementation aims at enabling and facilitating crosslayer studies and experimentations over MANETs testbeds

- Why XIAN?
 - Technical background
 - **XIAN Motivations**
- XIAN approach
 - XIAN software architecture and implementation
 - Madwifi 802.11 metrics
 - XIAN interfaces
- QoS routing: a use case
 - **Experimentation description**
 - How can XIAN help routing decision?
 - Radio Signal Strength measured by XIAN
- Conclusion and future work

XIAN objectives

- Specify, implement and validate a Cross-Layer Design only based on standard 802.11 driver and network interface
- Study relevant Cross-Layer information available in standard network drivers in view of QoS Routing/MAC interactions

- Hands-on approach
 - To go beyond simulation and support experimental test beds
 - To study what is really available in existing drivers
 - To feed simulation studies with experimental results

- First XIAN implementation
 - Implemented for a Linux kernel 2.4.X
 - Experimented with a *Madwifi* driver
- 802.11 *Madwifi* drivers
 - Open source project
 - Multiband Atheros Driver for Wireless Fidelity
 - Very active community and open/modular architecture design
 - Driver versions supported by Linux
 - BSD branch (Good support of ad hoc mode and monitor mode)
 - WDS branch (Roaming and bridging between access points)
 - WPA branch (Focused on 802.1x for RADIUS-based authentications)
- 802.11 driver selected: *Madwifi* BSD branch
 - 180 states/information/statistics
 - About 40 per-neighbor measurements

XIAN: Cross-Layer Interface for wireless Ad hoc Networks / MedHocNet 2006 / June 2006 / Lipari, Italy

XIAN software components

- Kernel Space Xian Interface (KSI)
 - Dedicated to kernel space components (e.g. TCP or UDP)
 - Linux kernel module
 - Direct interactions with the Madwifi driver to retrieve its internal states and statistics.
- User Space Xian Interface (USI)
 - Kernel Space Xian API but at the user space level
 - An ordinary C library in order to facilitate integration with user space programs (e.g. routing daemons or applications).
- The Xian Information Transport Module (ITM)
 - Allows to pass information from the kernel space to the user space
 - Special character device.

Configuration states

- Current configuration parameters of the 802.11 network device
 - Used channel or the number of queues

Aggregated metrics

- Global statuses on the use of the 802.11 network interface since it runs first started
 - Number of received frames dropped or with wrong BSSID
 - Number of transmitted frames with CTS or with RTS enabled
 - Relative signal strength (RSSI) of the last ACK on transmission
 - Number of failed receptions (due to queue overrun, bad CRC, PHY errors or decryption problems)

Per neighbour/link metrics

- Information related to particular transmission at MAC layer
 - Number of received/transmitted data frames or bytes
 - Relative signal strength (RSSI)
 - Number of transmission retries

Madwifi 802.11 metrics and XIAN interfaces

- Aggregated and per-neighbor metrics
- One function per metric
- About 180 developed and integrated in XIAN APIs

Per-neighbor/link metric

```
/* returned metric value */
u int32 t
get node metric name (
 u int8 t * macadd, /* MAC address of neighbour node */
                          /* Interface name */
  char * dev name,
  unsigned int * code err); /* Error code */
```

Aggregated metric

```
/* returned metric value */
u int32 t
get metric name(
   char * dev name,
                             /* Interface name */
   unsigned int * code err); /* Error code */
```


- Why XIAN?
 - Technical background
 - **XIAN Motivations**
- XIAN approach
 - XIAN software architecture and implementation
 - Madwifi 802.11 metrics
 - XIAN interfaces
- QoS routing: a use case
 - **Experimentation description**
 - How can XIAN help routing decision?
 - Radio Signal Strength measured by XIAN
- Conclusion and future work

Background basis

- The use of hop count may lead to poor quality routes that follows long range links [De Couto et al., 2002]
 - High packet error rate, heavily loaded areas, high level of radio interference, high level of congestion
- QoS routing uses metrics from other layers to take these parameters into account
 - Expected transmission count [ETX De Couto et al., 2003]
 - Medium time metric [MTM Awerbuch et al., 2004]
 - Available bandwidth [Déziel et al., 2005]
- Experimental ad hoc platform and parameters
 - Gigabyte GN-WMAG cards with Atheros chipset
 - TCP and UDP performances measured by *iperf* software

Parameter	Value
δ	10ms
N	60
UDP sending rate	100 KBytes/s
Packet size	100 bits
Interval between iperf reports	0.5s
802.11 bitrate	11Mbits
RTS/CTS	off

How can XIAN help in routing decision?

In this case, it can help routing to make better decisions...

THALES

- Why XIAN?
 - Technical background
 - **XIAN Motivations**
- XIAN approach
 - XIAN software architecture and implementation
 - Madwifi 802.11 metrics
 - XIAN interfaces
- QoS routing: a use case
 - **Experimentation description**
 - How can XIAN help routing decision?
 - Radio Signal Strength measured by XIAN
- Conclusion and future work

Conclusion

- Description of XIAN approach, design and its interfaces
- Implementation of a cross-layer interface not impacting an existing communication system
- Software enabling experimental set ups and validation of a large variety of use cases for MANETs cross-layering studies
- Presentation of one possible use case through a real deployment highlighting the potential benefit of QoS routing
- First XIAN release available at http://sourceforge.net/projects/xian

Future work

- Improvements of XIAN approach
- New interfaces development based on publish/subscribe mechanisms
 - E.g. Enabling link up/down events to react faster to topology changes
- New metrics integration
 - E.g. Weighted average to favour latest measurements, compound of metrics
- Support of other chipsets

XIAN: Cross-Layer Interface for wireless Ad hoc Networks

Thanks for your attention! Questions?

Website: http://sourceforge.net/projects/xian

Hervé Aïache, Vania Conan, Jérémie Leguay, Mikaël Levy {firstname.name}@fr.thalesgroup.com

