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ABSTRACT receives a “bundle” of information from a neighboring
node, there is a non-negligible interval before it contacts
O:imother node and has the opportunity to relay the bundle.

. . ... . Prior work on routing in t-DTNs has commonly made
nodes shares the same inter-contact time distributio . :
. . : . the assumption that each pair of nodes shares the same
as every other pair. The main argument in this paper

) , Inter-contact time distribution as every other pair. The
is that researchers should also be looking at heteroge- . : .
. . e main argument in this paper is that researchers should

neous inter-contact time distributions. We demonstrate ) . N : .
Iso be looking at cases in which inter-contact time dis-

the presence of such heterogeneity in the often-used. =
ributions are heterogeneous.

Dartmouth Wi-Fi data set. We show that the heavy-taile We show, on the well known Dartmouth Wi-Fi data

distribution across all nodes, observed in previous Work‘set [6], that despite the existence of a heavy-tailed dis-

can be explained as a composition of the distributions for =~ *. ) . . :
. o ... . _tribution when inter-contact times are considered in the
each pair of nodes, and that these individual distributions

are rarely heavy-tailed. We also show that DTN routingaggregat_e, a Ia_rgg portmn of the node pairs present Inter-
, : o . ~contact time distributions that can be well fitted by an
can benefit from knowing these distributions. We first in-

; . . exponential distribution. We found these distributions to
troduce a new stochastic model focusing on the inter-

. o . be heterogeneous, with a wide variation in exponents.
contact time distributions between all pairs of nOdeS’Chaintreau et all[2] posit that there might be heterogene-
which we validate on real mobility data. We then analyt- -elp 9 9

) : . ; .~ ity, but we show it and characterize it. We also show how
ically derive the mean delivery time for a bundle of in- S, :
. . X . exponential distributions can be composed to yield the
formation traversing the network for simple single copy ) N :
. . : heavy-tailed distributions that Chaintreau et al. obsgrve
routing schemes. The purpose is to examine the theoret

I . S
impact of heterogeneous inter-contact time distributions’&S we shall see, the heterogeneity that we highlight al-

) L . . “lows us to usefully extend the work of Spyropoulos et
Finally, we show that we can exploit this user diversity ; :
. . . al. [11,[10], which analyzes numerous routing schemes
to improve routing performance. Based on the analytic . )
. . , “ for t-DTNSs, but that uses mobility models that yield ho-
model, we define an improved single copy “Spray and o
mogeneous distributions.

Wait” scheme that we compare to other routing schemes . ) . .
P 9 We also provide the first formal analysis of the impact

on the same real mobility data. of heterogeneous exponential inter-contact time distribu
tions on simple single-copy routing schemes. We show
1 INTRODUCTION that routing strategies can benefit, in terms of delay, from
In delay tolerant networks (DTNs)I[4], nodes are mo-this heterogeneity, and in particular from knowing these
bile and have wireless networking capabilities. They aredistributions. A node can choose among possible relay
able to communicate with each other only when theynodes based upon their expectations for meeting other
are within transmission range. The network is sparseéelays or the destination.

and suffers from frequent connectivity disruptions, mak-
ing the topology only intermittently and partially con- 2 INTER-CONTACT TIME MODEL

nected. This means that there is a very low probabilityThis section presents the model we use to analytically
that an end-to-end path exists between a given pair oflerive the delay expectations for the routing protocols
nodes at a given time. End-to-end paths can exist temwe study.

porarily, or may sometimes never exist, with only partial .

paths emerging. This paper addresses the extreme c:age‘,1 Exponential t-DTNs

where only temporal paths exist. We call such networks/Ne consider a network composedrofodes. Let's first
temporal DTNs, or t-DTNs. When a node in a t-DTN look at the inter-contact time between two individual

Prior work on routing in delay tolerant networks (DTNSs)
has commonly made the assumption that each pair



nodes(i, j): tilj < tizj < tﬁ < ... are the successive instants are upper bounds, but, as we will see, still provide valu-

at which a contact betweérandj occurs. able information and insight on how to route bundles
K ookl K in DTNs. We leave refinements of the model for future
T =t — ¢ 1)
ij = Hj ij work.

: : : th
is the inter-contact time between th& and (k4 1) 3 FITTING THE MODEL
contact instants. .

We assume that thE,kj are samples from independent I the t-DTN model just elaborated, we assume that the
and identically distributed random variables that follow intér-contact time distribution for each pair of nodes is
an exponential law with parametdr;, which we note exponential. The main reason is that it will allow us to
Tikj — 1;j = exponentigl;j). The mean inter-contact time 90 beyond asymptotic results and provide explicit formu-
betweeri andj is thus given byE[Tij] = 1/A;j. las for the bundle delivery time, and other parameters, of

In the overall network, alh nodes are supposed to be- different routing protocols. In this section we look at real
have independently, so that th@gn— 1) /2 pairwise inter- data to evaluate how reasonable this hypothesis might be.
contact timegyj are independent exponential processe

with different parameters. The; family of processes is _ _ N _
symmetric andi, 7jj = O. To validate the hypothesis, we use real mobility traces in-

exponential t-DTN of size, nbeing the number of nodes €ge [6]. The Wi-Fi scenario is not a perfect fit for DTN

in the t-DTN, is entirely and uniquely characterized by Mobility. For instance, Wi-Fi nodes are typically turned
providingn(n— 1)/2 strictly positive real parameteg  Off, transported, and then turned on again, thus missing
for all pair of nodeg(i, j) with i < j. Parametet;; is the potential contacts en route. However, the size, quality,
symmetryt;; = ti; for all nodes(i, j) with i < j. For all less one of the best resources for this kind of study.
nodesi tij = 0. If two noded andk never meet, we use  As we describe in prior work[9], we must select from
the conventiory = . The inter-contact time processes the data, and make some assumptions, in order to consti-
are defined for all pairs of distinct nodésj), i £ j, by  tute auseful DTN mobility data set. We take the subset of

.1 Exponential inter-contacts

1jj = exponentiglij), with Ajj = 1/tjj. users who are present in the network every day between
_ January 26 2004 and March 1% 2004, a period during
2.2 Assumptions which we expect mobility patterns to be fairly stationery.

The model abstracts away from all the spatial informa-This data set contains 834 users, or nodes. Then we as-
tion that is essential in the analysis of mobile ad-hoc netsume that two nodes are in contact if they are present at
works. There is no reference to geographic, localisatiorihe same time at the same access point (AP). Finally, we
or any other such spatial information. There is also ndfilter these data to remove the well known “ping pong”
reference to air interface parameters, quality of or con€ffect. Wireless nodes, even non-mobile, can oscillate
tention on the links, etc. Node mobility is not explicit at a high frequency between two APs. This leads to a
modelled: only its aggregated impact on the inter-contactarge number of inter-contact times that are close to zero
time is taken into account. and thus biases the inter-contact time distribution by in-
The model focuses on the temporal dynamics of aroducing an artificially high slope close to the origin.
DTN. In this way it provides a common framework to To counter this, we filter all the inter-contact times be-
analyse very different DTNSs. In particular it applies very low 1,800 seconds. This threshold was used by Yoon et
well to social networks for which the position of nodes al. [12] for the same purpose. We use this data set for the
at a given time is not of primary importance. We believeremainder of this paper.
this abstraction helps focus on the inherent characteris- Fig. 0 shows the distribution od;; for all 74,848
tics of intermittent connectivity in DTNSs. source-destination pairs for which this can be calculated.
The model makes a stationarity hypothesis with re-We see that the distributions are heterogeneous, with
spect to node inter-contact time distributions. In otherlambda varying over three orders of magnitude.
words, nodes behaviors are assumed to change on aWe test for whether the inter-contact process between
slower scale than bundle exchanges. any two nodes can be modelled by an exponential pro-
We also suppose that nodes have infinite capacity. Weess with a parametdr= 1/t, wheret is the mean inter-
do not study the impact of the load of the network, or of contact time. We use the Cramer-Smirnov-Von-Misés [3]
the limited bandwidth of the links, nor do we model the hypothesis test. For each pdirj), we compare the cu-
limitations due to buffer or queue overflows and corre-mulative distributioriy for theN inter-contacts observed
sponding bundle dropping strategies that nodes may reand the hypothesis function whose cumulative distribu-
quire. In this respect, the results with the proposed modetion is Fij(x) = 1 — exp(—Ajjx). We also compare,]



.0 follow a power law, or is the pairwise exponential as-

0.1- : sumption too strong to yield a power law in the aggre-
;’f 0.0175 : gate?
< ' Let © be the aggregated inter-contact time for all pairs
0.001 - of nodes, and lep(A) be the probability distribution of
e T theA parameters:
1e-06 1e-05 0.0001 o
jambda PO>1) = /A e Mp(a)ar @)

Figure 1: Distribution of;;. . .
1gure & Distribution oA What eqn[R says is that, for exponential t-DTNs, the

aggregated inter-contact time distribution is fully clara
terized by the distributions of thee parameters, and thus
of thetj; matrix. More precisely, the tail cumulative dis-
tribution of the aggregated inter-contact times is given

with that of a power law distribution. Note that we only
perform the computation for pairs that show a sufficient
level of connectivity by having a mean inter-contact time
lower than_ one_week and that have more thar_1 20 C.Onf)y the Laplace transform of the distributignof the A
tacts. We identify 8,402 pairs to be exponentially dis-
tributed and 28 with a power law which makes respec_parameters. a g
tively, 62.3% and 02% of the 13,482 pairs tested. A Pareto law of the fornig %) ! with shape_parameter

It is clearly more reasonable, in this data set, to modef" ~ 0 and scale parametar> 0, is observed 'I anqonly

’ ’ H . . . A0-1500-aA

pairwise inter-contact time distributions as exponentialf the A follow a gamma distributiom(A ) = *—tF—
rather than power law. As we've examined only one data To verify this on the data set we proceed in the follow-
set, albeit an often-used one, we cannot draw many coring way: We estimate parametersnda from the cumu-
clusions about what will be revealed elsewhere. It is realative distribution of the\ parameters for pairs that were
sonable to expect that other mobility traces in campusshown to follow an exponential behavior (the ones that
environments will show similar characteristics. However,pass the Cramer hypothesis test). We fined 1137669
it is surprising that a memoryless process seems to banda = 2.26. Fig.[3(d) shows the estimated cumulative
at work in such a high proportion of node pairs in an gamma distributiorg(x) with the experimental lambda
environment in which one would expect some temporalcumulative distribution. Then, we plot in Fif._3(b) the
correlations. We hope this will be a spur to study thesecorresponding power-laW(x) with cumulative distribu-

distributions in other data sets. tion of aggregated inter-contact times. As one can see,
the two experimental curves roughly fit the theoretical
3.2 Power laws curves.

Chaintreau et al.[J2] observed that aggregated inter-
contact times follow power laws in a number of DTN 1
mobility traces (also including one based on the Dart- 01.
mouth data). Fidl]2 shows that, for our data set, the cumu- :
lative distribution of aggregated inter-contact timeals
follows a power law of the fornf (x) = ax?, with expo-
nenta = —0.16 and scale parametar= 3.45.
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Figure 3: Distributions with exponential pairs.

What this result shows is that when one considers an
exponential t-DTN, we can regain the power law behav-
ior for the aggregated inter-contacts when the distribu-
tion of the parameters is a gamma, which is the case in
the data we used.

1800 100000 1e+06
inter-contacts (s)

Figure 2: Distribution of inter-contacts.

_Let's now consider what happens for pure exponeny o\ ) £ copy ROUTING STRATEGIES

tial t-DTNs. Since all pairwise inter-contact time distri-

butions are exponentially distributed, under which con-Having defined a stochastic model that is realistic for the
ditions do the aggregated inter-contact time distribigion data set under study, we now examine different simple



single copy routing strategies. We derive analytical for-which the weight on each link, j) is defined as AA;;.
mulas that we will use to study the impact of heteroge-Dijkstra’s algorithm can be used.
neoushj; parameters on routing. The weakness of the strategy, as already mentioned by
In all routing strategies, we consider that nodes knowJain et al., is that it requires each node to wait for the
all pairwise mean inter-contact times for all nodes innext relay in the precomputed path. A node cannot take
the network, i.e., each node knows the matrix. This  advantage of an opportunistic contact with a node that
knowledge could be diffused through an epidemic typehas a lower cost path than does the predesignated next
of routing, or learned by each node from past contacts. hop node.
We consider that the contact time is negligible with . .
respect to the inter-contact time (a reasonalglleghypothesi%'3 Spray and Wait routing
for several data setSI[2]). For our purposes, then, contactEhe Spray and Wait strategy was first introduced by
are instantaneous, and any bundles are transferred durifgrossglauser and Ts€ [5], and is designed to take advan-

that instant of contact. tage of opportunistic contacts. It consists of two steps.
) First the source node uses the first nodes encountered as
4.1 Wait scheme relays to the destination. This is the “spraying” step. A

Under the Wait routing strategy (or ‘direct communica- relay node then uses the “wait” strategy to relay the bun-

tion’), the source nodswaits until it meetdd, the desti-  dle, i.e. it waits until it meets the destination to deliver

nation, to deliver the bundle in one hop. the bundle. Here, we study the case where only one relay
If the bundle is injected at timg, its delivery time  is used, which we designate 1-SW.

is equal toR,;, the remaining inter-contact time before ~ Let us first consider the spraying step. The bundle

the next contact between nodesndd. The memory- IS injected at sourcs at time instant. The first node

less nature of exponentials implies iy also follows T it encounters may be any of the— 1 other nodes

an exponential distribution with the same parameter. Thélr1,12,...,f'n—2 and the timeX it takes to meet this first

mean expected de|ivery is thus gi\/en by node is the infinum of the inter-contact times with all

other nodes:

EDY]=1/A 3 .
[Pa] = 1/ ) X = inf(Ry Ry, Ry ) ®)
This straightforward result gives an upper bound on . ] )
the delivery time that a routing strategy should meet,SiNce allRy, are independent exponentials with parame-

since the Wait strategy is the most rudimentary one hop€rSAs;, we have (se€.[1, p.328]):

single copy scheme. e The random index of the first node encountered is
42 MED independent of the first encounter titde

was first introduced by Jain et all [7]. This strategy, sim- ~ As=Ad+ Y1 (As)
ilar to source routing, defines which path the bundle will
follow from sto d, that is, the ordered list of intermediate
relay nodes it will have to go through. The list is chosen This means that we can represent the spraying step
to provide minimum expected end-to-end delay. as independently identifying the encountered node (with
If a path is given by the following ordered list of nodes probability ) and adding an exponential waiting time

rh=s<ri<ry<rz<..<rni<rn=d,andrelaying with parame?e/\s.

occurs at time instantg < t; < ... < ty, the total deliv- Two cases may arise: either the first node encountered

ery time along patfs,ry,rz,...,fn-1,d) is given by the  r equalsd, ands delivers the bundle, ar= d and node
remaining inter-contact time after each relaying instantyyaits to meet nodd to deliver the bundle.

e Pr(Firgt nodeencounteredisr) = ’/\;’;

that is: The delivery timeZy, when nodel is encountered first
is thus given by:
med _ n
Dsrirptn 1.d = Rtslfl + R$21r2 ot Rtrn,ld (4) E[Zg] = /\is %

Using the fact thaE[Rnrj] = 1/Aij, the expected de-

The delivery timeZ, along pattr, i.e., conditioned on
livery time along the path is thus given by: y ' gp

using node as a relay, is thus the sum of the first en-
counter timeX and the remaining delivery time between
E[Dmed .,rn,l,d] = 1/)‘571 + 1/)‘I'1|'2 + "'1//\rn—ld ) g Y

SfLr2,- nodes andd, and thus:
Finding the optimal path thus amounts to finding a 1 1
lowest-weight path between nodeandd in a graph in Elz]= s + Ad (8)



The total delivery timeZ is computed by conditioning 5.2 Heterogeneouscase
on all possible first encountered nodgs$,,ro,...,M_2,

L ; This section looks at routing protocols that take into ac-
events whose probabilities are given %/:

count heterogeneity in inter-contact time distributidns.
3 -2 ) this context, we present 1-S\Wa variation of 1-SW. In-
E[Z] = idE[Zd] + (ﬂE[Zri]) (9) stead of spraying its bundle to the first node that it en-
Ns i= s counters, the source nodsprays only to nodes in a sub-
setR. We call this a 1-SW scheme. Following the same
line of reasoning as in SEc#.3, and definindgy = 0,
one finds that the expected delivery time is given by:

(1+ EreR %)
zreR)\sr

After simplification, we can state the following result:
In a network composed af nodes, the 1-SW routing al-
gorithm delivers a bundle from soursdo destinatiord
with mean delivery time given by:

(1+ Zr7ésr7éd f\\ﬁ)
Yrzshs We define a 1-SWscheme to be a 1-SWscheme hav-
ing a subseR that minimizef[Déd’SWR]. We also study
5 COMPARING ROUTING PROTOCOLS 1-MED, which uses source routing, as doesbj but

In this section, we first show that all the routing strategiesVhich allows at most one relay on the path from source
are equivalent when inter-contact time distributions aref® destination.

homogeneous among node pairs. Then, we show through We performed simulations with the mobility traces
simulations using the Dartmouth data that routing perfor-used in Sedl3 to see how the algorithms studied analyti-
mance improves when the protocols take into account th&ally perform in the case of heterogeneous mobility. We

E[DL, 5 = (11)

E[Dg ™| = (10)

heterogeneity of inter-contact time distributions. simulate the following protocols: Wait, 1-SW, 1-SW
MED and 1-MeD. We slightly modified 1-SW, to bet-
5.1 Homogeneous case ter compare it with 1-SW a nodd is defined as a relay

In the homogeneous case, all nodes have the same me@fly if i > 0, i.e., if it has a chance of meeting the des-
inter-contact time ZA: the [A;j] matrix is thus given by tination.

Vi j,Aij=A. As computing the optimal s& for 1-SW has a com-
For a homogeneous exponential t-DTN of sikand  Plexity in O(2") with a branch and bound algorithin 8],
parameted , we have: we used several heuristics to find solutions in a reason-

) " able amount of time, at the expense of not always finding
1. for the Wait scheme (upper boun&D"] = 1/A the optimal set. The basic idea of the branch and bound

2. for the MED schemeE[D™] = 1/A method is to build a tree that explores all the possible
combinations of nodes that could fofRand to discard
3. for the 1-SW schem& D15V = 1/A complete parts of the tree based on a decision criterion.

The heuristics we added are the following: we do not ex-
plore the tree further than a depth of 5, and if we do not
find better solutions in a root branch of the tree for 10
sec. we skip to the next branch.

We choose at random 100 different source destination

. airs(s,d). Once we add the nodes involved in the sets
These results are not all new, but collectively they she .
. ) ) for all the pairs selected, we complete the whole set of
an interesting light on the homogeneous case. Gener-

. . . nodes with random nodes among the 835 present in the
ally speaking, they are rather negative for single COPY,1ta set to reach 400 in total

schemes. The three single copy routing strategies that we

studied give the same expected delivery time. delivery |A delay|M delay |th. delay | hopcount
We conjecture that in a homogeneous exponential t- ratio (%)| (days)| (days) | (days) | (hops)

DTN no feasible single copy scheme does better than Wait | 15.6126 [18.2247| 13.1479| 11.2411 | 1.000

1/A. For a given realisation of the joint random process | 1-SW | 93.4:22 | 20.9:21) 18.8:42| 9.5:09 | 1.9:00

of inter-contact times, the bundle follows a t-path be- 1-SW* | 93.6217 | 18.2+10| 156408 | 2.5202 | 1.9:01

tween source and destination. Each node that possessgd/ ED | 2-1:07 | 0.2:02 1 0.0200 | 0.9:00 | 1.9:04

. Lo -MED| 15.4:24 | 9.0+29 | 2.3415 | 4.2206 | 1.7z01

the bundle has to choose to which node to give it next.

A feasible routing scheme must base its decision only

on present or past information. However, an exponential Table 1. Simulation results with Dartmouth data.

process is memoryless, so past information is no help, Table[l presents the simulation results averaged over

and all nodes are seemingly equivalent as relays. 5 runs with the 90% confidence levels that are obtained

Result 1 follows from eqnld3, concerning the Wait
scheme. For MD, adding one relay to a path increases
its delay by YA, so MeD is identical to the Wait scheme
(result 2). Result 3, for 1-SW, follows from ednl]10 (see
also Grossglauser and T&é [5]).




using the Student distribution. It presents, for each of = What we show in this paper has also implications for
the protocols, the average delivery ratio, the average ddTN simulations. Chaintreau et al.’s findings call into
lay (“A delay”) and the median delay (“M delay”) com- question the use of some simple models, such as random-
puted over the delivered bundles, the average theoreticalaypoint. But it provides nothing with which to replace
delay over all the bundles generated, and the average hdpose models. It is one thing to know that a model should
count, also obtained on delivered bundles. produce a power law result. It is another to propose a
What we can first see is that Wait only delivers 15.6%simple model that produces that result. Our work sug-
of bundles because most of the source, destination paiigests a way forward. Perhaps mobility could be modeled
selected at random satisky = 0. For 1-SWand 1-SW  through a composition of sets of nodes, each moving ac-
we choose relayssuch thatiy > 0, however, ad val-  cording to the random-waypoint model, but with differ-
ues were computed over the entire data set, a hodgy  ent parameters for each set. This will produce an expo-
meet the destination for the last time before having menential distribution of inter-contact times for the nodes
the source for the first time. As a consequence, we stillvithin each set, while ensuring the heterogeneity of inter-
have respectively 6.6% and 6.4% of bundles that wereontact time distributions across sets. Whether such an
not delivered for 1-SW and 1-SWClearly, MED and 1-  approach can produce the desired distributions between
MED also suffer from this by achieving only 2.1% and nodes in different sets, and overall, remains to be tested.
15.4% delivery ratios. Even with knowledge of average
inter-contact times, deciding on the sequence of relays a'tQEFERENCES
the source is clearly a disadvantage. The high delivery [1] P. Bremaud.Markov Chains, Gibbs Fields, Monte
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