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ABSTRACT

Prior work on routing in delay tolerant networks (DTNs)
has commonly made the assumption that each pair of
nodes shares the same inter-contact time distribution
as every other pair. The main argument in this paper
is that researchers should also be looking at heteroge-
neous inter-contact time distributions. We demonstrate
the presence of such heterogeneity in the often-used
Dartmouth Wi-Fi data set. We show that the heavy-tailed
distribution across all nodes, observed in previous work,
can be explained as a composition of the distributions for
each pair of nodes, and that these individual distributions
are rarely heavy-tailed. We also show that DTN routing
can benefit from knowing these distributions. We first in-
troduce a new stochastic model focusing on the inter-
contact time distributions between all pairs of nodes,
which we validate on real mobility data. We then analyt-
ically derive the mean delivery time for a bundle of in-
formation traversing the network for simple single copy
routing schemes. The purpose is to examine the theoretic
impact of heterogeneous inter-contact time distributions.
Finally, we show that we can exploit this user diversity
to improve routing performance. Based on the analytic
model, we define an improved single copy “Spray and
Wait” scheme that we compare to other routing schemes
on the same real mobility data.

1 INTRODUCTION

In delay tolerant networks (DTNs) [4], nodes are mo-
bile and have wireless networking capabilities. They are
able to communicate with each other only when they
are within transmission range. The network is sparse
and suffers from frequent connectivity disruptions, mak-
ing the topology only intermittently and partially con-
nected. This means that there is a very low probability
that an end-to-end path exists between a given pair of
nodes at a given time. End-to-end paths can exist tem-
porarily, or may sometimes never exist, with only partial
paths emerging. This paper addresses the extreme case,
where only temporal paths exist. We call such networks
temporal DTNs, or t-DTNs. When a node in a t-DTN

receives a “bundle” of information from a neighboring
node, there is a non-negligible interval before it contacts
another node and has the opportunity to relay the bundle.

Prior work on routing in t-DTNs has commonly made
the assumption that each pair of nodes shares the same
inter-contact time distribution as every other pair. The
main argument in this paper is that researchers should
also be looking at cases in which inter-contact time dis-
tributions are heterogeneous.

We show, on the well known Dartmouth Wi-Fi data
set [6], that despite the existence of a heavy-tailed dis-
tribution when inter-contact times are considered in the
aggregate, a large portion of the node pairs present inter-
contact time distributions that can be well fitted by an
exponential distribution. We found these distributions to
be heterogeneous, with a wide variation in exponents.
Chaintreau et al. [2] posit that there might be heterogene-
ity, but we show it and characterize it. We also show how
exponential distributions can be composed to yield the
heavy-tailed distributions that Chaintreau et al. observed.
As we shall see, the heterogeneity that we highlight al-
lows us to usefully extend the work of Spyropoulos et
al. [11, 10], which analyzes numerous routing schemes
for t-DTNs, but that uses mobility models that yield ho-
mogeneous distributions.

We also provide the first formal analysis of the impact
of heterogeneous exponential inter-contact time distribu-
tions on simple single-copy routing schemes. We show
that routing strategies can benefit, in terms of delay, from
this heterogeneity, and in particular from knowing these
distributions. A node can choose among possible relay
nodes based upon their expectations for meeting other
relays or the destination.

2 INTER-CONTACT TIME MODEL

This section presents the model we use to analytically
derive the delay expectations for the routing protocols
we study.

2.1 Exponential t-DTNs

We consider a network composed ofn nodes. Let’s first
look at the inter-contact time between two individual
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nodes(i, j): t1
i j < t2

i j < t3
i j < ... are the successive instants

at which a contact betweeni and j occurs.

τk
i j = tk+1

i j − tk
i j (1)

is the inter-contact time between thekth and (k + 1)th

contact instants.
We assume that theτk

i j are samples from independent
and identically distributed random variables that follow
an exponential law with parameterλi j, which we note
τk

i j = τi j = exponential(λi j). The mean inter-contact time
betweeni and j is thus given byE[τi j] = 1/λi j.

In the overall network, alln nodes are supposed to be-
have independently, so that then(n−1)/2 pairwise inter-
contact timesτi j are independent exponential processes
with different parameters. Theτi j family of processes is
symmetric and∀i,τii = 0.

We can now proceed with the following definition: An
exponential t-DTN of sizen, n being the number of nodes
in the t-DTN, is entirely and uniquely characterized by
providingn(n−1)/2 strictly positive real parametersti j

for all pair of nodes(i, j) with i < j. Parameterti j is the
mean inter-contact time between nodei and nodej. By
symmetry,t ji = ti j for all nodes(i, j) with i < j. For all
nodesi tii = 0. If two nodesl andk never meet, we use
the conventiontkl = ∞. The inter-contact time processes
are defined for all pairs of distinct nodes(i, j), i 6= j, by
τi j = exponential(λi j), with λi j = 1/ti j.

2.2 Assumptions

The model abstracts away from all the spatial informa-
tion that is essential in the analysis of mobile ad-hoc net-
works. There is no reference to geographic, localisation
or any other such spatial information. There is also no
reference to air interface parameters, quality of or con-
tention on the links, etc. Node mobility is not explicit
modelled: only its aggregated impact on the inter-contact
time is taken into account.

The model focuses on the temporal dynamics of a
DTN. In this way it provides a common framework to
analyse very different DTNs. In particular it applies very
well to social networks for which the position of nodes
at a given time is not of primary importance. We believe
this abstraction helps focus on the inherent characteris-
tics of intermittent connectivity in DTNs.

The model makes a stationarity hypothesis with re-
spect to node inter-contact time distributions. In other
words, nodes behaviors are assumed to change on a
slower scale than bundle exchanges.

We also suppose that nodes have infinite capacity. We
do not study the impact of the load of the network, or of
the limited bandwidth of the links, nor do we model the
limitations due to buffer or queue overflows and corre-
sponding bundle dropping strategies that nodes may re-
quire. In this respect, the results with the proposed model

are upper bounds, but, as we will see, still provide valu-
able information and insight on how to route bundles
in DTNs. We leave refinements of the model for future
work.

3 FITTING THE MODEL

In the t-DTN model just elaborated, we assume that the
inter-contact time distribution for each pair of nodes is
exponential. The main reason is that it will allow us to
go beyond asymptotic results and provide explicit formu-
las for the bundle delivery time, and other parameters, of
different routing protocols. In this section we look at real
data to evaluate how reasonable this hypothesis might be.

3.1 Exponential inter-contacts

To validate the hypothesis, we use real mobility traces in-
ferred from the Wi-Fi access network of Dartmouth Col-
lege [6]. The Wi-Fi scenario is not a perfect fit for DTN
mobility. For instance, Wi-Fi nodes are typically turned
off, transported, and then turned on again, thus missing
potential contacts en route. However, the size, quality,
and public availability of the data set make it nonethe-
less one of the best resources for this kind of study.

As we describe in prior work [9], we must select from
the data, and make some assumptions, in order to consti-
tute a useful DTN mobility data set. We take the subset of
users who are present in the network every day between
January 26th 2004 and March 11th 2004, a period during
which we expect mobility patterns to be fairly stationery.
This data set contains 834 users, or nodes. Then we as-
sume that two nodes are in contact if they are present at
the same time at the same access point (AP). Finally, we
filter these data to remove the well known “ping pong”
effect. Wireless nodes, even non-mobile, can oscillate
at a high frequency between two APs. This leads to a
large number of inter-contact times that are close to zero
and thus biases the inter-contact time distribution by in-
troducing an artificially high slope close to the origin.
To counter this, we filter all the inter-contact times be-
low 1,800 seconds. This threshold was used by Yoon et
al. [12] for the same purpose. We use this data set for the
remainder of this paper.

Fig. 1 shows the distribution ofλi j for all 74,848
source-destination pairs for which this can be calculated.
We see that the distributions are heterogeneous, with
lambda varying over three orders of magnitude.

We test for whether the inter-contact process between
any two nodes can be modelled by an exponential pro-
cess with a parameterλ = 1/τ, whereτ is the mean inter-
contact time. We use the Cramer-Smirnov-Von-Mises [3]
hypothesis test. For each pair(i, j), we compare the cu-
mulative distributionIi j

N for theN inter-contacts observed
and the hypothesis function whose cumulative distribu-
tion is Fi j(x) = 1− exp(−λi jx). We also compareIi j

N
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Figure 1: Distribution ofλi j .

with that of a power law distribution. Note that we only
perform the computation for pairs that show a sufficient
level of connectivity by having a mean inter-contact time
lower than one week and that have more than 20 con-
tacts. We identify 8,402 pairs to be exponentially dis-
tributed and 28 with a power law which makes respec-
tively, 62.3% and 0.2% of the 13,482 pairs tested.

It is clearly more reasonable, in this data set, to model
pairwise inter-contact time distributions as exponential
rather than power law. As we’ve examined only one data
set, albeit an often-used one, we cannot draw many con-
clusions about what will be revealed elsewhere. It is rea-
sonable to expect that other mobility traces in campus
environments will show similar characteristics. However,
it is surprising that a memoryless process seems to be
at work in such a high proportion of node pairs in an
environment in which one would expect some temporal
correlations. We hope this will be a spur to study these
distributions in other data sets.

3.2 Power laws

Chaintreau et al. [2] observed that aggregated inter-
contact times follow power laws in a number of DTN
mobility traces (also including one based on the Dart-
mouth data). Fig. 2 shows that, for our data set, the cumu-
lative distribution of aggregated inter-contact times also
follows a power law of the formf (x) = axα , with expo-
nentα = −0.16 and scale parametera = 3.45.

 1
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Figure 2: Distribution of inter-contacts.

Let’s now consider what happens for pure exponen-
tial t-DTNs. Since all pairwise inter-contact time distri-
butions are exponentially distributed, under which con-
ditions do the aggregated inter-contact time distributions

follow a power law, or is the pairwise exponential as-
sumption too strong to yield a power law in the aggre-
gate?

Let Θ be the aggregated inter-contact time for all pairs
of nodes, and letp(λ ) be the probability distribution of
theλ parameters:

P(Θ > t) =

∫ ∞

λ=0
e−λ t p(λ )dλ (2)

What eqn. 2 says is that, for exponential t-DTNs, the
aggregated inter-contact time distribution is fully charac-
terized by the distributions of theλ parameters, and thus
of theti j matrix. More precisely, the tail cumulative dis-
tribution of the aggregated inter-contact times is given
by the Laplace transform of the distributionp of the λ
parameters.

A Pareto law of the form( a
t+a )α , with shape parameter

α > 0 and scale parametera > 0, is observed if and only

if the λ follow a gamma distributionp(λ ) = λ α−1aα e−aλ

Γ(α)
.

To verify this on the data set we proceed in the follow-
ing way: We estimate parametersα anda from the cumu-
lative distribution of theλ parameters for pairs that were
shown to follow an exponential behavior (the ones that
pass the Cramer hypothesis test). We finda = 113766.9
andα = 2.26. Fig. 3(a) shows the estimated cumulative
gamma distributiong(x) with the experimental lambda
cumulative distribution. Then, we plot in Fig. 3(b) the
corresponding power-lawh(x) with cumulative distribu-
tion of aggregated inter-contact times. As one can see,
the two experimental curves roughly fit the theoretical
curves.
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Figure 3: Distributions with exponential pairs.

What this result shows is that when one considers an
exponential t-DTN, we can regain the power law behav-
ior for the aggregated inter-contacts when the distribu-
tion of the parameters is a gamma, which is the case in
the data we used.

4 SINGLE COPY ROUTING STRATEGIES

Having defined a stochastic model that is realistic for the
data set under study, we now examine different simple
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single copy routing strategies. We derive analytical for-
mulas that we will use to study the impact of heteroge-
neousλi j parameters on routing.

In all routing strategies, we consider that nodes know
all pairwise mean inter-contact times for all nodes in
the network, i.e., each node knows theλi j matrix. This
knowledge could be diffused through an epidemic type
of routing, or learned by each node from past contacts.

We consider that the contact time is negligible with
respect to the inter-contact time (a reasonable hypothesis
for several data sets [2]). For our purposes, then, contacts
are instantaneous, and any bundles are transferred during
that instant of contact.

4.1 Wait scheme

Under the Wait routing strategy (or ‘direct communica-
tion’), the source nodes waits until it meetsd, the desti-
nation, to deliver the bundle in one hop.

If the bundle is injected at timet, its delivery time
is equal toRt

sd, the remaining inter-contact time before
the next contact between nodess andd. The memory-
less nature of exponentials implies thatRt

sd also follows
an exponential distribution with the same parameter. The
mean expected delivery is thus given by:

E[Dw
sd ] = 1/λsd (3)

This straightforward result gives an upper bound on
the delivery time that a routing strategy should meet,
since the Wait strategy is the most rudimentary one hop
single copy scheme.

4.2 MED

The Minimum Expected Delay (MED) routing strategy
was first introduced by Jain et al. [7]. This strategy, sim-
ilar to source routing, defines which path the bundle will
follow from s to d, that is, the ordered list of intermediate
relay nodes it will have to go through. The list is chosen
to provide minimum expected end-to-end delay.

If a path is given by the following ordered list of nodes
r0 = s < r1 < r2 < r3 < ... < rn−1 < rn = d, and relaying
occurs at time instantst1 < t2 < ... < tn, the total deliv-
ery time along path(s,r1,r2, ...,rn−1,d) is given by the
remaining inter-contact time after each relaying instant,
that is:

Dmed
s,r1,r2,...,rn−1,d = Rt1

sr1
+ Rt2

r1r2
+ ...+ Rtn

rn−1d (4)

Using the fact thatE[Rrir j ] = 1/λi j, the expected de-
livery time along the path is thus given by:

E[Dmed
s,r1,r2,...,rn−1,d

] = 1/λsr1 +1/λr1r2 + ...1/λrn−1d (5)

Finding the optimal path thus amounts to finding a
lowest-weight path between nodess andd in a graph in

which the weight on each link(i, j) is defined as 1/λi j.
Dijkstra’s algorithm can be used.

The weakness of the strategy, as already mentioned by
Jain et al., is that it requires each node to wait for the
next relay in the precomputed path. A node cannot take
advantage of an opportunistic contact with a node that
has a lower cost path than does the predesignated next
hop node.

4.3 Spray and Wait routing

The Spray and Wait strategy was first introduced by
Grossglauser and Tse [5], and is designed to take advan-
tage of opportunistic contacts. It consists of two steps.
First the source node uses the first nodes encountered as
relays to the destination. This is the “spraying” step. A
relay node then uses the “wait” strategy to relay the bun-
dle, i.e. it waits until it meets the destination to deliver
the bundle. Here, we study the case where only one relay
is used, which we designate 1-SW.

Let us first consider the spraying step. The bundle
is injected at sources at time instantt. The first node
r it encounters may be any of then − 1 other nodes
d,r1,r2, ...,rn−2 and the timeX it takes to meet this first
node is the infinum of the inter-contact times with all
other nodes:

X = in f (Rt
sd ,Rt

sr1
, ...,Rt

srn−2
) (6)

Since allRt
sri

are independent exponentials with parame-
tersλsri , we have (see [1, p.328]):

• The random indexr of the first node encountered is
independent of the first encounter timeX

• X is exponentially distributed, with parameter:
Λs = λd + ∑n−2

i=1 (λsri)

• Pr(First node encountered is r) = λsr
Λs

This means that we can represent the spraying step
as independently identifying the encountered node (with
probability λsr

Λs
) and adding an exponential waiting time

with parameterΛs.
Two cases may arise: either the first node encountered

r equalsd, ands delivers the bundle, orr 6= d and noder
waits to meet noded to deliver the bundle.

The delivery timeZd , when noded is encountered first
is thus given by:

E[Zd ] =
1

Λs
(7)

The delivery timeZr along pathr, i.e., conditioned on
using noder as a relay, is thus the sum of the first en-
counter timeX and the remaining delivery time between
nodesr andd, and thus:

E[Zr] =
1

Λs
+

1
λrd

(8)
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The total delivery timeZ is computed by conditioning
on all possible first encountered nodesd,r1,r2, ...,rn−2,
events whose probabilities are given byλsr

Λs
:

E[Z] =
λsd

Λs
E[Zd ]+

n−2

∑
i=1

(
λsri

Λs
E[Zri ]) (9)

After simplification, we can state the following result:
In a network composed ofn nodes, the 1-SW routing al-
gorithm delivers a bundle from sources to destinationd
with mean delivery time given by:

E[D1−sw
sd ] =

(1+ ∑r 6=s,r 6=d
λsr
λrd

)

∑r 6=s λsr
(10)

5 COMPARING ROUTING PROTOCOLS

In this section, we first show that all the routing strategies
are equivalent when inter-contact time distributions are
homogeneous among node pairs. Then, we show through
simulations using the Dartmouth data that routing perfor-
mance improves when the protocols take into account the
heterogeneity of inter-contact time distributions.

5.1 Homogeneous case

In the homogeneous case, all nodes have the same mean
inter-contact time 1/λ : the [λi j] matrix is thus given by
∀i 6= j,λi j = λ .

For a homogeneous exponential t-DTN of sizen and
parameterλ , we have:

1. for the Wait scheme (upper bound):E[Dw] = 1/λ

2. for the MED scheme:E[Dmed ] = 1/λ

3. for the 1-SW scheme:E[D1−sw] = 1/λ

Result 1 follows from eqn. 3, concerning the Wait
scheme. For MED, adding one relay to a path increases
its delay by 1/λ , so MED is identical to the Wait scheme
(result 2). Result 3, for 1-SW, follows from eqn. 10 (see
also Grossglauser and Tse [5]).

These results are not all new, but collectively they shed
an interesting light on the homogeneous case. Gener-
ally speaking, they are rather negative for single copy
schemes. The three single copy routing strategies that we
studied give the same expected delivery time.

We conjecture that in a homogeneous exponential t-
DTN no feasible single copy scheme does better than
1/λ . For a given realisation of the joint random process
of inter-contact times, the bundle follows a t-path be-
tween source and destination. Each node that possesses
the bundle has to choose to which node to give it next.
A feasible routing scheme must base its decision only
on present or past information. However, an exponential
process is memoryless, so past information is no help,
and all nodes are seemingly equivalent as relays.

5.2 Heterogeneous case

This section looks at routing protocols that take into ac-
count heterogeneity in inter-contact time distributions.In
this context, we present 1-SW∗, a variation of 1-SW. In-
stead of spraying its bundle to the first node that it en-
counters, the source nodes sprays only to nodes in a sub-
setR. We call this a 1-SWR scheme. Following the same
line of reasoning as in Sec. 4.3, and defining 1/λdd = 0,
one finds that the expected delivery time is given by:

E[D1−swR

sd ] =
(1+ ∑r∈R

λsr
λrd

)

∑r∈R λsr
(11)

We define a 1-SW∗ scheme to be a 1-SWR scheme hav-
ing a subsetR that minimizesE[D1−swR

sd ]. We also study
1-MED, which uses source routing, as does MED, but
which allows at most one relay on the path from source
to destination.

We performed simulations with the mobility traces
used in Sec. 3 to see how the algorithms studied analyti-
cally perform in the case of heterogeneous mobility. We
simulate the following protocols: Wait, 1-SW, 1-SW∗,
MED and 1-MED. We slightly modified 1-SW, to bet-
ter compare it with 1-SW∗: a nodei is defined as a relay
only if λid > 0, i.e., if it has a chance of meeting the des-
tination.

As computing the optimal setR for 1-SW∗ has a com-
plexity in O(2n) with a branch and bound algorithm [8],
we used several heuristics to find solutions in a reason-
able amount of time, at the expense of not always finding
the optimal set. The basic idea of the branch and bound
method is to build a tree that explores all the possible
combinations of nodes that could formR and to discard
complete parts of the tree based on a decision criterion.
The heuristics we added are the following: we do not ex-
plore the tree further than a depth of 5, and if we do not
find better solutions in a root branch of the tree for 10
sec. we skip to the next branch.

We choose at random 100 different source destination
pairs(s,d). Once we add the nodes involved in the sets
R for all the pairs selected, we complete the whole set of
nodes with random nodes among the 835 present in the
data set to reach 400 in total.

delivery A delay M delay th. delay hopcount
ratio (%) (days) (days) (days) (hops)

Wait 15.6±2.6 18.2±4.7 13.1±7.9 11.2±1.1 1.0±0.0

1-SW 93.4±2.2 20.9±2.1 18.8±4.2 9.5±0.9 1.9±0.0

1-SW∗ 93.6±1.7 18.2±1.0 15.6±0.8 2.5±0.2 1.9±0.1

MED 2.1±0.7 0.2±0.2 0.0±0.0 0.9±0.2 1.9±0.4

1-MED 15.4±2.4 9.0±2.9 2.3±1.5 4.2±0.6 1.7±0.1

Table 1: Simulation results with Dartmouth data.

Table 1 presents the simulation results averaged over
5 runs with the 90% confidence levels that are obtained

5



using the Studentt distribution. It presents, for each of
the protocols, the average delivery ratio, the average de-
lay (“A delay”) and the median delay (“M delay”) com-
puted over the delivered bundles, the average theoretical
delay over all the bundles generated, and the average hop
count, also obtained on delivered bundles.

What we can first see is that Wait only delivers 15.6%
of bundles because most of the source, destination pairs
selected at random satisfyλsd = 0. For 1-SW and 1-SW∗,
we choose relaysi such thatλid > 0, however, asλ val-
ues were computed over the entire data set, a nodei may
meet the destination for the last time before having met
the source for the first time. As a consequence, we still
have respectively 6.6% and 6.4% of bundles that were
not delivered for 1-SW and 1-SW∗. Clearly, MED and 1-
MED also suffer from this by achieving only 2.1% and
15.4% delivery ratios. Even with knowledge of average
inter-contact times, deciding on the sequence of relays at
the source is clearly a disadvantage. The high delivery
ratios of 1-SW and 1-SW∗ might be due to their oppor-
tunistic natures, which the other algorithms do not share.

Selecting relays among the setR of nodes that min-
imizes (or nearly minimizes) eqn. 11 results in 1-SW∗

having a median delay of 15.6 days, as compared to 18.8
days for 1-SW.

To summarize these simulations results, we see that
taking into account the heterogeneity of inter-contact
time distributions is of great interest for the design of
routing solutions for t-DTNs. Even relatively simple
strategies such as 1-SW∗ perform relatively well. We
thus expect that more elaborate schemes, in terms of
number of copies distributed or in terms of the number
of hops allowed, to achieve even better performance.

6 DISCUSSION AND CONCLUSION

We have seen in this work that, in a widely-used t-DTN
mobility data set, distributions of inter-contact times are
not heterogeneous. We saw through a formal analysis
that, in homogeneous t-DTNs, practical routing is possi-
ble. However, we have argued that if inter-contact times
follow an exponential distribution then routing cannot
make practical use of inter-contact time information. On
the other hand, in the heterogeneous case, a simple rout-
ing strategy, 1-SW∗, adapted from the Spray and Wait
scheme, is capable of using the diversity of inter-contact
time distributions to improve routing performance, mea-
sured in terms of average delay.

Clearly, our work, based as it is upon one data set, will
benefit from validation against others, such as the contact
traces obtained in the Intel iMote based experiments [2].
Also, work needs to be done to examine why a memory-
less model fits so many node pairs in an environment in
which one would expect to find more temporal correla-
tions.

What we show in this paper has also implications for
DTN simulations. Chaintreau et al.’s findings call into
question the use of some simple models, such as random-
waypoint. But it provides nothing with which to replace
those models. It is one thing to know that a model should
produce a power law result. It is another to propose a
simple model that produces that result. Our work sug-
gests a way forward. Perhaps mobility could be modeled
through a composition of sets of nodes, each moving ac-
cording to the random-waypoint model, but with differ-
ent parameters for each set. This will produce an expo-
nential distribution of inter-contact times for the nodes
within each set, while ensuring the heterogeneity of inter-
contact time distributions across sets. Whether such an
approach can produce the desired distributions between
nodes in different sets, and overall, remains to be tested.

REFERENCES

[1] P. Bremaud.Markov Chains, Gibbs Fields, Monte
Carlo simulation, and queues. Springer, 1999.

[2] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot,
R. Gass, and J. Scott. Impact of human mobility on
the design of opportunistic forwarding algorithms.
In Proc. INFOCOM, 2006.

[3] W. Eadie. Statistical Methods in Experimental
Physics. Elsevier Science Ltd, 1971.

[4] K. Fall. A delay-tolerant network architecture for
challenged internets. InProc. SIGCOMM, 2003.

[5] M. Grossglauser and D. Tse. Mobility increases the
capacity of ad-hoc wireless networks.Transactions
on Networking, 10(4):477–486, August 2002.

[6] T. Henderson, D. Kotz, and I. Abyzov. The chang-
ing usage of a mature campus-wide wireless net-
work. In Proc. MobiCom, 2004.

[7] S. Jain, K. Fall, and R. Patra. Routing in a delay
tolerant network. InProc. SIGCOMM, 2004.

[8] A. Land and A. Doig. An automatic method
of solving discrete programming problems.
Econometrika, 28(3):497–520, 1960.

[9] J. Leguay, T. Friedman, and V. Conan. Evaluating
mobility pattern space routing for DTNs. InProc.
INFOCOM, 2006.

[10] T. Spyropoulos, K. Psounis, and C. Raghavendra.
Multi-copy routing in intermittently connected mo-
bile networks. Technical report, USC, 2004.

[11] T. Spyropoulos, K. Psounis, and C. Raghaven-
dra. Single-copy routing in intermittently con-
nected mobile networks. InProc. IEEE SECON,
2004.

[12] J. Yoon, B. Noble, M. Liu, and M. Kim. Build-
ing realistic mobility models from coarse-grained
traces. InProc. MobiSys, 2006.

6


	Introduction
	Inter-contact time model
	Exponential t-DTNs
	Assumptions

	Fitting the model
	Exponential inter-contacts
	Power laws

	Single copy routing strategies
	Wait scheme
	MED
	Spray and Wait routing

	Comparing routing protocols
	Homogeneous case
	Heterogeneous case

	Discussion and conclusion

