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Abstract—Distributed SDN controllers have been proposed to
address performance and resilience issues. While approaches for
datacenters are built on strongly-consistent state sharing among
controllers, others for WAN and constrained networks rely on a
loosely-consistent distributed state. In this paper, we address the
problem of failover for distributed SDN controllers by proposing
two strategies for neighbor active controllers to take over the
control of orphan OpenFlow switches: (1) a greedy incorporation
and (2) a pre-partitioning among controllers. We built a prototype
with distributed Floodlight controllers to evaluate these strategies.
The results show that the failover duration with the greedy
approach is proportional to the quantity of orphan switches while
the pre-partitioning approach, introducing a very small additional
control traffic, enables to react quicker in less than 200ms.

I. INTRODUCTION

Software-Defined Networking (SDN) advocates for a log-
ically centralized control plane, which can be physically
composed of either a centralized controller or distributed
physical controllers. The distribution of the control plane is
often necessary for scalability in terms of size of the network
(switches that may be far away could have controllers closer
to them [6]) and traffic load (computation can then be done on
multiple machines through the network [5]). A decentralized
control plane also provides resilience, and avoid making a
controller a single point of failure [10], [14], [8], [15].

In the architecture we consider, each controller is respon-
sible for a part of the network’s control plane, taking care of
a domain that corresponds to a set of switches in the data
plane [11]. Fig. 1 shows an example where two domains
having switches with a direct link are said to be neighbors.
Neighbor domains exchange control data between them so
that the traffic between any pair of network elements can
be routed in the global network. This distributed architecture
avoids to have a fully meshed control plane, which can create
a high overhead and scalability issues. With this partition of
the control plane, continuity of service may not be maintained
when a controller fails, as part of the switches would loose con-
trol plane connectivity and become orphans of any controller.
To minimize disruptions in case of controller failure, quick
reactions are needed with failover mechanisms ensuring that
orphan switches can recover connectivity with other remaining
controllers. Taking the case where controller B fails in Fig. 1,
the domains of A and C would expand to take the control of
orphan switch from domain B. The main challenge here is to
minimize the transition phase and the impact on ongoing flows
in case of controller failure.

This paper presents two failover mechanisms for Open-
Flow [9] networks to migrate the control of orphan switches
to other controllers that are still active. The goal is to react
quickly to failures and to maintain network-wide connectivity.
The first mechanism consists of controllers progressively tak-
ing over orphan switches at the border of their domain that
were left over due to the failure of their controller (greedy
algorithm). In this case, the switches need to be slightly
modified for the discovery of the new controller, by making
the switches automatically send specific LLDP (Link Layer
Discover Protocol) messages as soon as they become orphan.
The second mechanism makes the controllers proactively in-
dicate to their neighbors which switches they should take over
in case they fail (pre-partition algorithm). Contrary to the
first one, his mechanism is fully conform with the OpenFlow
specification [9] but requires coordination between controllers.

We implemented the two mechanisms using the OpenFlow
Floodlight controller [1], an east-west interface for inter-
controller communications based on DISCO [10] and we
used MiniNet [2] to emulate an OpenFlow-based network.
Results show that the pre-partitioning algorithm allows a short
failover duration with a very small overhead, while the greedy
algorithm has a linear failover duration proportional to the
quantity of orphan switches but with no additional overhead.
This paper is structured as follows. Sec. II presents related
work on distributed SDN controllers and first approaches
on failover in SDN. Then, Sec. III details the mechanisms
we propose between controllers, while Sec. IV describes the
implementation and the measured performance. Finally, Sec. V
concludes this paper.

II. RELATED WORK

Over the past few years, some approaches have been pro-
posed to distribute the logically centralized SDN control plane.
HyperFlow [14], Onix [8], and Devolved controllers [13]
address this issue using a distributed file system, a distributed
hash table and a pre-computation of all possible combinations
respectively. These approaches, despite their ability to dis-
tribute the SDN control plane, impose a strong requirement: a
consistent network-wide view in all the controllers. They thus
generate large quantity of control traffic among controllers. On
the contrary, Kandoo [15] proposes a hierarchical distribution
of controllers based on two layers: (i) the bottom layer, a group
of controllers with no interconnection, and no knowledge of
the network-wide state, and (ii) the top layer, a logically
centralized controller that maintains the network-wide state.
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Fig. 1. Distributed SDN Controller Architecture.

The idea that in a distributed SDN architecture there can be
advantages in having a non logically centralized control plane
has been put forward by DISCO [10]. It provides a distributed
control plane where each controller is in charge of a sub-set
of the switches (called a controller domain) and communicates
with other controllers using on a lightweight and extensible
message-oriented communication bus (AMQP).

Some work on failover on OpenFlow switches have been
presented, [4] explores how to react quickly and effectively to
switch and link failures in the data plane. [3] tries to solve
control plane failures, but contrary to our work focuses on
control plane link failures with a single controller. These two
works are thus complementary of our approach.

A switch migration protocol is presented in ElastiCon [5].
As in our work, ElastiCon shows a mechanism to dynamically
change the domain partition. The goal addressed is to handle
load variation through the network. Both the old and the
new controller take part in the handover protocol, making
it unsuitable as a failover mechanism where only the new
controller is active. It allows ElastiCon mechanism to ensure
that all messages are treated correctly. In our case, only the
active controllers can manage the failover since our mechanism
is triggered by the failure of a controller. In addition, Elasticon
assumes that all the controllers share a common database,
making data exchange between controllers outside of their
scope.

III. FAILOVER MECHANISMS

In this section we present the failover mechanisms that we
propose to recover from controller failures in distributed SDN
architectures. This section first presents the types of failures
that we consider and the already existing mechanisms that
OpenFlow provides to support failover mechanisms.

A. Types and management of controller failures in OpenFlow

Failure types and detection. The SDN design decouples
data and control planes, and runs the control functions on
hardware that might be in different physical locations from
the data plane elements (Fig. 1). Controller failures can thus
be of several kinds:

Domain C

e Software/hardware failures can be caused by bugs,
attacks or maintenance errors.

e  Network failures leading to a loss of the connectivity
between a controller and a switch.

Note that they can also result in a failure of the data plane,
especially if OpenFlow rules are installed reactively on the
switches.

Controllers can discover the failure of their neighbors in a
number of ways:

o Heartbeat messages: Each controller regularly sends
heartbeat messages to neighbor controllers. If N con-
secutive messages are missed, it can consider that the
neighbor controller has failed.

o  Failure message: Controllers could fail in a graceful
way by sending a Failure message to their neighbors
before totally shutting down. This can happen for ex-
ample when a controller is being shut down manually
for maintenance reason.

The troubleshooting and detection of more complex errors
is part of ongoing research [12]. Two kinds of failover mech-
anisms can be considered following the detection. Controller-
driven strategies where a controller triggers a failover mech-
anism after the detection of a failure. The response time
in this case could be impacted by the delay and jitter
of inter-controller communications. Switch-driven strategies
where switches identify the failure and start looking for a new
controller.

Controller roles in OpenFlow. In the OpenFlow Protocol
(OF), a switch may be connected to a number of controllers.
This is usually static but it can be changed through the
OpenFlow Management and Configuration Protocol 1.2 (OF-
Config). Each controller can have one of the 3 following
roles for a switch: master, equal or slave [9]. Master and
Equal controllers can both receive asynchronous messages
(e.g., Packet-In) and modify switches states. Each switch can
have a maximum of one master switch, but as many equal or
slave controllers. By default slave controllers do not receive
asynchronous messages and can only read switches states.
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Fig. 2. Topology and domain partition before and after the failover.

In our distributed SDN architecture, the domain of a
controller corresponds to all the switches for which he is
connected as Master. To add an orphan switch in its domain,
a controller needs to be able to reach the switch and send a
Role-Request message to grant the Master role.

Using the controller role mechanism, the most ’simple’
way of handling a controller failure, is to have a backup
controller connected for each domain. However, having a full
backup for each controller can lead to expensive configuration
costs. Advanced mechanisms can reduce expenses and are also
required when no more controllers are able to take care of a
domain. As shown in Fig. 2, when a controller fails, neighbor
domains could expand to cover all the orphan switches. The
way domains expand depends on the failover strategy used.
We introduce two of these strategies in the rest of the paper:
Greedy failover (GF) and Pre-partitioning failover (PPF)

Domain consistency. False positives can occur and create
consistency issues in failover mechanisms, especially when
a failure is detected but the controller is still active. In
the OpenFlow protocol a switch can only have one master
controller. When a switch receives a Role-Request message
from a second controller to promote him as master, the primary
switch sends a role status event to the former controller to
inform it that its role changed from master to slave. In case of
a false positive, the (still active) former controller can either
remove the switch from its domain or try to coordinate with
the second controller. The mechanism needed to handle such
a scenario is a switch migration protocol between two active
controllers, which is outside the scope of this paper.

B. Greedy failover (GF)

This first mechanism requires no additional communication
between controllers. It can also be described as a switch
discovery mechanism. This is a greedy mechanism where
controllers try to connect to all the orphan switches they detect
at the border of their domain. It consists in three phases.

Phase 1: Detect controller’s failure. The communication
between a switch and a controller is maintained active through
Echo-request and Echo-reply messages. When a controller

fails to respond to a number of Echo-request messages,
the failure is detected by the switch. No specified discovery
procedure in the OpenFlow protocol applies to switches when
the connectivity with the controller is lost. We thus introduce
a simple discovery mechanism to execute in the switch when
such an event occurs: the switch starts sending LLDP (Link
Layer Discovery Protocol [7]) messages at regular time inter-
val. It adds in the payload of messages a flag signaling that
it does not have any Master or Equal controller and indicates
the address of its control port.

Phase 2: Discover a new controller. All switches have
rules installed in their tables to send the LLDP messages
they receive to the controller encapsulated inside a Packet-
In message. When a controller receives from one of its
switches such an LLDP message, it tries to connect to the
control interface of the orphan switch, starts an OpenFlow
communication and sends a Role-Request to add it to its
controlled domain. This is only possible when the switch
still has connectivity to the control network or if it can be
controlled by in-band signals. Flow tables that were already
in place can stay installed on the switch while the controller
discovers the topology to minimize data plane disruption. If
two controllers try to take control of a switch at the same
time, only one of them will remain master at the end of the
OpenFlow role change protocol, since the switch can only
have one master controller at all times. The controller that
was notified that his role was changed to slave should remove
the switch from its domain.

Phase 3: Update domain. The new controller adds to its
database the information about switches whenever they are
successfully added.

The first two phases are repeated until all controllers can
no longer add orphan switches to their domain. Fig. 3 shows
how this mechanism is implemented for a very simple topology
with 3 switches connected in line. Controller A has the first
switch in its domain, controller B has the two other switches
in its domain before it fails. This mechanism has no overhead
when there is no failures, but adds a modification to the
behavior of the switch in case of failure.

C. Pre-partitioning failover (PPF)

Contrary to the first failover mechanism we propose, this
second mechanism is fully compliant with OpenFlow. In this
strategy, each controller sends to their neighbor controllers
a list of the switches (that is the totality or a subset of the
switches it controls) to be taken over in case of failure.

The messages sent proactively to neighbor controllers may
include other local state information. Each controller owns
information that are specific to the part of the topology
that it controls. This local information is not necessary to
neighbor domains in nominal mode. These local information
depend on the functionality and how logically decentralized the
architecture is [11], possible examples are the hosts attachment
points (switch and port), link capacity or SLA’s. However, in
case of controller failure, a proactive transmission of these
information to neighbor domains may speed up the failover
process as these information can be difficult or long to retrieve.
For the sake of simplicity here, we will not consider the
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proactive transmission of such additional local information.
The pre-partitioning failover consists in the three following
phases.

Phase 1: Exchange proactively information. The strategy
here is to pre-compute the result of the Greedy algorithm and to
send it to the neighbors. To do this we use Algorithm 1 where
S is the set of all the switches in the controller domain and D
is the set of all neighbor domains. If d is a neighbor domain,
the algorithm output is F'(d), the set of switches that d needs
to take over in case of failure. The algorithm works by adding
the unassigned switches from S to F(d) if they are directly
connected to one the switches in F(d). A peering link is the
link connecting two switches of different domains. The switch
connected by a peering link to domain d is the first switch
added to F'(d) because it is the only one directly connected to
it at the beginning of the algorithm. The algorithm tries to add
one switch to each domain until all the switches are assigned
a domain.

Algorithm 1 PPF algorithm

while S = () do
for d € D do
if 3s € S/ there is a direct link between s and F'(d)
or a peering link between s and d then
Add s to F(d)
Remove s from S
end if
end for
if Vd € Dfs € S/ there is a direct link between s and
F(d) or a peering link between s and d then
Add first s € S to first F(d)
Remove s from S (this is to take care of the case where
the topology is disjoint
end if
end while

Further work could include other requirements for the new
topology (missing one failed switch) so that the controller
placement stays efficient, for example taking into account

switch-controller delay in our algorithm as in [6].

Since the algorithm is deterministic, its output can only
change in case of topological changes. As a consequence the
frequency of the message exchange depends on the variability
of the domain topology. As the messages may include other
local information, the frequency also depends on the variability
of this information. The size of the messages can be very short
if they only include the switches to take over: the address of
their control interface, or a unique identifier (the Datapath ID,
DPID) if the controller is already connected to the switch in
the slave role.

Phase 2: Detect neighbor controller’s failure. When a
controller detects a failure, it checks in its internal database
if there are switches that it should take over and tries to
establish connections with all of them simultaneously using
the OpenFlow protocol. The procedure is over when all the
switches replied to the Role-Request messages and when the
controller is in master role with them.

Phase 3: Update domain. The new controller adds to its
database the information about switches whenever they are
successfully added.

As shown in Fig 1, each controller can host different
controller modules that are used to exchange information using
an inter-controller protocol (DISCO in our case). This Pre-
partitioning failover mechanism has been implemented as a
module. Both mechanisms do not require domains to know
the global network topology: the first mechanism only needs
controllers to accept orphan switches when it detects them at
its border, the second mechanism uses information proactively
exchanged with neighbor controllers. Security has to be taken
into account in the implementation of both mechanisms to
make sure that switches do not connect to attacking controllers.
While OpenFlow supports TLS [9] to secure the switch to
controller communication, the links between controllers also
have to implement security measures.

IV. EVALUATION
A. Implementation and experimental setup

We used a linear topology of N switches (57 to Sy) and 3
controllers at the beginning (A, B and C) as shown in Fig. 4.
For practical reasons, A is the master controller of switch 1,
and slave controller of all the remaining switches. C is the
master controller of switch N and slave controller of all the
remaining switches. In a more realistic setting, the controller
should initiate a connection to the switch from scratch instead
of only changing role.

This data plane topology is emulated using MiniNet [2].
Each emulated switch is an Open vSwitch, a software based
OpenFlow switch. Each link connecting the switches has a
simulated delay of 2ms using nefem as a network emulator.
We use Ping to measure the connectivity between end-hosts
(hy to hy are connected to domain A, hs41 to haic are
connected to domain C). The distributed controller we used
for our implementation is DISCO [10] to have a good control
over inter-controller communications and a low east-west
overhead. However, the same mechanisms can be applied to
other distributed controller architectures.



Transitional state. Under nominal state, if a controller A
receives a Packet-In message with an unreachable destination,
it installs a rule on the switch to drop the flow by sending a
Flow-mod message to avoid being flooded by similar Packet-
In messages from the same flow. Using this rule, if controller
A detects a failure of a neighbor controller B, every new flow
received by A that needs to pass by domain B to get to its
destination will be dropped. However, in our case we know
that the destination domain B might become reachable again as
soon as the failover mechanism is complete. We thus ignore the
Packet-In messages in this transition time instead of sending
blocking Flow-mod messages. In our evaluation we tested both
strategies to see if not blocking flows reduces the interruption
time.

B. Evaluation results

This section presents several experiments to evaluate the
performance of our two failover mechanisms. We consider in
the first two experiments the use of a failure message to detect
failures, which is the best case scenario where the detection is
almost instantaneous.

End-to-end connectivity. In this experiment, controller B
has 8 switches in its domain before failing at t=0.5s. To
test the connectivity between hosts connected to A and hosts
connected to C, we send Ping requests every 100ms between
10 pairs of hosts chosen at random each time. This corresponds
to a new flow every 100ms with each flow lasting 100ms
(10 ICMP packets sent every 10ms). The controllers should
install rules reactively for each new traffic flow between the
pairs of communicating hosts. At least every 100ms, new
Packet-in messages will reach the controllers which should
react by sending Flow-mod messages. In Fig. 5, we plot the
minimum RTT (Round Trip Time) of the 10 ICMP flows and
the percentage of lost ICMP packets. In nominal mode, the
RTT stays around ~ 44ms because packets go through eleven
links with a 4ms RTT each. When a switch does not have
already a rule matching packets, it sends a Packet-In message
to the controller and buffers packets while waiting for the
response. At t=0.5s, controller B fails, A detects it immediately
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Fig. 4.  Topology and domain partition before and after failover when
controller B fails.
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and receives a packet-in with an unreachable destination. In
this transition phase, we observe an interruption time of 70ms
with a 70% packet error rate, as for the first 7 Packet-In
messages sent to controller, the response from controller A
was to drop the packet and do nothing else. When the 8Th
Packet-In is received by controller A, A and B have regained
connectivity, their response is the installation of a forwarding
rule with a Flow-mod message. While waiting, the ICMP
packets are buffered on the first switch which explains the
increase of the minimum RTT up to 124ms.

Strategy comparison. We compared both strategies on the
same topology (8 orphan switches) by measuring the total in-
terruption time for the Greedy and Pre-partitioned mechanisms.
We also evaluated the difference with and without blocking
Flow-mod messages. We can see the results in Fig. 6. The
greedy algorithm efficiency depends on the frequency at which
LLDP messages are sent by orphan switches after a failure is
detected. In this simulation a LLDP message is sent every
100ms. We can see that the pre-partitioning algorithm has
an interruption time that stays consistently under 100ms if
no blocking Flow-mod messages are sent while the greedy
algorithm has a much longer interruption time.

Increasing the number of orphan switches. To see the
impact of the number of orphan switches on the efficiency of
the mechanism, we measured the interruption time with orphan
switches from 4 to 16 . We see that the mean interruption time
for the greedy algorithm is linear to the minimum number
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of hops a controller needs to take to reach the other active
controller which is to be expected in such a mechanism
where the switches are added one after the other. Conversely,
the pre-partitioning algorithm establishes connections with the
recovered switches simultaneously and the interruption time
stays lower.

Failure detection with heartbeat messages. The efficiency
of the general failover depends for one part on the algorithm
used and for the other part on the efficiency of the detection
method. One failure detection method we implemented is the
sending of heartbeat messages every o ms. If a controller
misses 3 consecutive heartbeat messages, the failover pro-
cedure is started. To show the impact of the parameter a,
we measured the interruption time with the Pre-partitioning
mechanism and no blocking Flow-mod, the mechanism that
proved to be the fastest in our experiments.

We can see that the interruption time is proportional to the
time between two consecutive heartbeats. Choosing the right
frequency is crucial and needs to be adapted to the capacity
of the links between controllers. To get the total interruption
time for any mechanism, we need to add the detection time to
the failover mechanism time.

These results show that with a very small overhead or a
slight modification of the switches, failover between distributed
SDN controllers can be managed efficiently.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we proposed two failover mechanisms to
migrate switch control to the remaining active controllers
when a controller fails: the Greedy failover and the Pre-
partitioning failover. The interruption time for the greedy
mechanism is significantly longer than the pre-partitioning
algorithm, especially when the number of orphan switches
is high. To reduce this time we can increase the frequency
of LLDP messages, but the interruption time will remain
roughly proportional to the quantity of orphan switches. Both
mechanisms are not exclusive: controllers can use the pre-
partitioning algorithm and still add switches to their domain
when they detect one at their border that is signaling that it
does not have any master or equal controller.

To reduce the number of lost packets during the failover,
we could also buffer the packets until connectivity between
end-hosts is recovered. Instead of being lost, those packets
would reach the right destination, although with a high delay.
The issue with this solution is that it could potentially lead to
buffer overflow under high load conditions. Creating algorithm
that are more adapted to the specificity of the network is also
a subject of future work, especially taking into account delay,
load and other parameters to obtain a better controller place-
ment after the failover. In addition, algorithms to automatically
tune the parameters of our mechanism to get the best possible
performances for each network are needed.
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