Evaluating Mobility Pattern Space Routing for DTNs

Jérémie Leguay Thales Communications/U. P&M Curie

co-authors: Timur Friedman (U. P&M Curie), Vania Conan (Thales Communications)

Barcelona, 27 April 2006

Main Contribution

- Euclidean virtual space for DTN (Delay Tolerant Networks) routing
 - Space built on mobility patterns
- Evaluation using "real" mobility traces

Outline

- Problem statement
- Routing proposition
- Dartmouth data
- Simulation results

Problem statement ©

Problem of routing

- Routing is a challenge in DTNs (Delay Tolerant Networks) [Lindgren, Burgess, Wang, Widmer, ...]. Regular ad hoc routing protocols fail because topology suffers from connectivity disruptions:
 - Partitions
 - Long-delay links
- Example:

B wants to send a bundle to E, but B and E are not at the same location.

B has 3 possibilities:

- · keep the bundle.
- give it to A.
- give it to D.

Routing proposition (

Our contribution: MobySpace [WDTN]

- Routing decisions are taken using nodes' mobility patterns.
- Give bundles to nodes that we believe are **more likely** to deliver them.
- Use of a virtual Euclidean space to make routing decisions.

MobySpace usage

- A node's mobility pattern defines its position in the virtual Euclidean space.
- To route a bundle, a node passes the bundle to the neighbor whose position is closest to the destination's.

B decides to transfer the bundle to A, the closest to E in the MobySpace.

MobySpace concept

- The number of dimensions
- The meaning of the dimensions (a probability, a frequency, etc...)
- A distance function

Examples of MobySpace:

■ Frequency of visit based: Each dimension in the MobySpace represents a physical location. Each coordinate corresponds to the probability of finding the node at that location.

■ Contact based: Each dimension in the MobySpace represents the frequency of contacts between two given nodes.

Dissemination of mobility patterns

- The mobility pattern of the destination needs to be known.
- Mobility patterns may be difficult to share between nodes.

Nature of mobility patterns

- Mobility pattern of nodes may change too rapidly.
- The mobility pattern might not capture some essential information.
 - E.g. time of day

Single copy scheme

May suffer in a lossy environment.

MobySpace evaluated

The frequency of visit based MobySpace

■ Each dimension in the MobySpace represents a physical location. Each coordinate corresponds to the probability of finding the node at that location. (≠ geographical routing)

Motivation

 Nodes' frequencies of visits to locations have been observed to follow a power-law distribution in a certain number of cases. [Dartmouth, UCSD].

Dartmouth data

Dartmouth Wi-Fi access network [Kotz]

- One of the largest data collection efforts
- Between 2001 to 2004
 - 13,000 MAC addresses
 - 550 APs (academic buildings, library, sport infrastructures, administrative buildings, student residences, etc...)

Mobility data used

- Users' sessions (pre-processed by Song et al.)
- January 26th 2004 and March 11th 2004 (Spring semester prior to spring break)
- Hypotheses to obtain DTN-like data
 - APs considered to be locations
 - Connection to a same AP = contact

Simulation parameters

General settings:

- 45 days of Dartmouth traces replayed
- 300 mobile nodes sampled from 5545 (computational reasons)
- 536 locations (No sampling)

■ Traffic generation:

- 100 random mobile nodes are *active* (*i.e.*, generate traffic)
- Each active node sends 5 bundles to different destinations
- Active nodes are present the first week
- Nodes have knowledge of their mobility patterns

■ 5 global runs

■ Student *t* distribution to compute 90% confidence intervals

Routing comparisons

Epidemic routing

Bundles are flooded in the network. It is the optimum in terms of delays and delivery but leads to high buffer and radio utilization.

Opportunistic routing

A source waits to meet the destination in order to transfer its bundle. It involves only one transmission per bundle.

Random routing

Like MobySpace but random node preferences as opposed to preferences defined by mobility patterns.

Hot potato routing

At any time, a node may transfer the bundle to a neighbor chosen at random. Loops are avoided.

■ Summary:

	Delivery ratio (%)	Delay (days)	Route length (hops)
Epidemic	82.0	12.5	7.1
Opportunistic	4.9	15.9	1.0
Random	7.2	16.6	3.12
Potato	10.7	19.1	72.7
MobySpace	14.9	18.9	3.8

Lessons:

- MobySpace outperforms the other single copy protocols in delivery ratio
- Potato engenders many more transmissions
- MobySpace is next to Epidemic in delivery ratio, while only using selected contact opportunities

Simulation results

■ With "most active" users:

- Users that are present all 45 days (835 users)
- Summary:

	Delivery ratio (%)	Delay (days)	Route length (hops)
Epidemic	96.7	3.1	7.9
Opportunistic	10.7	17.6	1.0
Random	14.0	17.9	3.5
Potato	38.9	19.1	317.0
MobySpace	50.4	19.5	5.1

Lessons:

- Results are globally improved
- MobySpace far outperforms other single copy protocols

Conclusion and future work (

Conclusion

- Proposition of MobySpace, a routing scheme for DTN that uses a virtual space constructed upon nodes' mobility patterns.
- Evaluation with real mobility traces
- MobySpace outperforms the other single copy schemes we evaluated in delivery ratio while keeping a low number of transmissions

Ongoing and future work

- Introduction of controlled flooding mechanisms
 - we expect a gain in delay and delivery ratio
- Definition of other kinds of MobySpace
- Study using other data sets

