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Abstract—Permanent routing loops can easily arise due to
misconfigurations of routing policies in IGP networks (e.g., OSPF,
IS-IS), as defining loop-free policies in large-scale, multi-instance,
and multi-protocol environments can be challenging for network
administrators. In this paper, we present a scalable verification
solution for analyzing routing configurations and policies. First,
we provide examples of common routing loop scenarios and
analyze their most prevalent root causes. Next, we introduce
efficient algorithms to detect loops caused by routing preferences
and route imports. These algorithms automatically generate
explanations as output, enabling end users to address and
resolve the issues. Finally, we present a performance evaluation
conducted on a large IP RAN (Radio Access Network) and
provide details about our implementation.

Index Terms—Routing policies, routing loops, IGP, OSPF, IS-
IS, Shortest-path, Dijkstra, LSA, LSP, RIB.
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I. INTRODUCTION

Autonomous Systems (AS) deployed by service operators
or large enterprise networks are generally structured into areas
and domains where various instances of routing protocols,
such as OSPF (Open Shortest-path First) or IS-IS (Intermedi-
ate System to Intermediate System), operate. Border routers,
which interconnect protocol instances, rely on routing policies
to manage the advertisement and processing of routing infor-
mation. Network operators meticulously configure these poli-
cies to ensure end-to-end connectivity while addressing critical
considerations such as availability, performance, and security.
As outlined in RFC 9067 [16], a routing policy defines how
routes are imported, exported, and modified between protocol
instances. However, configuring these policies is both complex
and error-prone. Misconfigurations can result in severe issues,
such as persistent routing loops. For example, if no traffic has
yet been transmitted from a specific area of the network to a
particular destination prefix, a loop may exist undetected, as it
does not trigger Time-To-Live (TTL) expiration alarms for IP
packets. Furthermore, even when TTL expiration alarms are
received by the network management system, identifying the
location of the loop and diagnosing its root cause remain a
significant challenge for network operators.

To prevent misconfiguration errors, various solutions have
been developed for control plane verification. Batfish [10]
simulates the behavior of individual protocols to infer data
plane information, allowing for comprehensive control plane
analysis. Minesweeper [8] uses a formal method based on

descriptive logic to examine the control plane configurations.
Although these methods can verify numerous intended proper-
ties, such as node reachability, isolation, way-pointing, black
holes, routing loops, bounded path length, and load balancing,
they do not scale well in practical scenarios. To enhance
scalability, more targeted solutions have been developed. For
example, ARC [11] and Tiramisu [7] abstract the control
plane with graph transformations to verify a limited set of
routing properties, including security policies, reachability
after failures, disjointness, and way-pointing. Despite these
improvements, scalability remains a challenge, and there is no
efficient method to identify the root cause of routing loops in
complex multi-protocol and multi-instance scenarios, making
it difficult to mitigate permanent loops quickly.

To verify routing configurations and policies at large scale,
we introduce an efficient graph-based algorithmic solution
specifically designed to detect permanent loops in multi-
instance and multi-protocol networks. Implemented as a rout-
ing analysis module within a route reflector, this solution
receives real-time updates on IP topology, routing changes,
and policies. It can identify loops in networks with up to
10,000 nodes and 1 million prefixes within 5 minutes, while
automatically generating explanations and actionable insights
to address misconfigurations.

In the rest of this paper, we first present a set of use
cases to illustrate how the misconfiguration of routing policies
can result in permanent routing loops. Next, we provide
a systematic overview of the most common root causes,
deriving valuable insights that can help network operators
quickly resolve misconfigurations. We then introduce our
algorithmic solution for verifying routing policies at scale
and automatically generating actionable insights to address
misconfiguration issues. The algorithm framework leverages
graph transformations and shortest-path computations. Finally,
we present a performance evaluation conducted on a large IP
RAN (Radio Access Network) instance and detail the practical
tool we developed, including its implementation, graphical
interface, and the insights it generates.

The paper is structured as follows. Sec. II reviews the
state of the art, and Sec. III outlines key use cases for
misconfigurations. Sec. IV examines common root causes and
insights, while Sec. V introduces an algorithmic framework for
detecting routing loops and generating explanations. Sec. VI
presents our developed tool and numerical results. Finally,
Sec. VII concludes the paper.978-3-948377-03-8/19/$31.00 ©2025 ITC



II. RELATED WORK

As mentioned earlier, a number of control plane verification
solutions have been proposed to verify properties such as
reachability, isolation, waypoints, blackholes, disjointness, etc.
They are basically 3 classes of solutions: simulation-based
methods [10], formal methods [8], [15], [18], based on an
SMT solver or model-checking, and graph-based methods [7],
[11]. They aim to support a wide range of properties but fail to
scale effectively in large-scale settings. Moreover, while most
can detect loops, they are unable to explain them or provide
actionable insights to mitigate them.

Batfish [10] is the closest related work to our contribution.
It uses Datalog, a declarative logic programming language, to
model the control plane, derive the data plane, and execute
verification queries. When a counterexample is identified for
an unverified property, Batfish generates a set of Datalog facts
based on the counterexample packet. These facts highlight
all forwarding rules the packet encountered along its path(s).
Additionally, the facts include details such as the specific route
used at each node, how the node learned the route (e.g., via
OSPF), and how the route was derived from the configura-
tion. However, the commercial company Intentionet, which
develops Batfish, decided [9] to remove all uses of Datalog.
This decision stemmed from challenges in expressing complex
control plane behaviors and a lack of control over execution
order, which is critical for achieving high performance and
deterministic convergence.

Other methods have been proposed to avoid loops. In the
context of SDN, an OpenFlow-based solution [19] was intro-
duced to identify switches located within loops by statistically
analyzing the TTL of packets, leveraging spectral analysis
via Fourier transform. However, this approach is reactive and
prone to false positives.

To address local transient forwarding loops, or micro-
loops, in the event of link failures [13], extensions to IGP
protocols have been proposed. Complementing these efforts,
our work focuses on addressing permanent loops caused by
misconfigured routing policies. Additional protocol extensions
have also been proposed.

Furthermore, extensions involving tags or filtering methods
for OSPF and IS-IS have been developed to improve the iden-
tification of Link State Advertisement (LSA) messages [3],
[5] and mitigate conflicting propagation. While these methods
can systematically eliminate loops, they are optional, lack
standardization, and are often not implemented in devices.

In this context, our paper presents a dedicated, scalable
solution for proactively analyzing routing policies in complex
multi-protocol and multi-instance networks, enabling the sys-
tematic identification and mitigation of permanent loops.

III. EXAMPLES OF MISCONFIGURATIONS

In this section, we present two use cases of popular root
causes of permanent routing loops in multi-protocol multi-
instance IGP networks. Before this, we review some of the

basic protocol mechanisms involved. For more detailed infor-
mation we refer the reader to the following RFCs [6], [14],
[16] and product documentation [1], [2].

A. Related mechanisms in IGP protocols

At any border router, routes can be injected from the outside
and exchanged between IGP instances. After a route has been
learned by an instance, it is propagated using LSA messages in
OSPF [14] and Link State Packet (LSP) messages in IS-IS [6].

External routes can be injected using a routing policy
or a BGP peer. Border routers can also exchange routing
information between IGP instances thanks to two mechanisms:

• Route import policies configured to advertise routes
from one instance to another. Various options exist to
control what prefixes to import and how route costs, or
metrics, should be propagated or processed. In OSPF, an
LSA Type 5, also called External LSA, is generated, after
an import. Two metric types can be configured for this
LSA: metric Type 1, where the IGP costs of the next
links in the path are considered; and metric Type 2, where
the IGP costs of the next links in the path are ignored.
Indeed, Type 2 assumes that routing between AS’es is the
major cost of routing a packet, and eliminates the need for
conversion of external costs to internal link state metrics.
In IS-IS, only Type 1 for LSPs (TLV 128 or 130) exists.

• Peer links that connect two IGP instances and make them
somehow become one. In this case, any prefix in one
instance can be reached from the other instance.

For import policies, among all the options available, the
control of routing cost’s propagation [1], [2] can induce
loops. It is usually performed with the following two mutually
exclusive parameters:

• Inheritance: when this option is enabled, the routing cost
calculated by the upstream IGP instance is propagated.

• Cost: an arbitrary and user-defined import cost can be
specified in the policy. In this case, it erases upstream
IGP calculations. The previous link costs are ignored
and replaced by an import cost (default value is 0). This
option may be used for various network administration
considerations (e.g. security, routing stability).

Disabling inheritance and configuring a specific cost is a
popular root cause for loops [5].

Finally, a last important parameter in border routers’ con-
figuration that can yield permanent loops is the preference
between IGP instances [4], [5]. Indeed, it defines the priority
of routing information when updating the Forwarding Infor-
mation Base (FIB), i.e., forwarding table, at border routers.

B. Loop cause: preferences

In the use case depicted in Fig. 1, a route for prefix
11.11.11.11 is injected on router A in instance IS-IS 31. An
LSP is, then, propagated through instance IS-IS 31. In the RIB
of B, route 11.11.11.11:A is inserted.
A peer connection is configured on routers A, B and D,
between IS-IS instances 31 and 41. The same LSP is then
propagated on IS-IS 41. In router B, a better preference for



Fig. 1. Network with two IS-IS instances and peer connections configured
in nodes A, B and D. At router B, IS-IS instance 41 is preferred against 31.

Fig. 2. Network with two IS-IS instances. Route imports are configured at
nodes C and E for prefix 11.11.11.11.

instance IS-IS 41 than IS-IS 31 is configured. The RIB of B
is updated by inserting a higher priority route 11.11.11.11:F.
A loop is then created, B → F → E → D → C → B.

C. Loop cause: import costs

In the use case given in Fig. 2, route 11.11.11.11 is
imported on router A in IS-IS 200 instance and an LSP is
propagated. The RIB of router E is updated by inserting route
11.11.11.11:A. A route import to 11.11.11.11 is configured on
router C from IS-IS 200 to IS-IS 100. The route import policy
is configured with an import cost of 1. In this case, there is no
inheritance. The same policy applies at router E. It follows that
the cost of the path A→E→D→C is replaced by the import
cost (from 17 to 1). A new LSP is propagated on IS-IS 100
with the new cost. At router E, the new route to 11.11.11.11
has a cost 9. E selects the new route and updates the RIB by
inserting route 11.11.11.11:B. The loop is then created, E →
B → C → D → E.

The two use cases are also both valid for OSPF scenarios.

IV. ROOT CAUSE ANALYSIS

To analyze the root cause of routing loops more in details,
let us recall that Dijkstra’s algorithm [17], to compute shortest
paths, relies on dynamic programming. It is optimal and solves
the problem in polynomial time due to the following property:

Fig. 3. Loop detection for Fig. 1’s use case.

all sub-paths between two nodes, computed by the Dijkstra
algorithm, are optimal paths.

In OSPF and IS-IS protocols, packets always follow the
shortest path inside an instance, by definition. However, a
routing loop can be induced by a routing policy when a border
router prefers a path with a higher cost or if the cost of a
path is suddenly set to an arbitrary value. As illustrated by
use cases from Sec. III, two major root causes of permanent
routing loops can happen:

a) Preferences among instances: in Fig. 1, the border
router B prefers the route from IS-IS 41 rather than the route
from IS-IS 31. Therefore, even if the route cost is higher,
router B selects a non-optimal path. In this case, Dijkstra’s
property is not respected and a routing loop can appear. To
solve the induced routing loop, there exist two ways. First,
the preference can be removed. Second, we can ensure that
the preferred route does not already cross border router B
through another instance.

b) Route import without inheritance: in Fig. 2, the
border router C imports the route from the IS-IS 200 to IS-
IS 100, setting the cost to 1. In this case, the reduction of
the cost is seen by Dijkstra as a negative cost which creates a
loop. Technically, once the prefix is imported, the loop appears
as follows. During LSA\LSP propagation, a border router r
(node E in the example) updates the RIB with a route pr of
cost x. Later, router r updates the RIB again with another
route pr′ of lower cost y. If pr′ includes pr, a loop appears.
Cost of pr′ can be lower than the one of pr due to import
costs between instances. To remove the loop, the following
options can be proposed:

• increase the import cost by x− y + 1,
• increase the cost of links in pr′ \ pr such that the total

of increasing cost is higher than or equal to x−y+1, or
• decrease the cost of links in pr such that the sum of

decreasing cost is higher than x− y + 1.
In the next section, we explain how to detect routing loops
due to these root causes.

V. ALGORITHM DESIGN

We present efficient algorithms for systematically analyzing
routing policies and detecting loops. The output they generate
identifies the root cause and provides practical suggestions.

Let us build a new directed graph, extending the original
topology, called aggregated graph, where each border router
br is split into multiple nodes, bri for each instance i it
belongs to. Each prefix is handled by a subset of policies



Fig. 4. Loop detection for Fig. 2’s use case.

at border routers and, therefore, we can consider each prefix
independently. As mentioned before, shortest paths between
border routers of the same instance are not impacted by border
router policies. To capture routing policies and later compute
routing paths, we apply the following steps to create the
aggregated graph:

• compute all shortest paths between every pair of border
routers belonging to the same instance,

• add an arc weighted by the shortest path cost, between
every two border routers in the same instance and remove
internal links,

• for each prefix, create an associated node p, and connect
it to each border router copy of the instance where it is
injected,

• for each border router br and between each pair of
instances i1 and i2, links are added to capture routing
policies and the way prefixes are advertised, as follows

– for LSA/LSP type 5: an arc between bri1 and bri2

is added at a cost of 0,
– for LSA type 5.2 (i.e., with a metric of Type 2): the

cost of each arc from bri2 to b̄ri2 is set to 0 for every
border router b̄ri2 ̸= bri2 in instance i2,

– for a peer: add two arcs in opposite directions
between bri1 and bri2 with cost 0,

– for a user-defined import cost (no inheritance): an
arc between the prefix p and bri2 is added weighted
by the import cost.

Once the aggregated graph is prepared, the following algo-
rithms are executed for each prefix.

Algorithm 1 runs in O(|Instances|2 × |BR| × SP ) and
Algorithm 2 runs in O(SPT + |BR| × SPT ) where BR is
the set of border routers and SP (resp. SPT ) is the shortest-
path (resp. tree) problem’s complexity.

A. Loop detection for Preferences

Algorithm 1 detects, locates, and explains loops caused
by misconfiguration of preferences. When there are differing
preferences between two instances at a border router, the algo-
rithm computes the shortest path from the prefix to the copy
of the border router of the preferred instance, call upstream

Algorithm 1 Loop detection for Preferences
Input:

The aggregated network G = (V,E)
p: prefix

Output: Set of loops L
for instances i1, i2 such that i1 is preferred to i2 do

for br in i1 and i2 do
Filter link (bri1 , bri2) from the G
Path1 ← Compute Shortest path from p to bri1

if bri2 ∈ Path1 then
L← L ∪ {Path1}

end if
end for

end for

Algorithm 2 Loop detection for Import costs
Input:

The aggregated network G = (V,E)
p: prefix

Output: Set of loops L
for bri1 , bri2 with an import cost policy do

UpPath← Compute shortest path from p to bri1

for v ∈ UpPath do
DownPath← Compute shortest path from bri2 to v
if cost from p to v on UpPath > cost from bri2 to v on

DownPath then
L← L ∪ {UpPath ∪DownPath}

end if
end for

end for

path. If the path crosses another copy of the border router for
an instance with a lower preference, a loop is detected, and
recommendations for possible preference changes are issued.

B. Loop detection for Import costs

Algorithm 2 performs the same task for import costs. The
first step consists in computing an upstream path from the
prefix to the border router with the policy. In the second
step, downstream paths are computed to check if the Dijkstra
property is respected, all paths from the border router with
the policy to every node in the upstream path. By comparing
the cost of the downstream path to node v to the cost of the
upstream path to node v, we can detect if a loop will appear.
Furthermore, when a loop is detected and located by the up
and downstream paths, we can also deduce the root cause and
get insights on how to remove the loop (see Sec. IV).

VI. PERFORMANCE EVALUATION

This section explains how the solution has been imple-
mented and the outputs it delivers. We then provide numerical
results, highlighting scalability.

Implementation. We developed a routing analytics module
that receives topology and routing information from BGP-LS
and retrieves configuration of routers using Netconf. The algo-
rithms implemented in this module for the construction of the
aggregated graph and the detection of loops extensively rely on
shortest path computation. Therefore, in our implementation,
algorithms have been improved using the shortest-path tree
algorithm and the multi-dijkstra algorithm [12].



Fig. 5. Screenshot of the graphical interface.

Fig. 6. Computation time for each prefix to check preferences and imports.

Fig. 5 presents the interface of the tool we developed show-
ing the topology, routers’ configuration as well as explanations
about the loops found. For the two use cases considered in
Sec. III, from our algorithms, we can deduce the following
explanations to help the maintenance team to repair the loop.

a) For Fig 1: ”Border router B induces a loop due to the
preference configuration on the prefix 11.11.11.11. Suggestion
to disable the peer between instance IS-IS 31 and IS-IS 41”.

b) For Fig 2: ”Border router C induces a loop due to an
Import cost for prefix 11.11.11.11. The cost of the downstream
path is 9 which is smaller than the cost of the upstream path
with a cost 13 to reach router E. Suggestion to enable cost
inheritance at border router C”.

Numerical results. Our approach was tested in an IPRAN
network to verify 10 AS, where each AS has a core network
of 10 nodes, 5 aggregation networks of 50 nodes, and 15
access networks of 50 nodes. It provides a network with
10,100 nodes. Each sub-network (core, aggregation networks,
access networks) is managed by a different protocol instance.
The density of links in the topology is 0.4%. We considered
30 imports and 62 peers per prefix, distributed randomly at
border routers. We randomly injected 10,000 prefixes at access
routers. For each prefix, the two algorithms are executed to
check preferences and imports. The running time of the two
algorithms for each prefix is shown in Fig. 6. We need in

average 0.283ms and in the worst case 0.623ms per prefix. It
implies that we can detect, locate and explain loops for one
million prefixes in less than 5 minutes. Furthermore, the two
algorithms need less than 3Mb of RAM in total.

VII. CONCLUSION

We have proposed a scalable control plane verification so-
lution that enhances reliability by preventing misconfiguration
errors that lead to routing loops. Using two key use cases,
we demonstrated how the solution works and the types of
explanations it generates. Future work in this area can address
more complex scenarios where information is incomplete, such
as when only a subset of protocol instances are peered with
the tool, or when static routes are injected at border routers
but not reported. The solution can also be extended to support
verification at the BGP/AS level.
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