An Efficient Service Oriented Architecture for
Heterogeneous and Dynamic Wireless Sensor Networks

Jérémie Leguay, Mario Lopez-Ramos, Kathlyn Jean-Marie, Vania Conan

Thales Communications

ABSTRACT

The purpose of this work is to bridge the gap between high-
end networked devices and wireless networks of ubiquituous
and resource-constrained sensors and actuators by exten-
sively applying Service-Oriented Architecture (SOA) pat-
terns. We present a multi-level approach that implements
existing SOA standards on higher tiers, and propose a novel
protocol stack, WSN-SOA, which brings the benefits of SOA
to low capacity nodes without the overhead of XML-based
technologies. This solution fully supports network dynam-
icity, auto-configuration, service discovery, device hetero-
geneity and interoperability with legacy architectures. As
a proof-of-concept, we have studied a surveillance scenario
in which the detection of an intruder, conducted within the
range of a network of wireless sensors (e.g., MICAz from
Crossbow), leads to the automatic triggering of tracking ac-
tivities by a Linux-powered network camera and of alerts
and video streams toward a control room.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network
Architecture and Design; C.2.2 [Computer Communica-
tion Networks]: Network Protocols

General Terms
Design, Experimentation, Management

Keywords

Wireless Sensor Networks, Service Oriented Architectures

1. INTRODUCTION

At the hands of the increasing complexity and heterogene-
ity of nowadays information systems, Service-Oriented Ar-
chitecture (SOA) is becoming increasingly essential. This
set of architectural concepts separate functions into distinct
units (called services), which can be distributed over a net-
work and can be combined and reused to create business

applications. Major benefits of such approach are modular-
ity, flexibility, loose-coupling and interoperability.

These information systems are increasingly connected to
various kinds of sensors and actuators networks having char-
acteristics in processing power, battery, communication ca-
pability and availability that span over very wide ranges.
Sensor networks have shown a growing interest and are still
maturing as stated by Akyildiz et al. [1] and Culler et al. [5].
Sensor networks are typically used for monitoring, tracking,
and controlling. Most of the sensors constituting these net-
works are inherently resource constrained because of their
limited processing speed, storage capacity, batteries and com-
munication bandwidth. In this work, we specifically consider
Wireless Sensor Networks (WSN) where sensors have wire-
less communication capabilities.

Currently, sensor network architectures are tailored to spe-
cific applications with the intention of optimizing the sparse
available resources, especially in terms of memory and bat-
tery. However, these approaches prevent the adaptation to
time-specific operation requirements, the reuse of software
components as well as the interoperability between different
networks whose sensing range overlaps, thus boosting devel-
opment costs. Such issues have already been solved in the
last years in the field of enterprise information systems by
SOA, which has been proven to support more effectively the
requirements of business processes and users.

The main contribution of this paper is the proposition and
implementation of a multi-level SOA-based architecture for
heterogeneous and dynamic wireless sensor networks. This
architecture has been designed following two main objec-
tives:

e Extending SOA capabilities to devices with limited
processing power, battery capacity, communication band-
width and availability. We propose to accomplish this
extension up to tiny wireless sensors such as the MI-
CAz from Crossbow.

e Facilitating deployment of network entities at all levels
by providing auto-configuration facilities both at the
network and the service levels. In the surveillance sce-
nario this work considers, sensors and actuators are
rapidly deployed at some locations to guard a given
area. As a consequence, auto-configuration and ser-
vice discovery features from all the networked entities

are required so that the system can stay in operation
without any human intervention.

In the architecture this work introduces (see Sec. 2), we use
for large-capacity deployable wireless sensors (e.g., IP net-
work camera, gateway to networks of tiny wireless sensors
such as the MICAz from Crossbow) the Devices Profile for
Web Services (DPWS) [7] standard which consists in a Web
Services-based device communication framework. While for
the tiny wireless sensors (e.g., MICAz from Crossbow), we
define (see Sec. 3) the WSN-SOA stack which enables the
use of the SOA paradigm. To make the wWsN-SOA stack
interoperable with DPWS, we have specified (see. Sec. 4) a
software stack running on the Crossbow Stargate sensor net-
work gateway which implements a publish/subscribe com-
munication channel. Finally, we present the demonstration
of our implementation (see Sec. 5) and position our work
with regards to related research efforts (see Sec. 6).

2. MULTI-LEVEL SERVICE ORIENTED AR-

CHITECTURE

This section first provides background knowledge on SOA
technologies. It subsequently introduces our multi-level ar-
chitecture and presents the DPWS standard that we pro-
pose to use for some of the deployable wireless sensors that
we have considered. Finally, it discusses the limitations of
the available SOA technologies when applied to highly con-
strained nodes.

2.1 SOA technologies

SOA is a distributed computing paradigm in which business
functionality is provided by autonomous systems called ser-
vices, which are exposed in a network infrastructure through
well-defined interfaces. This allows building complex yet
flexible systems as well as reusing application logic through
the composition of services.

SOA is a concept which is not tied to a particular technology.
However, Web Services are currently the preferred frame-
work to deliver interoperable SOA. In Web Services-based
SOAs, the contract is defined by a WSDL (Web Services
Description Language) document, which stipulates how ser-
vice consumers can bind to a service producer by exchanging
messages using a defined XML (Extensible Markup Lan-
guage) grammar. The use of XML opens a new world of
opportunities thanks to the available tools (XSLT, XPath,
XML Security...).

2.2 Architecture overview

The idea behind this multi-level architecture is to turn all
the kinds of sensors into reusable resources and to enable dis-
tributed cooperation between them via auto-configuration
features. In this sensor-actuator architecture, nodes are clas-
sified in three different classes depending mainly on their
resources and network connectivity.

e Full capacity nodes: These entities have high avail-
ability and do not have processing power or battery
issues. They could be always-online servers or client
applications. One could refer to them as regular inter-
net nodes.

e Limited capacity nodes: These devices can be lim-
ited in terms of storage, battery, processing power or
communicating capabilities but can still perform com-
plex tasks and host operating systems such as Win-
dows CE or Linux. To be more concrete, their capac-
ity is in the order of that of a PDA (Personal Digital
Assistant). However, in some cases they will only be
connected when required, as opposed to full capacity
nodes.

e Low capacity nodes: Such devices have extremely
low capacity. They have few kilobytes of RAM and are
equipped of a microcontroller. As they suffer from bat-
tery issues, they often use low power wireless interfaces
such as IEEE 802.15.4. The Crossbow MICAz motes
is the reference hardware that we have considered.

Full-capacity nodes

Web-services
stack

Standard Web Services

Limited-capacity nodes } DPWS Stack

Bidirectional bridge DPWS / WSN-SOA

low-capacity nodes } WSN-SOA Stack

Figure 1: Device capacity Vs. SOA protocols.

Fig. 1 shows the different SOA-based protocol stacks that
we propose to use with regards to device capacity. On full
capacity nodes, usual Web Services stacks (e.g., Axis [2])
and Enterprise Service Buses (ESB) are used. For limited
capacity nodes, we propose to use DPWS, which is per-
fectly adapted to dynamic and constrained devices as well
as compliant to Web Services standards. A the lowest level,
since to our knowledge no SOA-compliant service stacks
are available, we propose the WSN-SOA further detailed in
Sec. 3. Interoperability between Web Services stacks and the
WSN-SOA is ensured by a bidirectional gateway presented
in Sec. 4.

2.3 DPWS: SOA for limited-capacity nodes

Thanks to their affordability and small form factor, the net-
worked devices previously defined as limited capacity nodes
meet an increasingly important need in machine-to-machine
communications where evolving scenarios require dynamic
deployment and reconfiguration. As such, their usage pro-
file is often closer to plug-and-play peripherals than to criti-
cal business application servers. That is why, although they
are ready to implement Web Services technologies efficiently,
some additional requirements arise when trying to integrate
such kind of devices in a SOA infrastructure.

To overcome this issue, some major industrial and software
actors defined the Devices Profile for Web Services (DPWS)
specification [7]. DPWS; first published in May 2004 and re-
vised in October 2005, defines a minimal set of Web Services
(WS-*) standards and implementation constrains to enable
dynamic discovery and event capabilities for Web Services.

This technology has gained considerable relevance, and as of
today several mature and open-source implementations are
available for C and Java [8]. It is also part of the latest .NET
framework as well as being natively built-in in Microsoft
Vista.

2.4 Web Services limitations and efforts

One of the main criticisms of Web Services in the world of
embedded computing is performance. Indeed, XML format
is extremely verbose and its processing consumes significant
amounts of time and memory, not to mention bandwidth
usage when it is used for network protocols. In the last
years, major optimization efforts have been made in order
to deliver Web Services to real-time environments and con-
strained devices:

e XML parsing: different techniques such as StAX
(Streaming API for XML) [21] or XML Schema spe-
cific parsing [3] have significantly reduced the resources
required by XML deserialization (generally more time-
consuming than serialization).

e XML binarization: several specifications have been
proposed to define a backwards-compatible compact
representation of the XML Infoset [26] in a binary op-
timized format that simultaneously optimizes perfor-
mance while reducing bandwidth. The most promising
ones are the Fast Infoset format [11] proposed by Sun
or the Efficient XML Interchange format (EXI) [10]
retained by the World Wide Web Consortium (W3C)
for its currently working draft specification.

In both cases, XML Schema information is being used —
when available— as knowledge shared between peers to gain
performance and compactness. Today, existing stacks like
gSOAP [13] deliver soft real-time Web-Services with little
memory footprint (around 100 KB of code) to various envi-
ronments such as embedded GNU/Linux, VxWorks or Win-
dows Mobile. However, devices such as low capacity nodes
in the previously described architecture will never meet the
Web Services requirements.

3. SOA FOR LOW CAPACITY NODES

As targeted devices in the category of low capacity node are
not able to process XML messages, we propose the WsN-
SOA which consists in a simple protocol and software archi-
tecture that reproduces the architectural concepts and in-
formation exchanges of regular SOA implementation. The
main goal is to make sensors very limited in capacity able to
host services, discover the services of the others, announce
their services, invoke services and subscribe to events.

This section presents the WSN-SOA as well as its implemen-
tation on the open-source operating system TinyOS [15, 22].
We developed the wSN-SOA for the Crossbow MICAz [16]
sensors equipped with the MTS310[17] sensor board attached
to their serial port which offers a variety of sensing modal-
ities such as light, pressure, acceleration, temperature and
acoustic. This hardware combination provides also two sym-
bolic actuators such as a sounder and a set of 3 leds. MICAz
nodes have very limited capacity in memory and processing

power as they only embed an Atmel ATmegal28L microcon-
troller with 4KB of RAM and have 128KB of programmable
flash ROM.

3.1 Message format

The messages exchanged within the WSN-SOA follow the
message format depicted in Fig. 2. wsSN-SOA messages are
embedded in multi-hop messages that we have defined to
enable multi-hop communications between sensors. The src
and dst fields indicate respectively the address of source and
destination nodes. The type field is used to characterize the
kind of messages that are embedded in packets (i.e., WSN-
SOA messages in our case). In our TinyOS implementation,
these multi-hop messages are themselves embedded in stan-
dard TinyOS [15, 22] messages, called TOSMsg. These mes-
sages are used to enable communication between any two de-
vices at the link level. More information about header fields
can be found in the TinyOS documentation. One should
note that the envelops in which wsN-SOA messages are em-
bedded can be easily changed depending on the operating
system or routing scheme used.

TOSMsg header Multi-Hop Msg (29) | CRC |
next hop (1) / N
type (1) /
group (1) J \
length (1) N
Multi-HopMsg | hoader | WsN-SOA Msg (24)

src (2)

dst (2)

type (1)

wsN-SOA Msg | header | payload (20)

src_service_id (1)
dst_service_id (1)

operation_id (1)
message_exchange_pattern (1)

Figure 2: wSN-SOA message format in TinyOS.

WSN-SOA messages contain the following fields:

e src_service_id: This identifier allows to address the
service which initiates the information exchange on the
source node.

e dst_service_id: This field identifies the service on the
destination node. The fact that we distinguish source
and destination service identifiers enables services of
several kinds to communicate with each other.

e operation_id: Within a service, several operations
can be implemented. They could either correspond to
a function which can be invoked or to an event source
to which one can subscribe. This field then identifies
the operation within the destination service.

e message_exchange_pattern: The Message Exchange
Pattern (MEP) field defines the semantics of message
exchanges. 6 different types have been defined: re-
quest, response, subscription, unsubscription, notifi-
cation, acknowledgment. To exemplify their use, for
an invocation procedure, the source service sends a
message with the MEP request and receives an answer

message from the destination service with the MEP re-
sponse. The MEPs subscription, unsubscription, noti-
fication and acknowledgment are used in eventing pro-
cedures. Acknowledgments can be sent back to the
source service to be sure that a subscription request
have been processed.

e payload: This field contains the data exchanged be-
tween services. These data can be of any kind but
their size needs to be smaller than the WSN-SOA mes-
sage payload size. Fragmentation could have been en-
visioned, but we observed that in most of the cases
the exchanged data is very small (e.g., an integer). In
our TinyOS implementation, the payload structures
are clearly defined by nesC structures.

3.2 Software architecture

Fig. 3 presents the WSN-SOA software architecture as been
implemented in TinyOS. We can see that the wsN-SOA pro-
tocol and service stack rest upon the IEEE 802.15.4 interface
and a queuing management module which has been imple-
mented to handle incoming and outgoing packets. WsN-SOA
packets enter in the WSN-SOA dispatcher which forwards
them to the appropriate services.

Sensor/Actuator services

: [Lighl detector] [Accelerometer] [Batteries] : [WSNSOA Core] [DVRouting]:	

N WSN-SOA Dispatcher s
\\ J//
V\\ =
AN In/Out Queues Manager e
AN //
N—————————3—————————— 7
\\ Y
N\ 802.15.4 Air Interfface _~
— e e e 7

Figure 3: wSN-SOA software architecture in TinyOS.

The WsSN-SOA has been implemented in TinyOS with an
extensive use of modules. Indeed, every service is a TinyOS
module which is linked to the WSN-SOA core machinery.
Two kinds of services have been defined: management ser-
vices and sensor/actuator services.

The management services contain vital services such as:

e WSN-SOA Core: This key service is mainly respon-
sible for announcing the services hosted by the node
using HELLO messages. These messages are sent in
response to discovery requests or sent in a voluntary
and periodic fashion when the node has just appeared
in the network for auto-configuration purpose.

e DVRouting: This service corresponds to the multi-
hop routing protocol that we have defined and imple-
mented in TinyOS. As we wanted to demonstrate co-
operation between any possible pair of nodes, this pro-
tocol is unicast and very similar to DSDV [19]. This

kind of protocol does not scale and is not very efficient
in wireless sensor networks but as it has been imple-
mented as a service, it can be easily replaced.

The sensor/actuator services offer operational services. As
an illustration, we have implemented in TinyOS the follow-
ing services:

e Accelerometer: This sensing service exposes opera-
tions (i.e. interfaces) to the rest of the network related
to the accelerometer. It offers the possibility: (1) to
get the latest values of the accelerations over the x
and y axis, (2) to be notified periodically of these val-
ues and (3) to be notified of these values whenever a
significant change between two consecutive measure-
ments occurs. All the durations and the thresholds
involved in these operations can be modified.

e Light sensor and battery gauge: These two sens-
ing services expose the same kind of interfaces as the
accelerometer, but for the light sensor and the battery
gauge.

e LEDs: This actuator service provides control over the
3 LEDs present on the MICAz boards. They can be
switched off/on or blink.

e Sounder: This actuator service controls the sounder
of the MTS310 boards and allows to make the mote
beep.

4. BRIDGING SOA WORLDS

This section presents the software stack we propose to run on
nodes that bridge between full-capacity nodes and low capac-
ity nodes in our service oriented architecture. The gateway,
or bridge, has a key mission in our architecture: to connect
the wsSN-SOA and DPWS worlds. Its main functions are to:

e Enable wsN-SOA to DPWS service translation.
This is done through hosted service-specific proxies
which can be automatically generated from specific
TinyOS module headers. This fine-grained operations
enable, for instance, to trigger an actuator in a specific
node. This provides a feedback mechanism to the net-
work which is able to react to events and thus enhance
sensing capabilities.

e Provide a high-level interface which hides the com-
plexity of the underlying network. In a context in
which hundreds or thousands of these nodes can be
deployed, a one-to-one SOA message translation offers
poor control possibilities. By providing meaningful in-
terfaces, the network can be seen as a single macro-
sensor. The chosen data dissemination mechanism is
publish /subscribe, which will be explained in Sec. 4.2.

e Create an extension framework supporting the de-
ployment of data processing mechanisms such as data
fusion algorithms or scheduled tasks, as well as new
Web Services interfaces. These software components
can be remotely installed or updated without requir-
ing a reboot.

The bridge alone is sufficient for the autonomous functioning
of the WSN-SOA network. Of course, more than one bridge
may be present in a single network to ensure redundancy
and provide load balancing.

4.1 Software architecture

The flexibility of this critical part of the solution is enabled
by a precise software architecture, depicted in fig. 4. The
main modules that have been implemented are the following:

e Mote connector: implements the platform-specific
driver required to use the ZigBee radio. It provides
two low-level services allowing packet transmission and
reception.

e Mote routing: manages network layer functionality.
It implements the routing protocol used in the rest of
the wireless sensor network. Routing table information
is exposed to the upper layers as well as node discovery.

e WSN-SOA manager: provides service layer function-
ality. Its role is to discover new services, keep an up-
dated service registry as well as offering an API for
service consumption.

e WSN-SOA /DPWS bridge: uses the WSN-SOA man-
ager API to expose discovered WSN-SOA services and
provide consumption mechanisms through DPWS. Any
other similar layer can be plugged besides this one to
bridge the WsSN-SOA world to another high level in-
frastructure.

e DPWS core: is the stack runtime that allows DPWS
discovery, messaging and event notification.

" B\

wsN-SOA / DPWS Bridge]

[wsN-SOA Manager]

[Mote Connector]
OSGi

Q JVM //

Figure 4: Gateway software architecture.

DPWS

Mote Routin
Core [9

All these modules have been implemented as bundles within
an OSGi [18] framework in Java. Each bundle is a software
component that can be deployed, loaded, started or stopped
dynamically, which means that no restart is required to up-
date the software in the bridge.

This software has been implemented to run on Crossbow
Stargate sensor network gateways. The Stargate is an em-
bedded device equipped with an Intel PXA255 Processor

running at 400MHz and has 64MB of SDRAM. It offers a
large number of interfaces such as a PCMCIA slot where we
plugged a Wi-Fi card, a Compact Flash memory card, an
Ethernet port and a serial port where a MICAz is hosted to
provide Zigbee connectivity.

The MICAz node plugged in the Stargate is only used to
provide a ZigBee network interface. The TOSBase TinyOS
application makes it work as a simple forwarder from the
radio link to the serial interface.

4.2 Publish/Subscribe communication
Despite the fact that the bridge can offer one-to-one ser-
vice translation, we propose to use a more efficient and
relevant data dissemination mechanism based on the pub-
lish /subscribe pattern on top of our multi-level SOA.

Publish/subscribe is an asynchronous messaging paradigm
in which data sources (publishers) are not programmed to
send their messages to specific data sinks (subscribers). In-
stead, they announce the availability of a certain class of
data, which is only delivered to the subscribers that express
their interest in it, without the need for publishers and sub-
scribers to be aware of the existence of each other. This
loose-coupled scheme offers a greater scalability and adap-
tation to dynamic network topologies, both of which are im-
portant challenges often faced in wireless sensor networks.

Our publish/subscribe solution uses a topic-based message
filtering system, in which producers publish messages to
named logical channels called topics. Subscribers receive all
messages published to the topics to which they subscribe.
Topics can be created ad-hoc when they become available,
and they are organised hierarchically, as proposed by WS-
Topics [25]. This means that subscribing to a topic also
implies a subscription to all child topics, even if they don’t
exist yet. Some wildcard functions are also available in topic
subscription. For instance, topic /motes/*/acceleration/tilt
corresponds to the tilt event of the acceleration service of
any known mote.

The complex brokering and filtering functions are handled
by the bridge, which exposes available topics through Web
Services asynchronous event sources using WS-Eventing [24],
as defined in DPWS. This mechanism enables transparent
cross-network data dissemination: any node, either at the
WSN-SOA level or at the DPWS level, can be a publisher or
a subscriber.

This powerful framework has many benefits:

e Providing energy-efficient data dissemination:
information is only transmitted when it is required by
at least one consumer. This avoids polling, sending pe-
riodic updates or receiving unused event notifications,
thus saving energy.

e Enabling flexible in-network intelligence. For in-
stance, when a new topic provides information about
a sensor’s neighbouring area, it can be automatically
subscribed to obtain more accurate data through fu-
sion mechanisms.

e Fostering standards-based multi-level Event-Driven

Architectures (EDA). EDA has emerged as a com-
plementary approach to address the traditional lack of
asynchronous support of SOA. Our solution is the first
to provide standard Web Services-based asynchronous
mechanisms to access sensor/actuator networks. For
example, this gives the means to seamlessly trigger
alarms in any Enterprise Service Bus (ESB) from a
tiny sensor node.

Fig. 5 depicts the different phases in event subscription.
When a new sensor node joins the network, (1) it sends
information about it and its hosted services to the rest of
the nodes. The bridge processes the message and (2) creates
the corresponding topics on the publish/subscribe channel.
In this particular case, the node 5 hosts 2 services (accel-
eration and lightsensor) with 2 event sources each (one for
significant changes and one for periodic sampling). When
a DPWS client (3) discovers and subscribes to one of the
topics, the bridge reacts by (4) requesting the subscription
to the appropriate node(s). From that moment and un-
til unsubscription is requested, the client will be notified
by a WS-Eventing asynchronous message of any significant
change in the accelerometer (¢ilt event) of node 5.

Newly available subscription topics:
« /motes/5/acceleration/tilt

« /motes/5/acceleration/periodi
« /motes/5/lightsensor/si

Id: mote 5
Services:

« Accelerometer
- Light sensor

ant

g
- /motes/5/lightsensor/periodic

Subscribe topic:
« /motes/5/acceleration/tilt

Mote 5:
« subscribe to significant
changes in accelerometer.

Figure 5: Publish/Subscribe topics on wWsN-SOA

5. PROOF-OF-CONCEPT

This section presents the demonstration we set up to high-
light the benefits of our multi-level service-oriented architec-
ture.

5.1 Demonstration setup

We have considered a surveillance scenario in which sensors
forming an ad-hoc network have been deployed to detect in-
trusions via seismic vibrations. These sensors communicate
through the Crossbow Stargate gateway with the entities
that have bigger capacities and that are interconnected by a
Wi-Fi ad-hoc network, such as an Axis 213 PTZ camera and
a laptop running a Command and Control (C2) application.

Fig. 6 presents graphically the scenario and the sequence
of information that occurs when an intrusion is detected.
In more detail, once the routing process has converged and
nodes are able to exchange information, the SOA-based ser-
vice stacks (i.e., DPWS on the Stargate and the laptop,

Control Unit

=
Gatoway / é \ Camera
v —— P
/ surveillance ‘; V4

l —

streaming

\

MICAz

&—¢&

Figure 6: Surveillance scenario.

WSN-SOA on the MICAz motes) discover respectively their
services and the available topics from the sensor network
are advertised in the publish/subscribe channel. At this
moment, the control unit requests the subscription to some
default topics such as the tilt events of the accelerometer ser-
vice of the motes. After this self-initialisation phase, when-
ever a mote detects a significant change in acceleration, a
notification is sent to the bridge which then publishes an
event within the topic /motes/i/acceleration/tilt, i being
the identifier of the source node. The event is received both
by the control unit and by the camera which automatically
points in the direction of mote i. The video streaming to
the control unit allows an operator to see what is happening
and potentially react by turning on an actuator such as a
projector or a siren.

5.2 Command and Control unit

More specifically, the Command and Control (C2) unit that
we have developed allows to manage all the sensors and ac-
tuators within the scenario. Fig. 7 shows 4 screenshots from
the application. The C2 unit offers an always-visible tree
view showing all the devices discovered and their services.
The C2 unit allows (1) to locate the different entities on
a map and to see the network connectivity between them
(top-left); (2) to plot graphs showing the evolution of mea-
surements (acceleration, light, etc.) over time and to send
events to actuators through the publish/subscribe channel
(top-right); (3) to watch the video streamed from the cam-
era, move it and set preset viewing positions for every moni-
tored zone (bottom-left); and (4) to subscribe to topics avail-
able in the publish/subscribe channel (bottom-right).

5.3 Performance measurements

To provide insights on the performance of our implementa-
tion work, we have first measured the time needed by the
WSN-SOA network to be in operation. This includes the
convergence time of the distance-vector ad-hoc routing pro-
tocol and the time required by the gateway to be aware
of all the services that are available on the motes. Then,
we measured the time required for a subscription opera-
tion to all nodes such as the one corresponding to the topic
/motes/*/acceleration/tilt to be completed. Fig. 8 shows
these two measurements for a number of MICAz motes vary-
ing between 2 and 10.

Figure 7: Command and Control (C2) unit GUI.

5000 - -

4000 - initialization
invokation -----

é 3000 - -
(5]
£ 2000 - e
1000 - __ o -
0 - ‘ ‘ ‘ .
2 4 6 8 10
nb nodes

Figure 8: Convergence times.

As one can see, the time required for each of the opera-
tions increases with the number of nodes deployed. The
performance level depends on a large set of parameters that
would need to be engineered for a real deployment such as
the beaconing periods in the ad-hoc network protocol or the
frequency at which HELLO messages involved in the service
discovery are sent. The tuning of all these parameters and
the potential adaptive mechanisms that would be needed to
optimize performance are left for future work.

6. RELATED WORK

Even in the WSN world, the idea of encapsulating node func-
tionality in services following the SOA approach is not new.
Delicato et al. [6] identified the potential of Web Services-
based solutions for wireless sensor networks.

More recently, the ZigBee [27] specification defined an ap-
plication layer introducing the concept of hosted services
(called application objects) which are bound to endpoints
on each node. One of them is the ZigBee Device Object
(ZDO), which manages node and service discovery amongst
other things. This is somewhat similar to our approach,
which could definitely be built on top of the ZigBee appli-
cation stack if there were mature open-source implementa-
tions. The main difference is the introduction of the above-
mentioned publish/subscribe mechanism, that allows appli-
cations to abstract from the underlying burden of nodes and

services, and focuses on the content of the data itself, thus
better adapting to network dynamicity.

The missing element to ease the access to the ZigBee world
was created by Archronix, which offers a gateway [12] that
allows DPWS clients (such as Windows Vista) to communi-
cate directly with ZigBee-compliant devices, as long as they
are recognized by the gateway.

Souto et al.[20] defined the MIRES middleware for TinyOS,
allowing applications running on sensor nodes to commu-
nicate in a publish/subscribe way. This is complementary
work to ours as it is not interoperable with regular Web Ser-
vices and that our architecture implements publish /subscribe
communications also on the sensor network gateway.

Wolff et al.[23] proposed the pSOA which enables to ac-
cess services running on sensor nodes through a proxy. This
approach simply focuses on one-to-one service translations
between regular Web Services and embedded services.

The Sensor Web Enablement (SWE) [4] standard achieved
by the Open Geospatial Consortium (OGC) defines the Open
Sensor Web Architecture (OSWA) to provide SOA-based ac-
cess to and management of sensors. In addition, a set of
specifications have been proposed such as SensorML, which
consists in an XML grammar for the exchange of sensor in-
formation, or Observation & Measurement (O&M), which
consists in another XML schema for the encoding of obser-
vations reported by sensors. The objective of these stan-
dards is mainly to connect always-on sensors disseminated
all around the world and accessible through the internet with
computer grids where applications such as weather forecast
or earthquake monitoring systems are running.

The architecture that we propose in this paper is more suit-
able for rapid deployments or changing scenarios, as it sup-
ports the dynamicity in the connectivity between networked
sensors as well as their heterogeneity. Furthermore, our ap-
proach promotes and distributes collaboration and aggrega-
tion treatments at the very edge of the network.

The IEEE 1451 standard was created to make easier for
transducer manufacturers to interface those sensing devices
to networks and systems by incorporating existing network-
ing technologies. Emil et al. [9] proposed a framework to
enable Web Service interfaces on IEEE 1451 sensors.

7. CONCLUSION AND FUTURE WORK

This paper has proposed a multi-level service-oriented ar-
chitecture for sensor networks. This architecture bridges
the gap between devices having very different capacities
and fully handles network dynamicity by providing auto-
configuration features at both network and service level. We
have highlighted the use of the DPWS standard for limited-
capacity devices (e.g., IP camera, PDA, sensor network gate-
ways, large deployable sensors) and we introduced the WsN-
SOA suite which enables SOA-based communications in net-
works of low-capacity sensors (e.g., MICAz motes). Instead
of one-to-one service translation between the DPWS and
WSN-SOA worlds, we propose to use a more efficient and rel-
evant way of communication based on high-level interfaces
and publish/subscribe event notifications using topics. The

WSN-SOA service stack has been implemented in TinyOS
and the WSN-SOA gateway, which also runs a DPWS stack,
has been implemented in Java as a set of OSGi bundles. Al-
beit the code has not been released in open-source, we are
willing to make it available upon request.

Future work along these lines include studies on deployable
services to potentially offer on-the-fly data aggregation ser-
vices that would run on the motes or on the sensor network
gateway. To do so, we envision to consider operating systems
like SOS [14] that support loadable modules and dynamic
memory management and to deeper use OSGi features on
the gateway. Furthermore, we plan to integrate in the Wsn-
SOA stack new kinds of energy-saving mechanisms to enable
low-power operations and networking features to improve
scalability. Finally, work remains to be done around QoS to
handle for instance priorities among WSN-SOA services.

Acknowledgments

This work has been supported by Thales Communications,
the European ITEA SODA and IST MORE projects, and
the French RNRT SVP project. We especially thank Damien
Lavaux, Stefan Michaelis and Jens Schmutzler for all the
useful discussions that we had previous to this work within
the IST MORE project.

8. REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8):102-114, 2002.

[2] Apache Axis2. http://ws.apache.org/axis/.

[3] K. Chiu and W. Lu. A Compiler-Based Approach to
Schema-Specific XML Parsing. In Proc. First
International Workshop on High Performance XML
Processing, 2004.

[4] X. Chu and R. Buyya. Service oriented sensor web.
Sensor Network and Configuration: Fundamentals,
Techniques, Platforms, and Experiments. N. P.
Mahalik (ed)., pages 51-74, 2007.

[5] D. Culler, D. Estrin, and M. Srivastava. Guest editors’
introduction: Overview of sensor networks. IEEE
Computer, 37(8):41-49, 2004.

[6] F. C. Delicato, P. F. Pires, and L. D. R.
da Costa Carmo. A flexible web service based
architecture for wireless sensor networks. In Proc.

International Conference on Distributed Computing
Systems Workshops (ICDCSW), 2003.

[7] Devices Profile for Web Services (DPWS)
specification.
http://schemas.xmlsoap.org/ws/2006/02/devprof/.

[8] Open-source DPWS implementation.
https://forge.soadd.org/.

[9] F. S. Emil and L. Ramiro. A Web-Services Framework
for 1451 Sensor Networks. In Proc. of IEEE
Instrumentation and Measurement Technology
Conference (IMTC), 2005.

[10] Efficient XML Interchange (EXI) Format 1.0.
http://www.w3.org/TR/exi/.

[11] ITU X.891 standard - Generic applications of ASN.1:
Fast infoset.
http://www.itu.int /rec/T-REC-X.891-200505-1 /en.

[12] D. R. Flickinger. Bridging the Automation/IP Gap.
White paper. Archronix.
http://www.cepro.com/asset/6037.pdf, 2006.

[13] gSOAP: SOAP C++ Web Services.
http://gsoap2.sourceforge.net.

[14] C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and
M. Srivastava. Sos: A dynamic operating system for
sensor networks. In Proc. ACM MobiSys, 2005.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems,
pages 93-104, 2000.

[16] xBow MICAz: Wireless measurement system.
http://www.xbow.com/Products/Product_pdf_files
/Wireless_pdf/MICAz_Datasheet.pdf.

[17] xBow MTS310 sensor board.
http://www.xbow.com/Products/Product_pdf_files
/Wireless_pdf/6020-0047-01_B_MTS.pdf.

[18] OSGi Alliance. About the OSGi Service Platform -
Technical Whitepaper Revision 4.0.
http://www.osgi.org/documents/.

[19] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers. In Proc. ACM SIGCOMM’9/,
Conference on Communications Architectures,
Protocols and Applications, pages 234244, 1994.

[20] E. Souto, G. G. aes, G. Vasconcelos, M. Vieira,
N. Rosa, and C. Ferraz. A message-oriented
middleware for sensor networks. In Proc. 2nd Intl
Workshop Middleware for Pervasive and Ad-Hoc
Computing (MPAC 04), 2004.

[21] JSR173 (Streaming API for XML - StAX).
http://jcp.org/en/jsr/detail?7id=173.

[22] TinyOS, open-source operating system for wireless
embedded sensor networks. http://www.tinyos.net.

[23] A. Wolff, J. Schmutzler, S. Michaelis, and C. Wietfeld.
Network-centric middleware for service oriented
architectures across heterogeneous embedded systems.
In Proc. IEEE International EDOC conference,
Workshop on Middleware for Web-Services, 2007.

[24] WS-Eventing Specification.
http://www.w3.org/Submission/WS-Eventing/.

[25] WS-Topics 1.3 Specification. http://docs.oasis-
open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf.

[26] XML Information Set (Second Edition).
http://www.w3.org/TR /xml-infoset /.

[27] The zigbee specification, revision q4/2007.
http://www.zigbee.org.

