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Abstract—We consider the challenge of enhancing sensor 

networks for surveillance and global security with increased 
distributed data processing capabilities, including multi-sensor 
fusion, data aggregation or mining, and rule-based alert 
generation. We advocate a novel architecture that will enable the 
creation of more resilient and complex monitoring applications. 
We exemplify its benefit in a chemical accident scenario. The 
architecture introduces new processing nodes in the field and 
derives the requirements for the software they will run. We 
propose to consider the use of a Service Oriented Architecture 
(SOA) to program and deploy the data processing applications. 
We analyze existing and on-going work within the Web Services 
community and conclude that it is possible to implement the 
architecture with an appropriate combination of COTS 
(Commercial off-the-shelf software components). We conclude 
with our plans to move forward in this direction and validate the 
approach on a hardware and software testbed. 
 

Index Terms— COTS solutions, Service Oriented Architecture,  
surveillance applications, Wireless Sensor Networks 
 

I. INTRODUCTION 

HIS document presents a novel architecture that 
supports new distributed data processing applications 

deployed within wireless sensor networks. We start by 
explaining the need for such new developments to support 
complex surveillance and area monitoring applications for 
global security. We provide an example in the case of a 
chemical accident and we use it to explain the benefits the 
architecture aims at bringing. 

A. Objective 

Our main objective in developing a novel distributed 
architecture for Mobile Ad-hoc and Sensor Systems (MASS) 
is to bridge a gap between the sensor networks that are 
deployed in the field and whose purpose is to provide 
measurements, and the IT backbone infrastructure which is 
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responsible of processing the measurements and interacting 
with users. Present day systems tend to be hierarchical and to 
draw a clear boundary between both worlds. The sensors, 
wired or wireless, isolated or networked, provide a set of 
measurements. The measurements are not necessarily raw 
measurements, they can be filtered, correlated, cleansed. But 
these low level processing functions aim at refining or 
consolidating the provided measurement information. More 
elaborate data processing or mining, intelligent fusion of 
heterogeneous data sources, is carried out on the IT backbone 
by a central server connected to the sensors via a gateway. 

We consider that these assumptions are too restrictive and 
do not provide the appropriate software architecture to take 
benefit of MASS in the increasingly challenging scenarios of 
surveillance and monitoring for homeland and global security. 

The architecture introduces a new class of devices that  
mediate between the low-level sensors and the IT backbone 
high capacity servers. These intermediate devices can connect 
to sensors through a wired or radio air interface. Their purpose 
is to support enhanced data processing functionalities in the 
field. The nodes can be packaged with several sensors; they 
may be deployed on vehicles, they may be worn by the crew or 
they can be temporarily installed in the vicinity of the area of 
operation. The nodes form a wireless adhoc or mesh network 
among themselves; they serve as distributed gateways to 
sensors or Wireless Sensor Networks (WSNs); they form a 
communication infrastructure that supports data exchange 
between them, the sensors and the (possible) remote control 
room. Above this sits the middleware level, a distributed 
Service Oriented Architecture adapted to Ad-hoc deployments. 

B. Surveillance scenario 

To exemplify the needs and expected benefits of the 
architecture, we consider the public safety scenario depicted in 
Fig. 1 where public safety forces are trying to deal with an 
explosion in a chemical plant. 

Trucks and the respective crew are deployed throughout the 
area and, in addition to their regular equipment, they bring in 
sensing capabilities. The sensor nodes, vehicles and crew all 
form a wireless ad-hoc or mesh network that helps the 
monitoring, coordination and supervision of operations. 

This network is basically composed of three different 
hierarchical levels. At the higher level, some of the trucks or 
vehicles present on the scene act as gateways in order to stay 
in contact with remote command and control rooms using 
legacy long-range wireless infrastructure networks. Remote 
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data services can be accessed (or offered) in addition to legacy 
telephony capabilities. 
 

 
 

Fig. 1. Homeland security scenario: an explosion in a chemical plant 

 
At the intermediate level, communicating devices embedded 

in the trucks or carried by the firemen offer data services using 
a wireless mesh backbone in complement to the traditional 
push-to-talk radios. 

Some of the nodes at this level gather the sensing data 
provided by dozens of tiny and easily deployable sensors or 
actuators disseminated locally. In a time-constraining context 
such as this one, raw sensing information does not provide 
useful knowledge: these nodes have sufficient hardware 
resources to offer processing capabilities and transmit filtered 
information. 

These disseminated sensors and actuators constitute the 
third level that we considered. They could potentially have 
only limited sensing functionality (e.g., temperature detectors 
or sirens) or, when equipped with larger batteries, they could 
perform more complex processing operations and interact with 
each others (e.g., motion tracking, image processing, and data 
aggregation). 

Any standard or proprietary networking technologies can be 
used at the different levels of the architecture. Narrowband 
Private Mobile Radio (PMR) systems such as TETRA or 
APCO25, could enable the connectivity with legacy 

infrastructure backhauls, WiMax or WiFi could allow nodes 
belonging to the wireless mesh backbone to be interconnected, 
and Bluetooth or ZigBee could help at the sensors/actuators 
level for internal communications or communications to the 
local gateways. 

To be more concrete, when the chemical explosion occurs, 
alarm systems from the factory and the surroundings 
immediately alert the public safety that a fire has started. First, 
the biological and chemical special safety forces spread from a 
helicopter a mesh of gas sensors to determine if there is a 
toxicity or explosion risk before accessing the damaged 
building. In the meantime, surveillance cameras in the trucks 
are remotely controlled by the rescue teams to spot the safer 
path to the victims. Firemen, equipped with gas masks, start to 
put out the fire. The sensors embedded in their suits 
continuously monitor vital constants and provide the means to 
track their location. 

Once the situation is under control, pollution sensors might 
be deployed in the area and the nearby river to determine the 
magnitude of the toxic leak. Police forces may establish a 
security perimeter accordingly. 

 Also of interest, an example of sensors cooperation would 
be that (1) a mesh of pollution sensors detects abnormal 
toxicity levels in the area, and (2) a camera listening to events 
triggered by this detector then focuses on the concerned area to 
offer to safety forces a live video stream of what is going on. 
The camera could potentially inlay the video in a map 
retrieved from a GIS (Geographic Information System) 
embedded in a truck. 

C. Requirements 

From the example above and the analysis of other global 
and homeland security scenarios, we can identify a number of 
important requirements that need to be addressed by our 
system architectures: 

- Varying unexpected contexts, requiring different 
equipments, specific sets of sensors adapted to each 
surveillance or security scenario, call for the support of 
plug-and-play deployments, including dynamic 
discovery of nodes and services. 

- Network communications often encounter complex 
constraints such as low bandwidth, high delays or 
connection failures. 

- Time is a critical factor, real-time shared situation 
awareness and reactivity are crucial. 

- Resilience of the sensing services call for a distributed 
architecture that would support local data fusion and 
mining processes within the temporarily or dynamically 
deployed WSN. 

- Seamless integration to legacy or infrastructure IT and 
support of standard or common place programming 
abstractions to facilitate the take off of such sensor 
network technologies. 

To offer the services and distribute the intelligence we 
envisioned in the reference scenario above and more generally 
speaking for surveillance and sensor-enabled security 
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applications, we believe that a Service Oriented Architecture 
dedicated to wireless mobile ad-hoc surveillance and security 
sensor networks is the key enabler. Such an architecture would 
perfectly suit our needs for complex services, loosely coupled 
or hierarchically structured. Running above the IP protocol 
suite, it also provides interoperability facilities and auto-
organization mechanisms. Furthermore, it can easily apply to 
any other surveillance scenarios such as underwater 
monitoring and domestic or homeland security. The service 
oriented architecture that we have defined is detailed in the 
following section. 

 

II. MOTIVATION  

The motivation for our proposal comes from the analysis of a 
number of on-going trends in hardware and software which 
offer new opportunities for cost-effective solutions to the 
challenges we identified in the scenario above. 

A. Hardware for the processing nodes 

Sensor networks typically involve devices ranging from 
rack-size vehicle-mounted servers to millimeter-size dispersion 
dust motes [1]. Four main hardware platform classes can be 
identified for these architectures: 

- Special-purpose sensors: tiny and inexpensive low-
consumption battery-powered motes. 

- Generic sensor nodes: offer a high-level interface to 
sensor information as well as processing capabilities. 

- High bandwidth sensors: streaming-capable audio or 
video sensors. 

- Gateway nodes: provide a link with traditional networks 
and business applications. 

These platforms address different needs – from low-level 
sensors to data aggregation, analysis and storage services – 
and do actually coexist in real-world deployments. The 
processing nodes that we have identified fall in the Generic 
sensor node category above. 

One of the main motivations behind our proposal and 
architecture is to exploit a growing class of wireless devices, 
more powerful than a sensor or a mobile handset, and less than 
a PC or laptop that can provide cost-effective hardware 
platforms for this category of nodes in the sensor network. 
Typical target platforms are single-board computers (SBC) 
based on ARM9 or XScale cores running a minimal 
GNU/Linux OS. A wide range of commercial products are 
available, such as Intel Mote 2, StarGate 2 [2], Gumstix [3], 
and even PC/104 [4] SBCs. These devices are one or several 
orders of magnitude more powerful than a sensor node, and 
remain much smaller, cheaper and longer lived than a standard 
laptop. 

B.  Middleware for sensor networks 

Existing sensor network architectures tend to follow a rigid 
hierarchical architecture in which high-level processing takes 
place in a single point that provides monitoring and control 
capability, whereas sensors or wireless sensor networks are 

seen as mainly data sources.  
Middleware solutions have been identified as a way to 

increase the capabilities of the sensor networks, by providing 
more intelligence in the network instead of relying solely on 
the distant control server [5]. The main purpose of WSN 
middleware is to support the development, maintenance, 
deployment, and execution of sensing-based applications. This 
includes mechanisms for formulating specific sensing tasks, 
communicating this task to the WSN, distributing it to the 
individual sensor nodes, and reporting the result back to the 
task issuer.  

The key functions of present day WSN middleware are to 
allow routing of information in the network (through resource 
efficient multi-hop radio technologies) and to support powerful 
yet efficient querying of the sensor data (for example, 
aggregation primitives and spatial and temporal query 
primitives). Middleware for WSN focus on providing 
enhancements for better low level data processing to improve 
the quality of the specific measurement functions that the 
WSN is designed to provide. 

Some of the solutions for WSN middleware include [6]:  
- database-inspired approaches, which use SQL-like 

queries (shared memory) [7], [8] 
- tuple space approaches, which build on the tuple space 

abstraction made popular by Linda [9] 
- publish/subscribe event-based approaches, which use 

event correlation to aggregate sensor data [10] 
- service discovery based approaches, which locate 

sensors that can meet applications’ needs. [11] 
In the architecture we advocate the middleware provides a 

more generic set of programming capabilities, and is not 
limited to data gathering, access or querying, but aims at 
supporting many more data processing functions.  

Another challenge in sensor network middleware is to 
support appropriate abstractions and mechanisms for efficient 
programming of applications that are capable to fully exploit 
the sensing capabilities of the WSN [5]. For that purpose we 
propose to adopt the Service abstraction concept that is now  
well established for server side application integration.  

Service Oriented Architectures have been developed for 
server side application integration and offer a set of tools and 
paradigms to design distributed applications. They provide 
lightweight but powerful tools, in particular orchestration or 
choreography concepts, to build complex distributed 
applications from individual services distributed on different 
hosts or nodes. Providing a single abstraction both at the 
server side and in the sensor network will facilitate take up and 
adoption of the technology.  

Present day SOA technologies are mainly focusing high-end 
servers running on wired LANs or WANs.  But a number of 
initiatives already provide a first starting point to address our 
requirements, as we will discuss in the next section. 
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III. A RCHITECTURE 

A. Network topology 

This paper takes into account the distributed requirements  
of sensor networks and the increasing availability of affordable 
high-performance low-consumption devices to propose a 
SOA-based middleware where intelligence is deported from a 
central core to a mesh of autonomous nodes. 

This architecture is divided in 3 layers clearly distinguished 
according to the role played in information production and 
consumption: 

- The sensor layer: a mesh network of sensor motes 
routing simple measurement information to the nearest 
processing node. Their mere role is to produce 
information for the next tier. 

- The processing layer: formed by interconnected 
intelligent nodes able to consume sensor data and 
process it to produce aggregated sensing information. 

- The application layer: consists of applications 
consuming high-level services from the middle tier and 
performing heavyweight processing preparing data for 
human interpretation. 

 

 
 

Fig. 2. Layered representation of the architecture. Communication takes 
place in horizontal layers in the OSI model sense. Processing 
nodes are present in both the sensor and the processing layers, 
while gateway nodes ensure the link between the latter and the 
application layer. 

 
Fig. 2 highlights the role of the processing nodes 

(represented as hexagons) at the different levels: data sink in 
the sensor layer; rich information consumer and processing 

provider in the middle tier; and finally, high-level service 
provider for end-user applications. 
 

B. The role of the processing layer 

The core of the proposed architecture resides in the cross-
layer nodes that fulfill several objectives: 

- At the sensor layer, each processing node may be 
connected to a wide range of dedicated sensor nodes 
using diverse protocols and network topologies. Their 
mission is to hide the complexity of the often 
heterogeneous sensing systems by gathering the 
provided information and transforming it into a 
common data model based on solid standards such as  
SensorML [12]. 

- At the intermediate layer, this information is made 
available to other processing nodes using a 
publish/subscribe mechanism according to the type of 
data, the temporal or spatial resolution, QoS 
parameters, etc. 

- Nodes may host processing functionalities in two 
forms: hosted services, which are invokable processing 
routines –ranging from data filtering to service 
aggregation – made available to other nodes; and 
hosted tasks, scheduled unattended executing processes 
that orchestrate the consumption of data and services 
and use them to provide high-level information. For 
instance, we might want to deploy a rule that sends an 
alarm when some is detected and the average 
temperature of the area reaches a certain threshold. 

- Even if the intelligence at the processing layer enables 
autonomous operation, in most cases real-time 
availability of captured information is essential at the 
IT level. Gateway nodes provide an interface between 
the processing and the application layer, enabling 
seamless integration of sensing processes into high-
level end-user applications. The Sensor Web 
Enablement (SWE) initiative [13] at the Open 
Geospatial Consortium aims at creating a “world-wide 
web of sensors” by fostering interoperability between 
heterogeneous sensor subsystems. 

 

C. Software architecture of the processing nodes 

The software architecture of a processing node consists of 3 
major blocks, as shown in Fig. 3: 

- The Abstract Sensor Interface (ASI) provides a 
common mechanism to connect to diverse types of 
WSNs. An abstraction layer is introduced to hide the 
hardware and network differences between sensor 
technologies. Its discovery mechanism communicates 
with lower layer interfaces and maintain an up-to-date 
registry of the connected sensors and their metadata. An 
important issue here is the unification of the diverse 
data formats. 

- The middleware core provides the essential 
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functionalities for the interaction between nodes. It 
exposes available information and services through the 
publish/subscribe interface, enables remote system 
management and ensure message protection. Access 
control mechanisms are also provided in order to 
separate “private” middleware interfaces from “public” 
services exposed to the application layer. 

- The distinctive element that makes processing nodes 
much more than a single bridge is the hosted 
intelligence. It encompasses tasks and services as 
previously described, both built-in (required for 
standard operation) and hosted (provided by over-the-
net dynamically deployable code). 
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Fig. 3. Software architecture of the processing nodes 

 

D. Web Services at the sensor level 

The interoperability and interconnection of disparate 
heterogeneous sensor networks is a matter of growing interest 
that cannot be left out. Web Services are not regarded any 
more as a technological hype, but as the ideal implementation 
to deliver platform-independent SOA. Today, medium-class 
embedded devices – such as those targeted by the processing 
layer – are ready to implement such technologies efficiently.  

 
Our protocol stack integrates core Web Services standards 

such as WSDL, XML Schema and SOAP and adds the 
following protocols [14]: 

- WS-Addressing provides a transport-neutral 
addressing mechanism by including all the message 
addressing information (from, to, reply to, …) in the 
SOAP message header, rather than relying on HTTP 
addressing. This allows the transparent usage of any 
transport protocol (HTTP, TCP, UDP or XMPP). 

- WS-Discovery allows plug-and-play discovery of 

network-connected resources. By defining a specific 
UDP multicast group, it allows the detection of arrivals 
and departures as well as the location of resources 
responding to certain criteria (name, type or scope) on a 
local network. In our architecture, it provides a 
distributed mechanism for the discovery of services and 
data. 

- WS-Eventing is a simple yet powerful specification 
that defines a protocol allowing a Web Service to 
subscribe to another one and receive event notification 
messages asynchronously. This mechanism provides an 
N-to-M publish/subscribe mechanism that lays the 
foundations of the upcoming Event-Driven Architecture 
(EDA). 

- WS-Policy allows a Web Service to advertise its 
policies (on security, Quality of Service…) in the form 
of “Policy assertions”. 

- WS-MetadataExchange is used for retrieving the 
metadata associated to a Web Service (such as WSDL 
or policy information). It is complementary to the 
discovery mechanism in that it provides the client 
sufficient information to dynamically search and invoke 
any service. 

- WS-Management is a SOAP-based protocol for 
managing devices across the network. 

- WS-Security specifies how authentication, integrity 
and confidentiality can be enforced at SOAP envelope 
level. 

- WS-ReliableMessaging provides reliability in the 
delivery of SOAP messages through sequence control. 

 
The combination of the mentioned specifications address 

the required functionalities for an autonomous dynamically-
deployable and secure information-sharing middleware. 

E. Implementation issues 

One of the advantages of relying on the WS specifications 
suite is that we can benefit from an active technical community 
that often provides reference open source implementations. 

Many of these implementation efforts are targeted to 
mainstream applications, and do not address the specific needs 
of our architecture, especially in terms of footprint and power 
consumption requirements. 

To illustrate that the path that we are proposing and the 
middle tier specifications that we outlined above are indeed 
workable in our context, one can refer to the work that is 
carried out in implementing the Devices Profile for Web 
Services (DPWS) [15]. 

Originally published in 2004, DPWS is a profile – a subset 
of the WS-* specifications – that aims at providing Web 
Services support to resource constrained devices. The main 
protocol components of DPWS are WS-Addressing, WS-
MetadataExchange, WS-Transfer, WS-Discovery and WS-
Eventing. It provides plug-and-play capabilities to services 
running on devices. Windows Vista integrates DPWS natively 
(the stack is called WSDAPI) and several other 
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implementations have been deployed in commercial products, 
mainly in the printer and automation sectors. 

Among these implementation efforts, in January 2005, 
performance tests were carried out [16] using an open-source 
implementation [17] based on the gSOAP stack [18]. The 
report claims that the static memory footprint of the device 
including the OS, TCP/IP and DPWS stacks, was less than 500 
KB, and dynamic memory less than 100KB on a 44MHz 
ARM7 TDMI processor running ThreadX.. The total time for 
preparing and sending a message and handling its response 
was 29 ms, but they report possible improvements that are 
presently under study [19]. 

These data offer good confidence that the proposed track is 
a feasible one. The protocol stack that we envision for 
homeland and global security would need to include more 
functionality than what DPWS defines, to deal in particular 
with security and reliability issues and further studies are 
required to validate the overall approach. 

 

IV. CONCLUSION 

 
In this paper we presented a novel architecture that supports 

complex and resilient surveillance and monitoring 
applications, deployable on the field and targeting global 
security needs. We discussed the requirements in Hardware 
and Software capabilities that such an architecture would rely 
on. We reviewed and analyzed available equipment and 
existing COTS software in the domain of Web Services and 
concluded that implementing the proposed concept is feasible. 

We are presently setting up a testbed that implements the 
architecture with the aim of evaluating it in practice. It consists 
of radio equipped nodes that form dynamically an ad-hoc 
network, each node running a Web Service stack.  Our 
objective is to run an example similar to the one provided in 
this paper, and to demonstrate the robustness and resilience of 
this cost-effective proposal. 
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