
 1

Abstract—We consider the challenge of enhancing sensor

networks for surveillance and global security with increased
distributed data processing capabilities, including multi-sensor
fusion, data aggregation or mining, and rule-based alert
generation. We advocate a novel architecture that will enable the
creation of more resilient and complex monitoring applications.
We exemplify its benefit in a chemical accident scenario. The
architecture introduces new processing nodes in the field and
derives the requirements for the software they will run. We
propose to consider the use of a Service Oriented Architecture
(SOA) to program and deploy the data processing applications.
We analyze existing and on-going work within the Web Services
community and conclude that it is possible to implement the
architecture with an appropriate combination of COTS
(Commercial off-the-shelf software components). We conclude
with our plans to move forward in this direction and validate the
approach on a hardware and software testbed.

Index Terms— COTS solutions, Service Oriented Architecture,
surveillance applications, Wireless Sensor Networks

I. INTRODUCTION

HIS document presents a novel architecture that
supports new distributed data processing applications

deployed within wireless sensor networks. We start by
explaining the need for such new developments to support
complex surveillance and area monitoring applications for
global security. We provide an example in the case of a
chemical accident and we use it to explain the benefits the
architecture aims at bringing.

A. Objective

Our main objective in developing a novel distributed
architecture for Mobile Ad-hoc and Sensor Systems (MASS)
is to bridge a gap between the sensor networks that are
deployed in the field and whose purpose is to provide
measurements, and the IT backbone infrastructure which is

Manuscript received June 20, 2007. This work was supported in part by

the French Ministry of Industry under ITEA2 SODA European collaborative
project.

M. Lopez-Ramos is with Thales Communications, Colombes, France
(phone: +33146133210; fax: +33146132686; e-mail: Mario.lopez-ramos@
fr.thalesgroup.com).

J. Leguay is with Thales Communications, Colombes, France (e-mail:
jeremie.leguay@ fr.thalesgroup.com).

V. Conan is with Thales Communications, Colombes, France (e-mail:
vania.conan@ fr.thalesgroup.com).

responsible of processing the measurements and interacting
with users. Present day systems tend to be hierarchical and to
draw a clear boundary between both worlds. The sensors,
wired or wireless, isolated or networked, provide a set of
measurements. The measurements are not necessarily raw
measurements, they can be filtered, correlated, cleansed. But
these low level processing functions aim at refining or
consolidating the provided measurement information. More
elaborate data processing or mining, intelligent fusion of
heterogeneous data sources, is carried out on the IT backbone
by a central server connected to the sensors via a gateway.

We consider that these assumptions are too restrictive and
do not provide the appropriate software architecture to take
benefit of MASS in the increasingly challenging scenarios of
surveillance and monitoring for homeland and global security.

The architecture introduces a new class of devices that
mediate between the low-level sensors and the IT backbone
high capacity servers. These intermediate devices can connect
to sensors through a wired or radio air interface. Their purpose
is to support enhanced data processing functionalities in the
field. The nodes can be packaged with several sensors; they
may be deployed on vehicles, they may be worn by the crew or
they can be temporarily installed in the vicinity of the area of
operation. The nodes form a wireless adhoc or mesh network
among themselves; they serve as distributed gateways to
sensors or Wireless Sensor Networks (WSNs); they form a
communication infrastructure that supports data exchange
between them, the sensors and the (possible) remote control
room. Above this sits the middleware level, a distributed
Service Oriented Architecture adapted to Ad-hoc deployments.

B. Surveillance scenario

To exemplify the needs and expected benefits of the
architecture, we consider the public safety scenario depicted in
Fig. 1 where public safety forces are trying to deal with an
explosion in a chemical plant.

Trucks and the respective crew are deployed throughout the
area and, in addition to their regular equipment, they bring in
sensing capabilities. The sensor nodes, vehicles and crew all
form a wireless ad-hoc or mesh network that helps the
monitoring, coordination and supervision of operations.

This network is basically composed of three different
hierarchical levels. At the higher level, some of the trucks or
vehicles present on the scene act as gateways in order to stay
in contact with remote command and control rooms using
legacy long-range wireless infrastructure networks. Remote

Designing a novel SOA architecture for security
and surveillance WSNs with COTS

Mario Lopez-Ramos, Jérémie Leguay, Vania Conan

T

 2

data services can be accessed (or offered) in addition to legacy
telephony capabilities.

Fig. 1. Homeland security scenario: an explosion in a chemical plant

At the intermediate level, communicating devices embedded

in the trucks or carried by the firemen offer data services using
a wireless mesh backbone in complement to the traditional
push-to-talk radios.

Some of the nodes at this level gather the sensing data
provided by dozens of tiny and easily deployable sensors or
actuators disseminated locally. In a time-constraining context
such as this one, raw sensing information does not provide
useful knowledge: these nodes have sufficient hardware
resources to offer processing capabilities and transmit filtered
information.

These disseminated sensors and actuators constitute the
third level that we considered. They could potentially have
only limited sensing functionality (e.g., temperature detectors
or sirens) or, when equipped with larger batteries, they could
perform more complex processing operations and interact with
each others (e.g., motion tracking, image processing, and data
aggregation).

Any standard or proprietary networking technologies can be
used at the different levels of the architecture. Narrowband
Private Mobile Radio (PMR) systems such as TETRA or
APCO25, could enable the connectivity with legacy

infrastructure backhauls, WiMax or WiFi could allow nodes
belonging to the wireless mesh backbone to be interconnected,
and Bluetooth or ZigBee could help at the sensors/actuators
level for internal communications or communications to the
local gateways.

To be more concrete, when the chemical explosion occurs,
alarm systems from the factory and the surroundings
immediately alert the public safety that a fire has started. First,
the biological and chemical special safety forces spread from a
helicopter a mesh of gas sensors to determine if there is a
toxicity or explosion risk before accessing the damaged
building. In the meantime, surveillance cameras in the trucks
are remotely controlled by the rescue teams to spot the safer
path to the victims. Firemen, equipped with gas masks, start to
put out the fire. The sensors embedded in their suits
continuously monitor vital constants and provide the means to
track their location.

Once the situation is under control, pollution sensors might
be deployed in the area and the nearby river to determine the
magnitude of the toxic leak. Police forces may establish a
security perimeter accordingly.

 Also of interest, an example of sensors cooperation would
be that (1) a mesh of pollution sensors detects abnormal
toxicity levels in the area, and (2) a camera listening to events
triggered by this detector then focuses on the concerned area to
offer to safety forces a live video stream of what is going on.
The camera could potentially inlay the video in a map
retrieved from a GIS (Geographic Information System)
embedded in a truck.

C. Requirements

From the example above and the analysis of other global
and homeland security scenarios, we can identify a number of
important requirements that need to be addressed by our
system architectures:

- Varying unexpected contexts, requiring different
equipments, specific sets of sensors adapted to each
surveillance or security scenario, call for the support of
plug-and-play deployments, including dynamic
discovery of nodes and services.

- Network communications often encounter complex
constraints such as low bandwidth, high delays or
connection failures.

- Time is a critical factor, real-time shared situation
awareness and reactivity are crucial.

- Resilience of the sensing services call for a distributed
architecture that would support local data fusion and
mining processes within the temporarily or dynamically
deployed WSN.

- Seamless integration to legacy or infrastructure IT and
support of standard or common place programming
abstractions to facilitate the take off of such sensor
network technologies.

To offer the services and distribute the intelligence we
envisioned in the reference scenario above and more generally
speaking for surveillance and sensor-enabled security

 3

applications, we believe that a Service Oriented Architecture
dedicated to wireless mobile ad-hoc surveillance and security
sensor networks is the key enabler. Such an architecture would
perfectly suit our needs for complex services, loosely coupled
or hierarchically structured. Running above the IP protocol
suite, it also provides interoperability facilities and auto-
organization mechanisms. Furthermore, it can easily apply to
any other surveillance scenarios such as underwater
monitoring and domestic or homeland security. The service
oriented architecture that we have defined is detailed in the
following section.

II. MOTIVATION

The motivation for our proposal comes from the analysis of a
number of on-going trends in hardware and software which
offer new opportunities for cost-effective solutions to the
challenges we identified in the scenario above.

A. Hardware for the processing nodes

Sensor networks typically involve devices ranging from
rack-size vehicle-mounted servers to millimeter-size dispersion
dust motes [1]. Four main hardware platform classes can be
identified for these architectures:

- Special-purpose sensors: tiny and inexpensive low-
consumption battery-powered motes.

- Generic sensor nodes: offer a high-level interface to
sensor information as well as processing capabilities.

- High bandwidth sensors: streaming-capable audio or
video sensors.

- Gateway nodes: provide a link with traditional networks
and business applications.

These platforms address different needs – from low-level
sensors to data aggregation, analysis and storage services –
and do actually coexist in real-world deployments. The
processing nodes that we have identified fall in the Generic
sensor node category above.

One of the main motivations behind our proposal and
architecture is to exploit a growing class of wireless devices,
more powerful than a sensor or a mobile handset, and less than
a PC or laptop that can provide cost-effective hardware
platforms for this category of nodes in the sensor network.
Typical target platforms are single-board computers (SBC)
based on ARM9 or XScale cores running a minimal
GNU/Linux OS. A wide range of commercial products are
available, such as Intel Mote 2, StarGate 2 [2], Gumstix [3],
and even PC/104 [4] SBCs. These devices are one or several
orders of magnitude more powerful than a sensor node, and
remain much smaller, cheaper and longer lived than a standard
laptop.

B. Middleware for sensor networks

Existing sensor network architectures tend to follow a rigid
hierarchical architecture in which high-level processing takes
place in a single point that provides monitoring and control
capability, whereas sensors or wireless sensor networks are

seen as mainly data sources.
Middleware solutions have been identified as a way to

increase the capabilities of the sensor networks, by providing
more intelligence in the network instead of relying solely on
the distant control server [5]. The main purpose of WSN
middleware is to support the development, maintenance,
deployment, and execution of sensing-based applications. This
includes mechanisms for formulating specific sensing tasks,
communicating this task to the WSN, distributing it to the
individual sensor nodes, and reporting the result back to the
task issuer.

The key functions of present day WSN middleware are to
allow routing of information in the network (through resource
efficient multi-hop radio technologies) and to support powerful
yet efficient querying of the sensor data (for example,
aggregation primitives and spatial and temporal query
primitives). Middleware for WSN focus on providing
enhancements for better low level data processing to improve
the quality of the specific measurement functions that the
WSN is designed to provide.

Some of the solutions for WSN middleware include [6]:
- database-inspired approaches, which use SQL-like

queries (shared memory) [7], [8]
- tuple space approaches, which build on the tuple space

abstraction made popular by Linda [9]
- publish/subscribe event-based approaches, which use

event correlation to aggregate sensor data [10]
- service discovery based approaches, which locate

sensors that can meet applications’ needs. [11]
In the architecture we advocate the middleware provides a

more generic set of programming capabilities, and is not
limited to data gathering, access or querying, but aims at
supporting many more data processing functions.

Another challenge in sensor network middleware is to
support appropriate abstractions and mechanisms for efficient
programming of applications that are capable to fully exploit
the sensing capabilities of the WSN [5]. For that purpose we
propose to adopt the Service abstraction concept that is now
well established for server side application integration.

Service Oriented Architectures have been developed for
server side application integration and offer a set of tools and
paradigms to design distributed applications. They provide
lightweight but powerful tools, in particular orchestration or
choreography concepts, to build complex distributed
applications from individual services distributed on different
hosts or nodes. Providing a single abstraction both at the
server side and in the sensor network will facilitate take up and
adoption of the technology.

Present day SOA technologies are mainly focusing high-end
servers running on wired LANs or WANs. But a number of
initiatives already provide a first starting point to address our
requirements, as we will discuss in the next section.

 4

III. A RCHITECTURE

A. Network topology

This paper takes into account the distributed requirements
of sensor networks and the increasing availability of affordable
high-performance low-consumption devices to propose a
SOA-based middleware where intelligence is deported from a
central core to a mesh of autonomous nodes.

This architecture is divided in 3 layers clearly distinguished
according to the role played in information production and
consumption:

- The sensor layer: a mesh network of sensor motes
routing simple measurement information to the nearest
processing node. Their mere role is to produce
information for the next tier.

- The processing layer: formed by interconnected
intelligent nodes able to consume sensor data and
process it to produce aggregated sensing information.

- The application layer: consists of applications
consuming high-level services from the middle tier and
performing heavyweight processing preparing data for
human interpretation.

Fig. 2. Layered representation of the architecture. Communication takes
place in horizontal layers in the OSI model sense. Processing
nodes are present in both the sensor and the processing layers,
while gateway nodes ensure the link between the latter and the
application layer.

Fig. 2 highlights the role of the processing nodes

(represented as hexagons) at the different levels: data sink in
the sensor layer; rich information consumer and processing

provider in the middle tier; and finally, high-level service
provider for end-user applications.

B. The role of the processing layer

The core of the proposed architecture resides in the cross-
layer nodes that fulfill several objectives:

- At the sensor layer, each processing node may be
connected to a wide range of dedicated sensor nodes
using diverse protocols and network topologies. Their
mission is to hide the complexity of the often
heterogeneous sensing systems by gathering the
provided information and transforming it into a
common data model based on solid standards such as
SensorML [12].

- At the intermediate layer, this information is made
available to other processing nodes using a
publish/subscribe mechanism according to the type of
data, the temporal or spatial resolution, QoS
parameters, etc.

- Nodes may host processing functionalities in two
forms: hosted services, which are invokable processing
routines –ranging from data filtering to service
aggregation – made available to other nodes; and
hosted tasks, scheduled unattended executing processes
that orchestrate the consumption of data and services
and use them to provide high-level information. For
instance, we might want to deploy a rule that sends an
alarm when some is detected and the average
temperature of the area reaches a certain threshold.

- Even if the intelligence at the processing layer enables
autonomous operation, in most cases real-time
availability of captured information is essential at the
IT level. Gateway nodes provide an interface between
the processing and the application layer, enabling
seamless integration of sensing processes into high-
level end-user applications. The Sensor Web
Enablement (SWE) initiative [13] at the Open
Geospatial Consortium aims at creating a “world-wide
web of sensors” by fostering interoperability between
heterogeneous sensor subsystems.

C. Software architecture of the processing nodes

The software architecture of a processing node consists of 3
major blocks, as shown in Fig. 3:

- The Abstract Sensor Interface (ASI) provides a
common mechanism to connect to diverse types of
WSNs. An abstraction layer is introduced to hide the
hardware and network differences between sensor
technologies. Its discovery mechanism communicates
with lower layer interfaces and maintain an up-to-date
registry of the connected sensors and their metadata. An
important issue here is the unification of the diverse
data formats.

- The middleware core provides the essential

 5

functionalities for the interaction between nodes. It
exposes available information and services through the
publish/subscribe interface, enables remote system
management and ensure message protection. Access
control mechanisms are also provided in order to
separate “private” middleware interfaces from “public”
services exposed to the application layer.

- The distinctive element that makes processing nodes
much more than a single bridge is the hosted
intelligence. It encompasses tasks and services as
previously described, both built-in (required for
standard operation) and hosted (provided by over-the-
net dynamically deployable code).

Abstract Sensor Interface Middleware core

Hosted intelligence

ZigBee IEEE 1451WiBree …

Built-in servicesBuilt-in services Hosted service containerHosted service container

Sensor to middleware bridging

OMG Sensor Web Enablement Interface

HTTP XMPPUDP …

Discovery

Publish/subscribe

Addressing

Metadata

Store-and-forward Security

Management

Dynamic deployment

Reliability

Discovery

Type mapping

Metadata

Security

Energy management

QoS

……
XSLTXSLT

Data
fusion
Data

fusion

…

Driver DriverDriver …

Built-in tasksBuilt-in tasks Hosted task containerHosted task container

Scheduling

Availability monitor

…

…

Sensor Abstraction Layer

Routing

Fig. 3. Software architecture of the processing nodes

D. Web Services at the sensor level

The interoperability and interconnection of disparate
heterogeneous sensor networks is a matter of growing interest
that cannot be left out. Web Services are not regarded any
more as a technological hype, but as the ideal implementation
to deliver platform-independent SOA. Today, medium-class
embedded devices – such as those targeted by the processing
layer – are ready to implement such technologies efficiently.

Our protocol stack integrates core Web Services standards

such as WSDL, XML Schema and SOAP and adds the
following protocols [14]:

- WS-Addressing provides a transport-neutral
addressing mechanism by including all the message
addressing information (from, to, reply to, …) in the
SOAP message header, rather than relying on HTTP
addressing. This allows the transparent usage of any
transport protocol (HTTP, TCP, UDP or XMPP).

- WS-Discovery allows plug-and-play discovery of

network-connected resources. By defining a specific
UDP multicast group, it allows the detection of arrivals
and departures as well as the location of resources
responding to certain criteria (name, type or scope) on a
local network. In our architecture, it provides a
distributed mechanism for the discovery of services and
data.

- WS-Eventing is a simple yet powerful specification
that defines a protocol allowing a Web Service to
subscribe to another one and receive event notification
messages asynchronously. This mechanism provides an
N-to-M publish/subscribe mechanism that lays the
foundations of the upcoming Event-Driven Architecture
(EDA).

- WS-Policy allows a Web Service to advertise its
policies (on security, Quality of Service…) in the form
of “Policy assertions”.

- WS-MetadataExchange is used for retrieving the
metadata associated to a Web Service (such as WSDL
or policy information). It is complementary to the
discovery mechanism in that it provides the client
sufficient information to dynamically search and invoke
any service.

- WS-Management is a SOAP-based protocol for
managing devices across the network.

- WS-Security specifies how authentication, integrity
and confidentiality can be enforced at SOAP envelope
level.

- WS-ReliableMessaging provides reliability in the
delivery of SOAP messages through sequence control.

The combination of the mentioned specifications address

the required functionalities for an autonomous dynamically-
deployable and secure information-sharing middleware.

E. Implementation issues

One of the advantages of relying on the WS specifications
suite is that we can benefit from an active technical community
that often provides reference open source implementations.

Many of these implementation efforts are targeted to
mainstream applications, and do not address the specific needs
of our architecture, especially in terms of footprint and power
consumption requirements.

To illustrate that the path that we are proposing and the
middle tier specifications that we outlined above are indeed
workable in our context, one can refer to the work that is
carried out in implementing the Devices Profile for Web
Services (DPWS) [15].

Originally published in 2004, DPWS is a profile – a subset
of the WS-* specifications – that aims at providing Web
Services support to resource constrained devices. The main
protocol components of DPWS are WS-Addressing, WS-
MetadataExchange, WS-Transfer, WS-Discovery and WS-
Eventing. It provides plug-and-play capabilities to services
running on devices. Windows Vista integrates DPWS natively
(the stack is called WSDAPI) and several other

 6

implementations have been deployed in commercial products,
mainly in the printer and automation sectors.

Among these implementation efforts, in January 2005,
performance tests were carried out [16] using an open-source
implementation [17] based on the gSOAP stack [18]. The
report claims that the static memory footprint of the device
including the OS, TCP/IP and DPWS stacks, was less than 500
KB, and dynamic memory less than 100KB on a 44MHz
ARM7 TDMI processor running ThreadX.. The total time for
preparing and sending a message and handling its response
was 29 ms, but they report possible improvements that are
presently under study [19].

These data offer good confidence that the proposed track is
a feasible one. The protocol stack that we envision for
homeland and global security would need to include more
functionality than what DPWS defines, to deal in particular
with security and reliability issues and further studies are
required to validate the overall approach.

IV. CONCLUSION

In this paper we presented a novel architecture that supports

complex and resilient surveillance and monitoring
applications, deployable on the field and targeting global
security needs. We discussed the requirements in Hardware
and Software capabilities that such an architecture would rely
on. We reviewed and analyzed available equipment and
existing COTS software in the domain of Web Services and
concluded that implementing the proposed concept is feasible.

We are presently setting up a testbed that implements the
architecture with the aim of evaluating it in practice. It consists
of radio equipped nodes that form dynamically an ad-hoc
network, each node running a Web Service stack. Our
objective is to run an example similar to the one provided in
this paper, and to demonstrate the robustness and resilience of
this cost-effective proposal.

REFERENCES

[1] J. Hill, M. Horton, R. Kling and L. Krishnamurthy “The platforms

enabling wireless sensor networks,” Communications of the ACM, vol.
47, no 6, Jun. 2004, pp. 41–52.

[2] Intel Imote 2 and StarGate 2 platforms at Seattle’s Intel Research Center
http://embedded.seattle.intel-research.net/wiki/

[3] Gumstix Inc., http://www.gumstix.com/
[4] PC/104 Consortium, http://www.pc104.org/
[5] K. Römer “Programming paradigms and middleware for sensor

networks,” in GI/ITG Fachgespraech Sensornetze, Karlsruhe, 26-27
Feb. 2004

[6] K. Henrincksen, R. Robinson “A Survey of Middleware for Sensor
Networks: State-of-the-Art and Future Directions,” In International
Workshop on Middleware for Sensor Networks, ACM International
Conference Proceeding Series, pp. 60-65. ACM Press, Nov 2006

[7] Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor information
networking architecture and applications,” IEEE Pers. Commun., vol. 8,
no. 4, 2001, pp. 52–59.

[8] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, “GSD: a novel group-
based service discovery protocol for MANETS,” in Proc. 4th

International Workshop on Mobile and Wireless Communications
Network (MWCN ’02), pp. 140–144, Sep. 2002.

[9] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: a middleware for
physical and logical mobility,” in Proc. 21st International Conference
on Distributed Computing Systems (ICDCS ’01), pp. 524–533, Phoenix,
Ariz, USA, Apr. 2001.

[10] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz,
J. Kelner “Mires: a publish/subscribe middleware for sensor networks,”
Personal and Ubiquitous Computing , Vol 10 , Issue 1 (December
2005), pp. 37 – 44, 2005.

[11] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo,
“Middleware to support sensor network applications,” IEEE Network,
vol. 18, no. 1, pp. 6–14, 2004.

[12] M. Botts, “Sensor Model Language (SensorML): XML-based Language
for In-situ and remote sensors”, http://vast.nsstc.uah.edu/SensorML/

[13] Open Geospatial Consortium - Sensor Web Enablement Working Group
http://www.opengeospatial.org/projects/groups/sensorweb

[14] IBM DeveloperWorks, “Standards and Web Services”
http://www.ibm.com/developerworks/webservices/standards/

[15] http://schemas.xmlsoap.org/ws/2006/02/devprof/
[16] F. Jammes and H. Smit, “Service-oriented architectures for devices - the

SIRENA view,” in Proc. INDIN’2005 Third IEEE International
Conference on Industrial Informatics, 2005.

[17] Open-source DPWS implementation, Service-Oriented Architecture for
Devices Forge, https://forge.soa4d.org/

[18] gSOAP Web Services toolkit, http://www.cs.fsu.edu/~engelen/soap.html
[19] The ITEA2 SODA project, http://www.soda-itea.org/

