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a b s t r a c t

This paper addresses the problem of engineering energy-efficient target detection
applications, using unattended Wireless Sensor Networks (WSNs) with random node
deployment and partial coverage, for long-lasting surveillance of areas of interest. As
battery energy depletion is a crucial issue, an effective approach consists in switching on
and off, according to proper duty cycles, sensing and communication modules of wireless
sensor nodes. Making these modules work in an intermittent fashion has an impact on
(i) the latency of notification transmission (depending on the communication duty cycle),
(ii) the probability of missed target detection (depending on the number of deployed
nodes, the sensing duty cycle, and the number of incoming targets), and (iii) the delay
in detecting an incoming target. In order to optimize the system parameters to reach
given performance objectives, we first derive an analytical framework which allows us
to evaluate the probability of missed target detection (in the presence of either single or
multiple incoming targets), the notification transmission latency, the detection delay, and
the network lifetime. Then, we show how this ‘‘toolbox’’ can be used to optimally configure
system parameters under realistic performance constraints.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Wireless Sensor Networks (WSNs) are formed by battery-powered devices commonly used for environmental
monitoring, military surveillance, and industrial automation. Recent advances in hardware miniaturization, low-power
radio communications, and battery lifetime, together with the increasing affordability of such devices, are paving the way
for a widespread use of WSNs in a vast array of applications. For example, in a natural reserve, a large number of affordable
sensor nodes with vibration and acoustic sensors can be spread throughout the monitored area to study environmental
conditions and animal behaviors in an unintrusive manner (i.e., without attaching devices to animals). WSNs can also help
to attract animals through sounds, to enable interactive applications, such as guiding visitors to animal herds, as well as
to protect endangered species from hunters. In these contexts, the whole application functionalities rely on the ability to
detect any incoming target (e.g., animal, hunter, etc.) in a given area of interest.

This paper addresses the problem of target detection using a long-term random deployment of sensor nodes over a
monitored area. Partial area coverage is considered, i.e., the spatial density of the sensor nodes is typically small, as this
could be the case in many realistic surveillance scenarios of large areas. In such vast and long-term deployments, one of
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the main design goals is to maximize the operational lifetime of the system, by cyclically switching on and off the sensing
and communication parts, while ensuring that targets will eventually be detected and that the corresponding notification
will be transmitted within a given time interval. Although the problem of target detection has been extensively studied
in recent years (see, e.g., [1–4]), a complete performance modeling framework is still missing in the context of realistic
target detection applications for energy-efficient WSN. In this paper, we further extend the preliminary results presented
in [5], deriving a performance analysis framework based on a larger set of relevant metrics. This paper brings the following
main contributions: it proposes an analytical framework to characterize the performance of a duty-cycled (at sensing and
communication layers) WSN in terms of probability of missed target detection, delay of detection, latency of notification
transmission, and average energy consumption. In addition, we present an engineering toolbox which allows to efficiently
set the configuration parameters in order to make a WSN function at a desired operating point, characterized by a trade-off
between energy consumption and quality of service (in terms of detection capability and latency). We then validate the use
of our toolbox to optimally configure a WSN under realistic constraints.

This paper is structured as follows. In Section 2, we discuss relevant related works. In Section 3, we describe the problem
and the simulation set-up. In Section 4, we first derive an analytical framework for the evaluation of the probability of
missed detection, and we present its assessment using simulation results. Section 5 characterizes the delay required for
target detection. Sections 6 and 7 provide analytical models for the evaluation of the latency and of the energy consumption,
respectively. In Section 8, we demonstrate how the proposed analytical toolbox can be used to configure a WSN. Finally,
Section 9 provides concluding remarks and a list of further works.

2. Related work

In this section, we discuss relevant literature related to the problem of target detection, considering various aspects, such
as sensing coverage strategies, modeling efforts, collaborative detection schemes, as well as experimental activities.

Characterizing the detection capability of aWSN has been a topic of extensive research in recent years. In [6], the authors
map the target detection problemwith a line-set intersection problemandderive an analytic framework for the computation
of the target detection probability, under random and deterministic node deployment strategies. In [7,8], the authors use
integral geometry tools to tackle the design of target detection systems. In [1], the authors evaluate the benefit brought by
the use of mobile sensor nodes for target detection.

The authors of [9,10] review the state-of-the-art cross-layer design techniques for WSNs and propose a taxonomy that
encompasses power efficiency-oriented approaches. The duty-cycling techniques considered in our paper fall into this class
of approaches. In [2,11,12], the authors present ANDES, an analysis-based design tool to estimate quantitatively various
performance metrics of target detection WSNs. While ANDES derives models for the average detection delay and the
probability of detection for duty-cycled WSNs, it includes neither an energy-based joint optimization, nor a modeling for
off-the-shelf communication protocols. In [13], the authors propose a distributed scheduling algorithm of sensor wake-ups,
which reduces the detection delay and the probability of missed detection, under the assumptions that there are (i) global
time synchronization and (ii) minimal knowledge, among the sensors, of their relative distances.

Recently, target detection applications with decision reporting to a sink have also received a significant attention. In [14],
the authors focus on unattended acoustic sensor network and present a self-organization algorithm for energy-efficient
target localization and tracking. In [15], the authors introduce a duty-cycling strategy using magnetic sensors for power-
efficient and reliable target detection. The experimental set-ups considered in [14,15] constitute practical implementation
examples of the sensing modules which will be considered in the following. In [16], the authors present a framework
for sensor deployment, data routing, distributed computing, and information fusion, considering integrated WSNs and
wired computer networks. Following an implementation-oriented approach, in [17] the authors present the design and the
implementation of a monitoring system, referred to as VigilNet, based on a WSN with the Crossbow MicaZ platform [18].
Their goal is to assess the trade-offs between node spatial density and duration of duty cycle. The analytical framework
which will be derived in the following is an analytical counterpart of the experimental VigilNet approach. In [3], under the
assumptions that a road network map is known and the target movement is confined into roads, the authors describe an
algorithm, referred to as VIrtual Scanning Algorithm (VISA), which guarantees that the incoming target will be detected
before reaching a given protection point.

Strategies and techniques for node placement are considered in [19], where the authors propose a taxonomy of possible
nodedeployment strategies (e.g., randomvs. deterministic, static vs. dynamic attribution of sink role) and review the existing
literature on this subject. They evaluate how random /deterministic node placement strategies to guarantee a minimum
network coverage. In [4], the authors propose a density control algorithm for duty-cycled WSNs, studying the relationship
between coverage and connectivity. In [20], the benefits of dynamic coverage algorithms, based on sensors with variable
transmission and sensing ranges, are evaluated. However, these approaches do not provide a performance characterization
in terms of probability of missed target detection in the presence of sensing duty-cycling. In [21], optimized deterministic
node placement, with respect to area coverage or network connectivity, is considered, by taking into account a dynamic
allocation of the role of sink among the sensor nodes. Our paper presents performance estimators for both detection and
networking parts. Albeit derived for a random node placement, these indicators can support a decision process for node
deployment. In fact, in [22] we propose a preliminary extension of our framework in the presence of deterministic node
deployment.
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Collaborative target detection is another topic recently investigated. In [23], the authors propose a data-fusion based
collaborative detection scheme for achieving guaranteed accuracy in sensor deployment. In [24], mobile sensors are
allowed to collaborate with static sensors, and move reactively to meet desired detection performance requirements. In
the framework proposed in the following, the sensor nodes are not mobile and they do not collaborate to make decisions on
coverage parameters. However, no costly synchronization among the sensor nodes is required. In our case, the gateway is
computing the optimal set of system parameters by looking at the WSN, through analytical models, as a whole. Our models
can be extended to consider different sets of parameters for the nodes (duty cycles, sensing range), but this would to lead
to a higher complexity of the analytic framework. This is the subject of future research activity.

To summarize, with respect to existing literature in the field of WSN-based target detection, our work is innovative in
the following aspects: (i) we derive a ‘‘rich’’ analytical framework which allows to evaluate the impact of power-saving
techniques, at both sensing and communication layers, in the case of random node deployment with partial coverage;
(ii) the systemperformance in thepresence ofmultiple targets canbe analyzed; (iii) the validity of the predictedperformance
holds even if target paths are not confined within specific (limited) regions (e.g., roads); and (iv) we propose an engineering
toolkit for the energy-efficient WSN configuration.

3. Preliminaries

3.1. The target detection problem

The surveillance of a given area is important in many military and civilian applications. In particular, a WSN can help to
detect an incoming target which crosses the monitored area. Upon the detection of a target, an alert message is sent to a
gateway node, namely the sink or Access Point (AP), which can reach control centers outside the network. The operational
point of a WSN can be characterized using a number of performance metrics of interest, including the probability of
missing a single incoming target (denoted Pmd) and, in the context of multiple targets entering simultaneously the area,
the probabilities of missing all incoming targets (denoted as Pma) or at least one of the incoming targets (denoted as Pmo).
In the following, we also consider the delay for detecting a target (denoted as Ddet), the notification transmission latency
(denoted as D), and the network lifetime (denoted as L).

The problem of target detection using a long-term deployment of a WSN lies in the unavoidable trade-offs that energy-
saving strategies raise in terms of detection capability, responsiveness, and network lifetime. In these battery-powered
networks, nodes are cyclically ‘‘switched off’’, according to proper duty cycles at both sensing and communication levels, in
order to save energy. However, while extending the network lifetime, these operations have also impacts on: (i) Pmd, Pma,
Pmo, and Ddet, since a node may be off when the target crosses its sensed area; (ii) D, since sleeping nodes can delay the
transmission of an alert message towards the AP.

This paper aims at providing an analytical framework for the aforementioned performance metrics, taking into account
the impact of duty-cycling techniques. After validating the derived analytical models, the last part of the paper provides
a practical application case, which shows how an operator (i) can predict the performance of a deployed WSN in realistic
scenarios and (ii) can assess the trade-offs that arise when favoring one performance metric over another.

3.2. WSN model

The main parameters of the overall systemmodel are listed in Table 1. The device-specific values presented in this table
have been taken from the internal data-sheet of a prototype sensor node by Thales. Like other well-known commercial
sensor nodes using the CC2420 chipcon (e.g., [25,26]), power consumption is higher in the reception mode than in the full-
power transmission mode.

The wireless sensor devices considered in this paper embed two main sub-units: (i) the sensing sub-unit and (ii) the
communication sub-unit. The former is equipped with a seismic sensor, whose sensing range rs (dimension: [m]) is largest
over a rocky surface, inwhich the vibrations due to an incoming target propagatewith low attenuation. Since seismic sensors
can be placed over different surfaces, such as sandy or clayey terrains, where the propagation model is different and the
attenuation is higher, we consider different values of rs. In order to reduce the energy consumption of the system, the sensing
part can be periodically switched off, according to a normalized duty cycle, over a period of duration tsens (dimension: [s]),
identified by the parameter βsens ∈ (0, 1]. More precisely, over each period nodes sense the surrounding environment for
an interval of length βsenstsens and sleep for an interval of duration (1 − βsens)tsens; then, the duty cycle starts over in the
consecutive period. The power consumption associated with the sensing operations is denoted as Ωsens (dimension: [W]).
We assume that all sensor nodes have the same values of rs, βsens, and tsens.

The communication sub-unit is characterized by a transmission range rT (dimension: [m]), with rT ≫ rs. Generally, rT
ranges between 100 m and 1000 m (in line-of-sight scenarios). In the remainder of the paper, rT will be set to 250 m. As
for the sensing sub-unit, duty-cycling is also considered for the communication sub-unit. In this case, the period of the duty
cycle is denoted as tcomm (dimension: [s]) and the percentage of this period during which the communication sub-unit is on
is given by the parameter βcomm ∈ (0, 1].

In the following, we assume that only the first node detecting the target transmits an alert message to the AP. In the
derivation of latency after target detection model (Section 6), we balance the assumption of collision-free transmission
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Table 1
Constant and variable system parameters considered in the simulations.

Constant parameters

Side of monitored area ds 1000 m Scenario-specific
Speed of the target v 15 m/s Scenario-specific
Sensing power consumption Ωsens 0.0036 W Device-specific

Average number of hops Nhop 3 Function of the number of nodes in the network
Transmission range rT 250 m Device-specific
Preamble duration Sp 0.26 ms Configuration-specific
Ack window duration Sal 0.26 ms Configuration-specific
Packet duration Sd 0.93 ms Application-specific
Transmission power consumption ΩTx 0.0511 W Device-specific
Reception power consumption ΩRx 0.0588 W Device-specific
Sleep power consumption Ωs 2.4 · 10−7 W Device-specific

Variable parameters (with default value ranges)

Number of nodes in the network N [10 ; 70] (50) Scenario-specific
Sensing range of each node rs 20, 35, 50 (50) m Device-specific

Sensing duty cycle βsens [0.1 ; 1] Configuration-specific
Sensing period tsens [5 ; 25] (15) s Configuration-specific

Communication duty cycle βcomm [0.0025 ; 1] Configuration-specific
Communication period tcomm 40, 80, 100, 120 (100) ms Configuration-specific

Number of incoming targets NT 1, 2, 4, 8 Scenario-specific

with respect to the node spatial density and the number of incoming targets. In a surveillance scenario, the Medium Access
Control (MAC) protocolmust guarantee the lowest energy consumption and the lowest latency. In the following,we consider
a specific MAC protocol for the derivation of the analytical framework. More precisely, we choose the X-MAC protocol [27]
which is suitable for low throughput and low latency communications. This random access protocol notably outperforms
most scheduled MAC protocols, as shown in [28]. In Section 6, we provide more details on the X-MAC protocol and its
corresponding main parameters (namely, Sd, Sp, Sal, ΩTx, ΩRx, and Ωs), whose reference values are indicated in Table 1.
The derived models for latency (Section 6) and network lifetime (Section 7) are specific to the X-MAC protocol. They allow
us to give some examples of system engineering with a practical application case in Section 8. We remark, however, that
the proposed framework can be extended to other MAC protocols by properly modeling the corresponding communication
layers.

We assume the monitored area to be a square with sides of length ds (dimension: [m]), over which N sensors are
independently randomly deployed. In Section 4, we derive an analytical lower bound on the probability of missed detection,
under the constraint of non-overlapped sensed areas. The validity and tightness of this bound, with respect to the
performance in the case of random node deployment (with possibly overlapped areas) is investigated. We also assume
that the potential targets cross the monitored area following straight line trajectories, as shown in Fig. 1. Each trajectory
is uniquely identified by (i) an entrance point over the perimeter of the monitored area, uniformly distributed in [0, 4ds];
(ii) an entrance angle, with respect to a reference axis given by the entrance side, uniformly distributed in [0, π]; and (iii) a
constant target speed v (dimension: [m/s]).

4. Probability of missed target detection

4.1. Preliminary background: non-overlapped sensed areas

Our analytical framework for the evaluation of the probability of missed target detection extends the results presented
in [6], which we briefly review in the following. For more details about the proposed derivation, the interested reader is
referred, besides to [6], also to [7,8].

In order to detect a target in a square area with perimeter l0, assume that N sensors, denoted as {si}Ni=1 are randomly
placed over this area. The perimeter of the area sensed by the ith sensor si is denoted as li. Assuming that there is no prior
knowledge about the direction and the entrance point of the target and that sensed areas of different sensors do not overlap,
the probability Pd(k) that at least k ≥ 1 sensors detect the target crossing the field of interest can be expressed as [6]

Pd(k) = 1 −

k−1
w=0


N
w


j=1

w
i=1

qz(w)
j (i)

N−w
v=1

(1 − qz̄(w)
j (v)

) (1)

where:


N
w


is the number of possible combinations of N objects in groups of w; z(w)

j denotes the jth w-tuple {z(w)
j (1),

z(w)
j (2), . . . , z(w)

j (N)} extracted from the set of integers {1, 2 . . . ,N} (i.e., z(w)
j (i) ∈ {1, 2 . . . ,N}, ∀i) and z(w)

j (i) ≠ z(w)
j (h);
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Fig. 1. Illustrative example of WSN scenario for target detection.

z̄(w)
j denotes the jth (N − w)-tuple complement of z(w)

j (i.e., z̄(w)
j = {1, 2, . . . ,N} \ z(w)

j ); and qh , P{Sensor h
is on the trajectory}. Since qh = lh/l0, (1) becomes:

Pd(k) = 1 −

k−1
w=0


N
w


j=1

w
i=1

lz(w)
j (i)

l0

N−w
v=1


1 −

lz̄(w)
j (v)

l0


.  

(∗)

(2)

In other words, the term (∗) represents the probability that w sensors (identified by the jth possible configuration) detect
the target and the other N − w do not.

For the sake of analytical simplification, assuming that the perimeters of the sensed areas are all equal, i.e., lh = l ∀h ∈

{1, . . . ,N}, the probability of missed detection in (2) reduces to

Pd(k) = 1 −

k−1
w=0


N
w


lw(l0 − l)N−w

lN0
.

Since Pmd = 1 − Pd(1), from (2) it follows:

Pmd =

0
w=0

1
j=1

w
i=1

lz(0)j (i)

l0  
=1

N
v=1


1 −

lz̄(0)j (v)

l0


=

N
v=1


1 −

lv
l0


(3)

where we have used the fact that z̄(0)
j = {1, 2, . . . ,N}. Intuitively, referring to the term at the right-hand side of (3),

Pmd depends only on the length of the perimeters {lv}Nv=1 of the sensed areas and the perimeter l0 of the monitored area,
regardless of the length of the target trajectory inside the monitored area and of the positions of the sensors. We point
out that, since Pd(1) is the probability that a target is detected by at least one sensor (and not by exactly one sensor), the
computation of Pmd does not depend on the fact that a target may have already been detected by other sensors. Instead, we
simply evaluate the probability that a generic sensor detects the incoming target, neglecting what the other sensors have
done.

According to the model introduced in Section 3.2 and recalling that all the sensors have the same sensing range, Eq. (3)
can be rewritten as follows:

Pmd =


1 −

2πrs
4ds

N

(4)

where 2πrs/(4ds) is the probability that a target is on the trajectory [6]. Note that the constraint of non-overlapped circular
sensed areas automatically implies partial coverage with detection holes.

We remark that Eq. (4) holds in scenarios where the sensed areas of the nodes are not overlapped. In the presence of
overlapping, Eq. (4) should be refined to take into account that the overall perimeter of the overlapped sensed areas is
shorter than the sum of all perimeters of the single sensed areas. Therefore, in the presence of overlapping the coverage
guaranteed by the sensor nodes reduces and so does the network ability to detect a target. In other words, the approach
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Fig. 2. (a) Logical scheme of the sensing duty cycle and (b) model for the sensing range of a node.

proposed in [6] allows to derive a lower bound on the probability of missed detection in the presence of random node
deployment. The evaluation of the exact probability of missed detection in the latter scenario is analytically difficult and
deployment-dependent. In order to carry it out, we will resort to simulations.

4.2. Integration of sensing duty cycles

To integrate sleeping duty cycles at the sensing level, we extend themodel outlined in Section 4.1 to derive a lower bound
on the probability of missed detection as a function of both the sensing duty cycle βsens and the topology of the WSN.

The probability that a single sensor detects a target corresponds to the probability that the following two events are
simultaneously verified: (i) the target’s trajectory crosses the area sensed by the sensor (event denoted as ESoT) and the
sensor detects a target crossing its sensed area1 (event denoted as Edet). We point out that the area sensed by a node is fully
covered, i.e., if a target crosses the sensed area of a sensor when the latter is on, it is detected with probability equal to 1.
Therefore, the probability that a specific sensor detects a target, denoted as Pd−ss, can be expressed as

Pd−ss = P{ESoT, Edet} = P{Edet|ESoT}P{ESoT}.

As observed after (4), P{ESoT} can be expressed as 2πrs/(4ds). In order to evaluate P{Edet|ESoT}, we consider the scheme
for the sleeping duty cycle presented in Fig. 2(a). Since the target arrives with a finite speed v, the crossing time of the
sensed area is Tcross = L/v, where L is a random variable which represents the length of the intersection between the target
trajectory and the area sensed by a sensor, as shown in Fig. 2(b). Since there is no information about the target arrival instant,
this is assumed uniformly distributed over the period duration tsens. When the sensor is on (i.e., during the subinterval of
duration βsenstsens), any incoming target will be detected. In the case that the sensor is off, i.e., during the subinterval of
duration (1 − βsens)tsens, the analysis has to be refined. Let Etarget be the event2 {The sensor is on at the instant at which the
target enters the sensed area}. Applying the total probability theorem [29], P{Edet|ESoT} can then be expressed as

P{Edet|ESoT} = P{Edet|Etarget, ESoT}P{Etarget|ESoT} + P{Edet|Ētarget, ESoT}P{Ētarget|ESoT} (5)

where P{Edet|Etarget, ESoT} = 1, as Etarget ⊂ Edet. Since Etarget and ESoT are independent – in fact, the activity cycle of a sensor
does not depend on the target – one can write

P{Etarget|ESoT} = P{Etarget} =

 βsenstsens

0

1
tsens

dt = βsens

and, therefore, P{Ētarget|ESoT} = 1 − βsens. We are now going to evaluate the last probability at the right-hand side of (5),
i.e., P{Edet|Ētarget, ESoT}. According to the conditioning on Ētarget and ESoT, the target arrival time, denoted as Ta, is a random
variable uniformly distributed over an interval of length (1−βsens)tsens. To have successful detection, the targetmust remain
in the sensed area until the sensor turns its sensing device on in the following active period. In this case as well, one must
distinguish between two cases: (i) Tcross > (1−βsens)tsens and (ii) Tcross < (1−βsens)tsens. In the former case, the targetwill be
detected, since it remains in the sensed area for a time interval longer than the sleeping interval, i.e., P{Edet|Ētarget, ESoT} = 1.
Therefore, in this case P{Edet|ESoT} = 1 and, thus, Pd−ss = P{ESoT}. In the latter case, instead, the target will be detected if it
enters the sensed area in the last part of the sensor sleeping interval, so that it will be detected in its following active period.
In this case, the evaluation of P{Edet|ESoT} in (5) can be carried out as follows.

Let us preliminary observe that, since Ta and Tcross are independent, their joint probability density function (pdf)
can be expressed as the product of the marginal pdfs, i.e., fTa,Tcross(t, τ ) = fTa (t) fTcross (τ ). We have already noted that

1 Assuming ‘‘instantaneous’’ detection once the sensing sub-unit is on, the event that a sensor detects a target crossing its sensed area corresponds to
the event that the sensor is on for at least an instant while the target is crossing its sensed area.
2 Note that the event Edet is verified (i) if the sensor is on at the instant at which the target enters the sensed area (this is event Etarget) or (ii) if, given

that the sensor is off at the instant at which the target enters the sensed areas, it becomes on before the target exits the sensed area along its trajectory.
Therefore, Etarget ⊂ Edet .
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Fig. 3. Integration domain for the evaluation of P{E1}: (a) 2rs/v > c and (b) 2rs/v < c.

Ta ∼ Unif[0, c], where c , (1 − βsens)tsens. In order to express fTcross (τ ), further considerations are required. First of all,
f Tcross(τ ) = fL(τ )/v. The length L of the chord can be expressed as follows:

L = 2rs sin


Φ

2


where Φ is the angle shown in Fig. 2(b). Since Φ ∼ Unif[0, 2π ], by applying the fundamental theorem [29, p. 93] it can be
shown that

fL (τ ) =


1

π


r2s −


τ
2

2 if 0 < τ < 2rs

0 otherwise.

Therefore, fTcross(τ ) can be found and one can finally write:

fTa,Tcross(t, τ ) =


v

πc

r2s −


vτ
2

2 if 0 < τ <
2rs
v

and 0 < t < c

0 otherwise.

Letting E1 , {Ta + Tcross > (1 − βsens)tsens}, given that the sensor is in the sleeping state when the target enters the
sensed area, the probability that the target is detected can be expressed as

P{Edet|Ētarget, ESoT} = P{E1} =


D

fTa,Tcross (t, τ ) dt dτ

where the integration domain D is shown in Fig. 3, where two possible cases are distinguished: (i) 2rs/v > c and (ii)
2rs/v < c. In the former case, the integration domain has the trapezoidal shape shown in Fig. 3(a), and P{E1} can be evaluated
as

P{E1} =

 c

0

 c

c−τ

fTa,Tcross (t, τ ) dt dτ +

 2rs
v

c

 c

0
fTa,Tcross (t, τ ) dt dτ

=
4rs − 2


4r2s − c2v2

πcv
+ 1 −

2asin


cv
2rs


π

. (6)

In the latter case, i.e., when 2rs/v < c , the integration domainD reduces to the isosceles triangle, with side 2rs/v, shown
in Fig. 3(b). P{E1} can thus be expressed as

P{E1} =

 2rs
v

0

 c

c−τ

fTa,Tcross (t, τ ) dt dτ =
4rs
πcv

. (7)

Combining Eqs. (7) and (6) into Eq. (5), the following expression for P{Edet|ESoT} (in the case with Tcross < (1−βsens)tsens)
can be obtained:

P{Edet|ESoT} = βsens + (1 − βsens)P{E1}

where P{E1} depends on the relation between 2rs/v and c .
Finally, extending the model in order to take into account that N independent sensors can detect the target, the

probability of missed detection with random node deployment can be lower bounded as follows:

Pmd ≥ (1 − Pd−ss)
N

= [1 − P{Edet|ESoT}P{ESoT}]N

=


1 − [βsens + (1 − βsens)P{E1}]

2πrs
4ds

N

(8)
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Fig. 4. Simulation (solid lines) and analytical (dashed lines) Pmd results as functions of the duty cycleβsens considering (a) different values of rs (tsens = 15 s)
and (b) different values of tsens (rs = 50 m). In all cases, the target enters with speed v = 15 m/s a monitored area of ds = 1000 m side, where N = 50
sensors are randomly deployed.

where the expression of P{E1} depends on the scenario of interest. The expression at the right-hand side of (8) is the
exact probability of missed detection with non-overlapped sensed areas. As will be shown in the following subsection
by simulation, in the presence of random node deployment (without any constraint on the overlapping) the discrepancy
between the lower bound and the exact probability of missed detection becomes more significant for high node spatial
density.

In the case of a heterogeneous sensing model (i.e., with different sensing ranges across the sensor nodes), the derivation
would be similar, the only difference being that the derivation should start from Eq. (3) rather than from Eq. (4).

4.3. Simulation-based validation

In order to validate the performance results predicted by the analytical framework, we also present simulation results
using a custom-based simulator written partly in C and partly in Matlab.3 To reduce possible statistical fluctuations, each
performance value is obtained by simulating at least 1000 different scenarios, corresponding, each of which corresponds
to a random nodes’ placement, according to a bidimensional uniform distribution, of N nodes over the monitored area. For
each scenario, we consider 1000 different target trajectories.

In order to investigate the performance in the absence of overlapping between the sensed areas, after generating a
scenario (i.e., after random deployment of the nodes) the corresponding node placement is analyzed: if there is overlapping,
the scenario is discarded; otherwise, it is kept.

Another constraint for scenario generation is that every sensor node must communicate with the AP, either directly
(one-hop communication) or through intermediate nodes (multi-hop communication). In order to guarantee that a node
can always reach the AP upon target detection, after generating a scenario, its connectivity is analyzed: if there are ‘‘isolated’’
nodes (which cannot reach the AP) the scenario is dropped; otherwise, it is kept.

4.3.1. (Pseudo-)Random node deployment with overlapped sensed areas
In Fig. 4(a), Pmd is shown as a function of βsens, for various values of rs (tsens is set to 15 s). The number of nodes N is set

to 50 and the speed of the target is v = 15 m/s. As the intuition might suggest, the longer the sensing range, the higher
the probability of detecting an incoming target. When the value of βsens becomes small, the target can cross the sensed area,
during a sleeping interval of a sensor, without being detected, thus increasing the probability ofmissed detection. In Fig. 4(a),
simulation results (solid lines) are compared with theoretical ones (dashed lines). As one can see, simulation and analytical
results are in good agreement, especially for large values of rs, confirming the validity of the analytical model.

In Fig. 4(b), Pmd is evaluated as a function of βsens (rs is set to 50 m). In all cases, the target speed v is set to 15 m/s. In this
case, the same considerations carried out for Fig. 4(a) still hold. When tsens is sufficiently small, βsens has a limited impact on
Pmd. On the other hand, the longer tsens, the stronger the impact of βsens. When βsens = 1, the sensing period has no impact
on the system performance. Instead, when βsens < 1, a longer tsens leads to a higher Pmd, because it is more likely a target
crosses the sensed area during the sleeping phase of the sensor, without being detected. In this case as well, there is a good
agreement between the simulation (solid lines) and theoretical (dashed lines) results. We point out that there is a threshold
value of v, depending on rs, βsens, and tsens, below which the impact of βsens on Pmd becomes negligible and the curves tend
to reach a floor. For instance, with v = 1.5 m/s, a target crosses the sensed area for a time interval long enough so that any
sensor along its trajectory will detect it, regardless of its duty cycles.

3 The simulator may be available by contacting the reference author of this paper.
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Fig. 5. Probability ofmissed detection as a function of (a)χ and (b)ϕ. In both cases, the performancewithout overlapped sensed areas (w/o ov, simulations)
and that with overlapped sensed areas (w ov, analysis) are shown. In both cases, Various values of N and rs are considered.

4.3.2. Random node deployment
In this subsection, we assess the tightness of the analytical lower bound for the probability of missed detection in the

presence of random node deployment. In order to characterize the sparsity of a deployment, we introduce the following
two indicators:

χ , N ·
2πrs
4ds

ϕ , N ·
πr2s
d2s

where χ is the ratio between (i) the sum of the perimeters of the sensed areas and (ii) the perimeter of the monitored area,
whereas ϕ is the ratio between the (i) sum of the areas sensed by the sensor nodes and (ii) the total monitored area.We now
evaluate the probability of missed detection as a function of these two new indicators: without overlapped sensed areas
(using the analytical framework) and with possibly overlapped sensed areas (by simulations, considering a purely random
node distribution, such that sensors might fall close to each other and the corresponding sensed areas might overlap). We
preliminary consider the case with the absence of sensing duty-cycling, i.e., with βsens = 1. The obtained results are shown
in Fig. 5, where the probability of missed detection is shown as a function of (a) χ and (b) ϕ.

On the basis of the obtained results, the following considerations can be carried out.

• Considering Fig. 5(a), the smaller χ , the better the analytical approximation. In fact, a small value of χ is representative
of a scenario where the sum of the perimeters is small with respect to the perimeter of the area, i.e., a scenario where
a few nodes are deployed and/or the sensing range of each node is small, so that it is likely that the sensed areas do
not overlap. On the other hand, when χ is high, sensed areas have better chance to overlap, thus reducing the detection
capability of the system. In this case, the ‘‘effective’’ perimeter of the overlapped sensed areas is smaller than the sum
of the perimeters of the nodes. Therefore, considering Eq. (4), the probability of missed detection is higher than the one
predicted by the analytical framework in the absence of overlapping.

• Considering Fig. 5(a), the probability of missed detection, with both random node deployment (with possible
overlapping) and node deployment with no overlapping, depends only on χ . In other words, given χ it is possible
to predict the probability of missed detection of the designed system. This has a remarkable impact from a design
perspective.

• Considering Fig. 5(b), since ϕ can be expressed as a function of χ , there is a behavior similar to Fig. 5(a), that is for low
values of ϕ, the performancewith randomnode deployment (simulation results) is very close to thatwith no overlapping
(analytical results). On the opposite, the higher ϕ, the larger the gap between simulation and analytical results. It is worth
observing that the probability of missed detection does not simply depends on ϕ, but it is necessary to know also another
network parameter (e.g., N or rs).

While the results shown in Fig. 5 are carried out considering βsens = 1, it is of interest to evaluate the impact of duty-
cycling by keeping the values of χ and ϕ fixed. In Fig. 6, the probability of missed detection is given as a function of βsens,
by considering fixed values of either (a) χ or (b) ϕ. Referring to Fig. 6(a), where different values of χ are considered, when
βsens = 1 the same performance in Fig. 5(a) is (obviously) obtained. It can be observed that for small values of βsens, the
performances with and without overlapping tend to become similar. This is due to the fact that when βsens is small, since
the duty cycles of different nodes are not synchronized, it is likely that even if sensed areas overlap, they turn on separately.
Therefore, the performance predicted by the analytical framework becomes more accurate also for a scenario with random
node deployment. We also remark that while the probability of missed detection, in the case with βsens = 1, depends only
on the value of χ , this is no longer true for βsens < 1. This is expected from (8), which shows that, when the duty cycle
is considered, the performance depends not only on the ratio between the perimeters, but also on the target speed and
the time required by a target to cross a sensed area. Considering the results in Fig. 6(b), similar considerations to those for
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Fig. 6. Probability of missed detection as a function of βsens , considering fixed values of (a) χ and (b) ϕ (or, equivalently, the corresponding combinations
of N and rs). In both cases, the performance without overlapped sensed areas (w/o ov, simulations) and that with overlapped sensed areas (w ov, analysis)
are shown.

the case (a) can be carried out: more precisely, the smaller the value of βsens, the closer the performance predicted by the
analytical framework (no overlap) is to that with random node deployment (overlap). Note, however, that for βsens = 1 the
probability of missed detection does not depend on the value of ϕ, in agreement with the results in Fig. 5(b).

To summarize, by comparing the results presented in Fig. 5 with those in Fig. 6, it can be concluded that:

• when βsens = 1, the probability of missed detection predicted by the analytical framework in Section 4.1, based on
the assumption of non-overlapped sensed areas, is optimistic with respect to that in a scenario with random node
deployment;

• when βsens < 1, the probability of missed detection predicted by the analytical framework accurately estimates that,
evaluated through simulations, relative to the case of random node deployment.

4.3.3. Non-linear trajectories
In the derivation of the analytical framework and in all results previously presented, linear target trajectories have been

considered. However, from a realistic point of view, it is likely that a target may change its trajectory after entering the
monitored area, e.g., because of terrainmorphology. Therefore, it is of interest to understand the impact of non-linear target
trajectories on the system performance. As the analytical framework is based on the assumption that all possible trajectories
are equally likely, we intuitively expect that itwill remain approximately valid also in the presence of non-linear trajectories.

In order to validate the previous assertion, we evaluate the probability of missed detection in the case that the target,
after entering the monitored area along a linear trajectory, changes (only one time) its direction of movement by an angle
uniformly distributed in (0, 2π ] after a time interval uniformly distributed in (0, ttraj], where ttraj ≪ ds/v = 66.7 s (ds/v s
is the time required for the target to cross a side of the monitored area). In particular, we consider ttraj = 20 s. In Fig. 7,
the probability of missed detection is shown, as a function of βsens, in the presence of linear (dashed lines) and non-linear
(solid lines) trajectories. In all cases, pseudo-random node deployment without overlapping between the sensed areas is
considered: the performance with linear trajectories is obtained with the proposed analytical framework, whereas the
performance with non-linear trajectories is obtained by means of computer simulations. The obtained results confirm the
intuitive prediction that the impact of possible trajectory changes is very limited. Indeed, since there is no information about
the entrance point and the entrance angle of a target, a trajectory change is roughly equivalent to considering a different
trajectory, and this has no impact, from a statistical point of view, on the performance. We also point out that if a trajectory
change occurs within a sensed area, the length of the intersection between the target trajectory and the sensed area may be
higher than that without trajectory change.

4.4. Extension to multiple-target detection scenario

While all results presented so far refer to scenarios with a single incoming target, in the case of multiple-target intrusion,
the operator could be interested in knowing either the probability of missing all targets or the probability of missing at least
one of the incoming targets. In the remainder of this subsection, we consider a multiple-target detection scenario where
several targets enter the surveillance area from various entrance points at the same time. We first derive the probability of
missing all incoming targets, referred to as Pma. Due to the independence of the incoming targets, it immediately follows
that

Pma = (Pmd)
NT (9)

where Pmd is the probability of missed detection in the presence of a single target, and NT is the number of targets entering
simultaneously the monitored area. Pa thus represents the probability of remaining totally unaware of the incoming threat.
Conversely, 1 − Pma indicates the probability of detecting at least one target among the group of NT intruders.
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Fig. 7. Probability of missed detection, as a function of βsens , with pseudo-random node deployment without sensed areas’ overlapping. The performance
with target linear (lt) and non-linear (nlt) trajectories is analyzed through the analytical framework and simulations, respectively. Different values of N
and rs are considered.

We now derive the probability of missing at least one out of the NT incoming targets, referred to as Pmo. Since the
complementary event corresponds to detecting each incoming target, Pmo can be expressed as follows:

Pmo = 1 − (1 − Pmd)
NT . (10)

By using the analytical lower bound (8) on Pmd, it is straightforward to derive lower bounds for Pma and Pmo.
From (9) and in (10), it is immediate to conclude that an error on the estimation of Pmd leads to errors on the estimation

of Pma and Pmo. According to the error propagation law [30], the error δz on a function z = z(x1, . . . , xN) can be expressed
as

δz =

N
i=1

∂z
∂xi

dxi. (11)

Applying (11) to (9), one obtains:

δPma

Pma
= NT

δPmd

Pmd
(12)

where δPma is the error on the estimation of Pma and δPmd is the error on the estimation of Pmd. Similarly, one can express
the error δPmo on the estimation of Pmo as

δPmo

Pmo
= NT

δPmo

1 − Pmd
. (13)

From (12) and in (13), one concludes that the errors on the estimation of Pma and Pmo depend linearly on the number
incoming targets. Therefore, for a given estimation error on Pmd (single target), the larger is the number of simultaneously
incoming targets, the worse are the estimation accuracies of Pma and Pmo. This will be confirmed by the following results.

In Fig. 8(a), Pma is shown, as a function of βsens, considering various values (namely 2 and 4) of the number NT of targets
entering the monitored area at the same time. The targets enter with speed v = 15 m/s into the monitored area with side
ds = 1000 m, where N = 50 sensors with sensed range equal to rs = 50 m are randomly deployed. For each value of NT,
simulation (solid lines) and theoretical (dashed lines) results are compared. In the simulations, it is assumed that a single
sensor can simultaneously detect, when active, multiple targets crossing its sensed area at the same time. In all cases (both
analysis and simulation), we assume a pseudo-randomnode deploymentwithout overlapped sensed areas. As intuitionmay
suggest, the probability ofmissing all incoming targets is lower than Pmd. This effect is more andmore pronouncedwhen the
number of incoming targets increases. As an asymptotic effect, Pma tends to zero. On the other hand, decreasing the value of
βsens yields a higher value of Pma, since the awareness of the nodes is reduced. In Fig. 8(b), Pmo is shown, as a function of βsens,
considering three possible values (2, 4, 8) for NT. As before, in each scenario simulation (solid lines) and analytical (dashed
lines) results are shown. As the intuition suggests, when the number of targets increases, it is more and more likely that at
least one target can cross the monitored area without being detected by the system. As shown in Fig. 4(a) for a single-target
case, in the absence of clustering simulation and analytical results present a small discrepancy. Considering Fig. 8(b), it can
be concluded that this discrepancy is amplified in the presence of multiple targets.
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Fig. 8. Simulation (solid lines) and analytical (dashed lines) results for (a) the probability of missing all the incoming targets and (b) the probability of
missing at least one of the incoming targets, as functions of the duty cycle βsens . In all cases, pseudo-random node deployment without overlapped sensed
areas is assumed.

Fig. 9. PMF of the number NT−det of detected targets, out of the NT = 10 incoming targets, considering (a) N = 10 and (b) N = 50 deployed nodes. The
duty cycle is βsens = 0.8.

In order to evaluate the target detection capabilities of the WSN, we analyze the probability of detecting exactly NT−det
out of the NT simultaneously incoming targets. Since the targets are independent, the probability mass function (PMF) of
NT−det is binomial with parameters NT and (1 − Pmd), i.e.:

P{NT−det = n} =


NT

n


(1 − Pmd)

nP (NT−n)
md n = 0, . . . ,NT.

The PMF of NT−det is shown in Fig. 9(a) and (b), considering N = 10 and N = 50 deployed nodes, respectively. In both cases,
NT = 10 targets. All the other network parameters are set as in Fig. 8. The duty cycle is set to βsens = 0.8. In particular, since
NT has a binomial distribution, the average number of detected target is ηT−det = NT(1 − Pmd). In the case with N = 10
nodes, shown in Fig. 9(a), the system has limited detection capabilities, due to the limited number of deployed nodes. More
precisely, ηT−det = 5.47, i.e., the system can detect, on average, half of the incoming targets. In the case with N = 50 nodes,
shown in Fig. 9(b), the system can detect almost all incoming targets. In this case, in fact, ηT−det = 9.81, i.e., on average, 98%
of the targets is detected.

According to the analytical framework presented in this section, it is then possible to evaluate (for a given scenario,
i.e., given value of Pmd) the average number of detected target ηT−det as a function of the number of simultaneously incoming
target NT. In Fig. 10, we analyze the impact of the duty cycle βsens on ηT−det. In the considered scenario, N = 50, and the
other parameters are set as in Fig. 8. In the same figure, the reference curve for the ideal case (i.e., all targets are detected)
is also shown as a dotted line. In the case with βsens = 0.8, the target detection performance remains close to the ideal one,
i.e., all incoming targets are, on average, detected. When βsens reduces to 0.1, an expected performance degradation can be
observed.

On the basis of the extension presented in this subsection, the following considerations can be carried out. Given the
network configuration and the number of incoming targets, it is possible to predict the system performance (in terms of
average number of detected targets) or, conversely, configure the network in order to meet the desired goal in terms of
detection performance.

5. Delay for detection

In order to complement the framework presented in the previous section, it is of interest to compute the average
delay between the target entrance instant and the instant of the first detection by a sensor. As for the derivation of the
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Fig. 10. Average number of detected targets as a function of the number of simultaneously incoming targets, considering two different values of βsens .

Fig. 11. Illustrative example of a target traveling for a distance q without being detected by any sensor in the network.

probability of missed detection, we build on the derivation presented in [6], carried out in the absence of duty cycle for
homogeneous planar Poisson distributed nodes.We remark that the Poisson node distribution is representative of a random
node deployment.

Let us first compute the probability that no sensor is met by a target on its path. Note that a target is detected by a
sensor if the distance of its trajectory from the sensor is shorter than rs.4 Referring to the illustrative scenario in Fig. 11, the
probability that a target is not detected along a path of length q can be accurately approximated with the probability that
no sensor lies in the rectangle, of area 2rsq, shown in Fig. 11 (the rectangle is centered on the path). In other words, one can
the express the probability that the length of the free (from detection) path, denoted as Q , is larger than q as:

P(Q > q) =


1 −

2rsq
d2s

N

. (14)

The average length of the free path can then be evaluated as follows:

E[Q ] =

 q̄max

0
P(Q > q)dq =

 q̄max

0


1 −

2rsq
d2s

N

dq

=
d2(N+1)
s − (d2s − 2q̄maxrs)N+1d−2N

s

2rs(N + 1)
(15)

where q̄max is the average maximum length of a target trajectory inside the monitored area. In particular, the maximum
length qmax (i.e., the length of the portion of the trajectory within the monitored area) depends on both the entrance point

4 This is true since the sensors are preliminary assumed always on. Later on, this assumption will be relaxed.
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x0 and the entrance angle θ0 of the target, as shown in Fig. 11. In particular, it is possible to express the value qmax as the
following function of (x0, θ0):

qmax(x0, θ0) =



ds − x0
cos(θ0)

0 < θ0 < atan


ds
ds − x0


ds

sin(θ0)
atan


ds

ds − x0


< θ0 < atan


x0
ds


+

π

2

−
x0

cos(θ0)
atan


x0
ds


+

π

2
< θ0 < π.

(16)

The three cases presented in (16) come from geometrical considerations. In fact, due to the square shape of the monitored
surface, it is not possible to express the length of qmax with a single closed-form equation. For instance, assuming that the
target enters from the side on the bottom, the three cases depends on whether the target trajectory exits from the side on
the left, on the top or on the right, respectively. For symmetry reasons, similar considerations hold when the target enters
from other sides. The average maximum length can be finally computed as

q̄max ,


Dx0


Dθ0

q(x0, θ0)fX0,Θ0(x0, θ0)dx0dθ0 (17)

where fX0,Θ0(x0, θ0) = fX0(x0)fΘ0(θ0) (owing to the independence between the entrance point and the entrance angle),
fX0(x0) ∼ Unif[0, ds]


Dx0 = [0, ds]


, and fΘ0(θ0) ∼ Unif[0, π]


Dθ0 = [0, π]


. As the integral at the right-hand side of (17)

does not have a closed-form solution, it has to be evaluated numerically. The obtained value of q̄max can be inserted into (15)
and, finally, E[Q ] can be evaluated.

If the sensing devices are always on, then given the target speed v and the length of the free path, the delay for detection
can be immediately evaluated as Ddet = E[Q ]/v. If sensing duty cycle is introduced, the previous derivationmust be refined
to take into account the case where some sensors lie inside the rectangle of area 2qrs, but they cannot detect the target since
their sensing devices are off. Therefore, the probability that no sensor detects the target after it has traveled over a path of
length q can be rewritten as

P(Q > q) =


1 −

2qrs
d2s

N

+

N
i=1

P{Ai} (18)

where Ai , {There are i nodes inside the rectangle and their sensing ranges are off} and the first term at the right-hand side
of (18) represents the probability that no node lies inside the rectangle of area 2qrs (and corresponds to (14)). According to
the derivation presented in Section 4.2, P{Ai} can be expressed as

P{Ai} =


N
i


1 −

2qrs
d2s

N−i 2qrs
d2s

P{ESoT, Ēdet}

i

(19)

where P{ESoT, Ēdet} = (1−P{Edet|ESoT})P{ESoT} is the probability that the target trajectory crosses the area sensed by a node
and this node does not detect the target. By inserting (19) in (18), E[Q ] can then be numerically evaluated as in (15), where
q̄max has the expression given by (17). Then, Ddet can be immediately computed.

In Fig. 12, Ddet is shown as a function of the sensing duty cycle, considering scenarios where various numbers of sensors
are deployed over themonitored area. For small values of N , it can be observed that the analytical model is relatively coarse,
especially for small values of βsens. However, even in this case the gap between simulation and analytical results is limited.
When the number of deployed nodes increases (N ≥ 50), the accuracy of the analytical model becomes very high.

6. Latency after detection

When a target is detected, the time the alert takes to reach the sink has to be as short as possible. In the following, we first
derive the per-hop latency, denoted as D1 hop, and then compute the latency over a multi-hop path. We verify the validity of
our model with experimental measurements on a Crossbow MicaZ testbed [25].

As introduced in Section 3.2, the transmission latency is evaluated considering the off-the-shelf X-MAC protocol, i.e., a
low-power asynchronous MAC-layer protocol for duty-cycled WSNs [27]. The X-MAC protocol uses Low-Power Listening
(LPL), or preamble sampling, to enable low-power communications between a sender and a receiver. X-MAC does not
synchronize wake-up and sleep schedules of nodes. Senders uses a preamble at least as long as the sleeping interval of
the receiver. This guarantees that the receiver will wake up, detect the preamble, and stay awake for the reception of the
data. The X-MAC protocol uses a strobed preambling approach in which the sender quickly alternates between sending the
packet destination address and waiting a short time, so that the receiver can potentially abort the process to start receiving
data. This approach allows to further reduce energy consumption and per-hop latency in comparison with protocols using
long preambles, such as B-MAC [31].
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Fig. 12. Simulation (solid lines) and analytical (dashed lines) Ddet results as functions of βsens , considering different number of nodes.

The average per-hop transmission latency for the X-MAC protocol can be expressed as follows:

D1 hop =
(1 − βcomm)2tcomm

2
+ Sp + Sal + Sd (20)

where βcomm is the (normalized) communication duty cycle over the period tcomm, and Sp, Sal, and Sd are the durations
(dimension: [s]) of the strobed preamble, the preamble ack message, and the alert packet, respectively. We now explain the
rationale behind (20). Considering the status of the receiving node, i.e., if the communication subsystem is either turned on
or off, the probability that a node begins its transmission when the receiving node is on is βcomm and the associated latency
is Sp + Sal + Sd. On the other hand, the probability that a node is off is 1−βcomm. We evaluate D1 hop simply as the arithmetic
average between the worst and best cases. The best case is when a node starts transmitting exactly when the receiving node
starts its LPL operations, so that the packet is transmitted after Sp + Sal + Sd. In the worst case, the transmitting node waits
for the entire duration of the sleeping interval. In addition, since the receiving node must receive an entire preamble before
sending the ackmessage, theworst case takes into account that two transmissions of the preamblemay be required in order
to start the communication. In this case, the latency introduced by the transmission is (1 − βcomm)tcomm + (Sp + Sal) + Sd.
By (i) scaling this term by the probability that the receiver is off, (ii) averaging the best and the worst cases, and (iii) adding
the latency related to the case with the receiver on and scaled by its probability of being on, expression (20) for D1 hop can
be obtained.

Considering a multi-hop path, the average global latency can be simply expressed as D = D1 hopNhop, where Nhop denotes
the average number of nodes that the alert message traverses to reach the sink. The processing time at the relaying nodes
is neglected.

In order to verify the analytical model of the multi-hop alert transmission latency, we have run a set of experimental
tests with a testbed of 4 Crossbow MicaZ nodes deployed in a chain topology. The first node injects a packet every 2 s.
Each subsequent node forwards the packet to its neighbor until it reaches the last node, which reverses the transmission
direction. We have measured the round-trip time setting Nhop from 2 to 6, and βcomm to either 0.067, 0.1 or 0.2.5 For each
pair of values, we compute the average latency as the mean round-trip time of 100 samples, along with the 95% confidence
interval. In Fig. 13, a comparison between theoretical and experimental results is shown. The curves are quite close, even
though a gap appears when βcomm becomes lower and the duration of the sleeping interval increases. This may be due to
the unavoidable alignment of sleep schedules on the packet’s way back, which tends to reduce the latency for large values
of sleeping interval durations, i.e., small values of βcomm. In the context of the reference scenario, the experiments show the
validity of the analytical model, i.e., the latency is well approximated as D ≃ Nhop(1 − βcomm)tcomm/2.

Note that the proposed derivation relies on the assumption of collision-free transmission of the alert. This is realistic for a
single-target scenario with low arrival rate and in the presence of partial node coverage (as considered in this work). Indeed,
in all considered scenarios there is an order of magnitude of difference between the average times (i) for a target to transit
from one sensed area to another and (ii) for an alert notification to reach the sink. In fact, the average distance between
neighboring nodes is on the order of 1/

√
ρs [32], where ρs = N/d2s is the node spatial density. Therefore, the shortest

time6 required to transit from the border of a sensed area to the border of a neighboring sensed area, denoted as ttransit,

5 These values of βcomm correspond to a static active period of 8 ms and tcomm equal to 120 ms, 80 ms and 40 ms, respectively.
6 This time is observed when the target moves along the line connecting the centers of the neighboring sensed areas.
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Fig. 13. Latency as a function of the number of hops traversed by a packet. Both (i) experimental (dashed lines) and (ii) theoretical results (solid lines) are
presented.

can be expressed as follows:

ttransit =
1/

√
ρs − 2rs
v

.

Considering reference system parameter values (N = 50, ds = 1000 m, rs = 50 m, and v = 15 m/s), it follows that
ttransit ≃ 2.8 s. In the case of Nhop = 3 with βcomm = 6.6%, from Fig. 13 it follows that D ≃ 136 ms. Therefore, D ≪ ttransit. In
other words, an alert notification sent by a sensor node will very likely reach the sink far before the target will be detected
by another sensor. In the presence of multiple concurrent senders, the X-MAC protocol features contention-avoidance
mechanisms to keep the latency low and the throughput high. To take into account this mechanisms, even if contention
might not occur frequently in our case, further refinements of the model would be required.

7. Average network lifetime

As nodes operate on batteries, theway they consume energy has a direct impact on the lifetime of the surveillance system.
To take this into account, we now propose a simple energy model for the engineering toolbox.

The energy consumption of a node can be roughly estimated as the sum of the energies consumed by its hardware
components. For the sake of simplicity, we only integrate in the energy model contributions from the sensing sub-unit
and the communication sub-unit (radio transceiver). The network lifetime is defined as the time needed for the average
residual energy Er to be lower than a (given) threshold value Eth, which can be used to model the physical behavior of a
node. The average residual energy at time t , denoted as Er(t), can be expressed as

Er(t) = NEi − NΩtott (21)

where Ei is the initial energy of a node andΩtot (dimension: [W]) is the total power consumedby sensing and communication
operations (assumed to be time-invariant). According to the description of the X-MAC protocol in Section 6, there are four
possible states for a node: (i) transmission, (ii) reception, (iii) sleep, and (iv) LPL, with corresponding power consumptions
denoted as ΩT, ΩR, Ωs, and ΩLPL (dimension: [W]), respectively. Ωtot in (21) can then be computed as follows:

Ωtot = Ωsensing + ΩLPL + (ΩR + ΩT)PdNtarget

where: Ωsensing is the power consumption associated with the sensing device in the activity period of duration tsens; ΩLPL is
the power required when performing the LPL operations (over a period of duration tcomm); ΩR is the power used by a node
to receive a packet; ΩT is the power used to transmit an alert packet; Pd is the target detection probability; and Ntarget is the
number of times that a target appears during a reference period. The average power to transmit an alert packet can then be
expressed as

ΩT =


ΩTxSd +

(1 − βcomm)tcomm

2(Sp + Sal)
(ΩTxSp + ΩRxSal)


Nhop

Ntcomm
(22)

where the first additive term in the squared brackets, i.e., ΩTxSd, is the energy spent to transmit the data portion of the
packet,whereas the second additive termcorresponds to the energy consumption due to the periodic preamble transmission
in order to notify the receiving node of a packet arrival. As in Section 6, since nodes are not synchronized, we assume that
the average number of preamble transmissions is the arithmetic average between best and worst cases. The term Nhop/N is
introduced owing to the fact that only a subset of the N sensors is used to relay the alert message to the AP.
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The average power to receive a packet can be expressed as

ΩR =
[ΩRxSd +


ΩRxSp + ΩTxSal


]

tcomm

Nhop

N
(23)

whereΩRxSd is the energy spent to receive a packet andΩRxSp+ΩTxSal is the energy spent for the reception of the preamble
and the transmission of the ack message. Since in the scenario considered there is no information about the position of the
AP, the average number of hops has been determined by calculating, using the Dijkstra algorithm [33], the shortest path
from each node to every other node in the network. Given that the transmission range rT is around 250m and N = 50 nodes
are deployed within the monitored area, the estimated value of Nhop, heuristically evaluated through simulations, is around
2.7, which being Nhop an integer value, is rounded to 3.

The power associated with the LPL operations can be expressed as

ΩLPL = ΩRxβcomm + Ωs(1 − βcomm) − Γ Tx − Γ Rx (24)

where Γ Tx and Γ Rx are two corrective terms, described in more detail below. In particular, the powers in (22)–(24) are
evaluated considering the energies consumed over a period of duration tcomm. However, during normal operations the node
either performs LPL operations or transmits/receives a packet.Γ Tx andΓ Rx are used to refine the power consumption due to
LPL operations. In fact, the LPL and also the transmission and reception intervals overlap for short intervals, so that without
these two terms the power consumption budget would be higher than the correct one. In particular, Γ Tx can be expressed
as

Γ Tx =


Ωs


(1 − βcomm)tcomm

2
+ Sd + Sal


+ ΩRxSp


PdNtarget

Nhop

Ntcomm
(25)

whereas Γ Rx can be expressed as

Γ Rx =

(Sal + Sd) Ωs + ΩRxSp


PdNtarget

Nhop

Ntcomm
. (26)

The term Γ Tx takes into account the fact that, during transmission operations, such as (i) periodic preamble transmission
over an interval of duration (1−βcomm)tcomm/2, (ii) packet transmission, and (iii) acknowledgment reception, a node would
normally be in the sleep state, whereas during the transmission of the preamble, that will be acknowledged by the receiving
node, a node would normally be in the reception state. Thus, the correction factor Γ Tx is necessary, since otherwise the
energy consumed by the node with this model would be higher than the real value because reception and transmission
operations would overlap with normal LPL operations for a period. Similar considerations can be carried out for the term
Γ Rx. In fact, when a node is waiting for the acknowledgment window to transmit an ack message, to receive the preamble,
and to transmit a packet (according to the LPL operations), it would normally be in the sleep state. The same considerations
come into playwhen anode is receiving the preamble, since itwould normally be in the receiving state for the LPL operations.

Finally, the power consumed during sensing operations can be expressed as

Ωsensing = βsensΩsens (27)

where Ωsens is the power consumption for sensing operations.
Introducing the expressions (25) and (26) into (24) and the expressions (22), (23), (24) and (27) into (21), it is possible

to derive an expression for the energy consumption which depends on both sensing and communication parameters.
The network lifetime L is the time at which Er(L) = Eth and, from (21) one obtains:

L =
NEi − Eth
NΩtot

. (28)

8. System engineering: an application case

In this section, we study a use case where a surveillance system has to be optimally configured to maximize the network
sustainability, i.e., its lifetime L, and for given quality of service requirements in terms of probability of missed detection
(Pmd) and latency for alert transmission to the AP (D). Since Eqs. (8) and (28) are not linear, standard linear programming
optimization techniques cannot be used. However, the three equations form a convex set, which makes gradient-based
optimization techniques feasible [34]. Throughout this section, the target arrival rate Ntarget is fixed at 10 targets per day.

A realistic use case of the proposed framework is the maximization of the lifetime L of the WSN under the constraint of
given maximum values of D and Pmd, denoted as D∗ and P∗

md, respectively. This application case consists of the optimization
of a single-objective function, given constraints on the two other functions. The optimal parameters can be evaluated using
single-objective convex programming techniques. In Fig. 14, the longest lifetime (Lmax), under the constraints Pmd < P∗

md
and D < D∗, is shown as a function of P∗

md and D∗.
In particular, for a given pair of values of D∗ and P∗

md, we evaluate the longest lifetime that can be achieved. Of course, the
more stringent the requirements on D and Pmd, the shorter the achievable lifetime. In fact, for small values of P∗

md and D∗, a
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Fig. 14. Longest achievable lifetime (Lmax) under probability of missed detection (P∗

md) and latency (D∗) constraints.

sensor must keep its sensing interface on (to minimize Pmd and D) and its communication interface on (to minimize D) for
a large portion of each sensing/communication period, so that the energy consumption increases and the lifetime shortens.
On the other hand, when the requirements are less stringent, the sensing and communication interfaces can be switched
off for a longer portion of the period, and, consequently, the lifetime becomes larger.

Focusing on the shape of the surface, generated by interpolation of the simulation results, it is possible to understand the
contribution of both sensing and communication operations. When the latency requirements are stringent, the lifetime is
short. Obviously, if the latency requirements are relaxed, the lifetime increases towards a saturation value which depends
on P∗

md. A short latency corresponds to a short network lifetime, since (i) the power consumed during reception is several
orders of magnitude larger than the power consumed in the sleep phase and (ii) the communication interface of each node
must be on for a large portion of the communication period tcomm in order to ensure that a packet is delivered to the AP
in a short time. The impact of the latency on Lmax becomes negligible, i.e., the lifetime saturates, with respect to D∗, when
D∗

≃ 0.15 s. In fact, this value corresponds to the minimum allowed value of βcomm that guarantees that a preamble is
correctly received in order for a communication to start. Therefore, larger values of D∗ have no impact on the latency, since
lower values of βcomm cannot be selected.

Focusing on the P∗

md − Lmax plane, it turns out that the power consumption during sensing is basically negligible when
the latency requirements are limited. In fact, the power consumption associated with sensing operations is one order of
magnitude lower than that related to reception operations. When the maximum tolerable latency becomes longer than
0.15 s, the power consumption related to the communication interface remains constant and the lifetime is affected only
by the sensing power consumption. In this case, the lower P∗

md (i.e., the more stringent the constraint on the probability of
missed detection), the higher the energy consumption, since a sensor must be on for a longer interval.

9. Concluding remarks

This paper has addressed the problem of energy-efficient target detection using unattendedWSNs.We have first derived
a framework for the evaluation of various performance indicators that are useful for the characterization of a WSN-based
surveillance application, under the assumption of random node deployment. In particular, the proposed framework allows
to evaluate the probability of missed detection of one or multiple incoming targets, the delay for detecting a target, the
latency of notification transmission, and the network lifetime. By leveraging on this ‘‘toolbox’’, we have then characterized
the trade-offs faced by WSNs with respect to energy consumption and quality of service, in terms of detection capabilities
and latency. This toolbox allows to optimally configure a givenWSN for a variety of quality of service performance indicator
requirements. As such, the engineered toolkit gives the possibility to an operator to set up efficiently an unattended WSN
for a wide range of scenarios like counting applications with poor latency requirements (e.g., counting animals in a given
area using passive infra-red sensing), as well as live monitoring applications with a strong latency D and medium Pmd
requirements (e.g., tracking emergency or panic situations in a public subway, using audio sensing) or application with
strong delay for detection Ddet requirements (e.g., access detection in sensible areas using seismic sensors).

Further works along these lines include extensions of the engineering toolbox to encompass (i) deterministic node
deployment, addressing, for instance, physical constraints imposed by the surface morphology, (ii) non-ideal sensing and
transmission ranges, using multiple sensing modalities, (iii) coordinated sensing activities, and (iv) exhaustive energy
models for complex sensor nodes, in order to improve the overall accuracy with respect to real operating conditions. We
also envision to assess the performance of simple target detection applications, using the open large-scale WSN testbed
provided by the French national project SensLab, with specific WSN architectures such as those presented in [35].
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