
XIAN: Cross-Layer Interface for Wireless
Ad hoc Networks

Hervé Aı̈ache, Vania Conan, Jéŕemie Leguay, Mikäel Levy
Thales Communications

92704 Colombes cedex, France
{firstname.name}@fr.thalesgroup.com

Abstract— In the highly dynamic and unpredictable
environment of MANETs, cross-layerdesign is receiving
growing interest but lacks experimental validation tools.
This paper proposes Xian, a Cross-layer Interface for
wireless Ad hoc Networks, a generic interface for experi-
menting cross-layer designs with legacy 802.11 protocols.
Xian can be used as a service by other network layers or
system components to access information about configura-
tion and performance of MAC/PHY layers. The interface
is fully implemented and is available for Linux over the
MadWifi 802.11 driver. We exemplify its use for the design
of various QoS routing schemes and provide experimental
demonstration of their potential benefits.

I. I NTRODUCTION

Mobile ad hoc networks, called MANETs [1], allow
the spontaneous set up of wireless communication sys-
tems. A MANET is composed of mobile nodes that
share one or more wireless channels without centralized
control. Network topology but also its related resources
are subject to frequent variations with time. In such
dynamic and unpredictable distributed environments, the
traditional network conception is challenged. Recent
research work and studies explore new promising and
more flexible design approaches, that revisit the classical
IP stack design, calledCross-Layerapproaches. This
paper presentsXian, a Cross-layer Interface for wireless
Ad hoc Networks to facilitate cross-layer integrations
and experimentations by easing the access to information
from MAC/PHY layers. Xian has been implemented and
is available for Linux over theMadWifi 802.11 driver.

The central idea of cross-layering consists in allowing
a more flexible exchange of status or control information
between the different components of the communication
system. With a better knowledge of available resources
from different layers of the ad hoc network stack, the
system is expected to be more reactive to the wire-
less environment and responsive to quality required by
applicative-oriented elements.

Different approaches have been investigated. When
compared to the usual OSI (Open Systems Intercon-
nection) reference model, existing cross-layer solutions
span a wide spectrum of options: some advocate global
exchange of information between components (e.g. Conti
et al. [2]), others prefer to limit them to adjacent layers
(e.g. Kawadia et al. [3]), depending on how they impact
or differ from this reference model.

In any case, cross-layering calls for software architec-
tures and implementations that support a more flexible
sharing of information and status exchanges between the
processes and functional modules of the communica-
tion system. Experimenting with cross-layer design for
MANETs remains difficult; most ad-hoc testbeds make
use of 802.11 cards which lack appropriate API support.

This paper proposes a cross-layer design, called Xian
(Cross-layer Interface for wireless Ad hoc Networks),
compatible with legacy 802.11 MAC/PHY layers. The
interface has been fully implemented and is available
for Linux kernel 2.4.X, and build upon theMadWifi
driver [4]. This implementation aims at encouraging and
at facilitating cross-layer studies and experimentations
over MANETs testbeds. We also provide an example
use-case focused on QoS routing decisions.

The remainder of the paper is structured as follows.
Sec. II presents the Xian approach and design. Sec. III
describes its implementation on Linux. Sec. IV presents
results demonstrating the use of Xian to perform QoS
routing decisions. Sec. VI concludes the paper, dis-
cussing directions for future work.

II. T HE X IAN DESIGN

The Xian approach to cross-layering extends rather
than replaces the OSI model, The design enables tight
interactions between the 802.11 MAC layer and upper
legacy OSI model layers. Fig. 1 presents different exam-
ples of cross-layer enhanced services offered by Xian to
the wireless node.

Note that the OSI model already integrates the notion
of offered services to support protocol dialogs between
identical layers of distributed entities. However, the
service offered by one layer is only available to the layers
directly adjacent to it (e.g. encapsulation, error control
or fragmentation).

The rest of this paper is structured as follows. Sec. II

presents the CLOWN design. Sec. III describes its

implementation on Linux. Sec. IV presents

experimental works arround a use case of CLOWN to

perform QoS routing with the ad hoc protocol OLSR.

Sec. VI concludes the paper, discussing directions for

MAC Layer

Network Layer – IP

Transport Layer – TCP or UDP

Applications Routing Protocol

Metric 1 Metric 2 Metric 3 Metric 4 Xian
API

Xian MAC
Information
Exchange

Fig. 1. Xian API and information exchanges.

The major enhancements offered by the Xian imple-
mentation is to enable interactions not only between
adjacent layers but also between non-adjacent layers. The
nature of the exchanged information focuses on metrics
representing network resource status and configuration
information.

Within the wireless node, cross-layer communication
is implemented on a Request/Response model. Upper
layers or communication system components can thus
access individual metrics provided by the 802.11 MAC
layer.

In the design of the Xian software particular attention
was paid to facilitate its use and integration with other
operating system components (e.g., IP stack layers or
applications). The purpose is to propose an open cross-
layer implementation which supports the largest possi-
ble class of experimentations in domains such as QoS
signalling, ARQ/FEC mechanisms, end-to-end transport
protocols, adaptive applications, scheduling algorithms,
routing predictions or bit rate adaptations.

Sec. III presents how Xian is implemented for
the Linux operating system. The implementation aims
at providing concrete re-usable cross-layer mecha-
nisms/design to enable tests, experimentations for real
testbeds and trials.

III. T HE X IAN IMPLEMENTATION

A first implementation of the Xian approach has been
provided for a Linux kernel 2.4.X and experimented
with a MadWifi driver. This section first presents the
main characteristics of the 802.11 Linux driver and then
describes the Xian software architecture.

A. MadWifi driver

The MadWifi driver results from an open source
project called Multiband Atheros Driver for Wireless
Fidelity. The Atheros chipset is designed through a real
configuration-openness of the associated device. Differ-
ent Atheros chipset versions are supported by the driver,
such as AR5210 dedicated to 802.11a, AR5211 adding
802.11b support and AR5212 complementing the two
latter ones with the 802.11g standard.

Thanks to a very active community and based on
an open/modular architecture design, different driver
versions are supported by Linux:

• The BSD branch, which offers a good support of
the ad hoc mode and of a monitor mode (802.11
frames sniffing).

• The WDS branch, which enables theWireless
Distribution Systemtechnology use (roaming and
bridging management between access points inter-
connecting different wireless networks).

• The WPA branch, which focuses on 802.1x for
authentications with Radius servers (through Radius
clients known as ”wpa supplicant”).

After couple of tests with several 802.11 Linux
drivers, theMadWifi BSD branchversion was selected
for the Xian implementation. This version was the only
one combining not only the support of the ad hoc mode,
open/modular architecture design choices. It also offers
more than 180 state information or statistics. 40 of these
measurements are given on a per neighbour basis, the
remaining ones being aggregate values for the node.

Sec. III-B explains how the Xian cross-layer software
design exposes these information/statuses/statistics to
other Linux operating system components.

B. Software design

The Xian software is composed of three main com-
ponents which enable enhancements of the MAC layer
in terms of state information accesses implemented at
driver level. The particularity of the design consists
in proposing driver/MAC internal state information not
only to the IP stack layers (i.e. IP, Transport) but also to
processes, like applications or routing protocols. These
three main components are the following:

• The Kernel Space Xian Interface(KSI), dedicated
to kernel space components (e.g. TCP or UDP
implementations) is implemented as a Linux kernel
module, which interacts directly with theMadWifi
driver to retrieve its internal states and statistics.

• The User Space Xian Interface(USI), which du-
plicates the Kernel Space Xian API but at the user

space level. This API is implemented as an ordi-
nary C library in order to facilitate its integration
with user space programs (e.g. routing daemons or
applications).

• The Xian Information Transport Module (ITM),
which allows to pass information and statistics of
theMadWifidriver from the kernel space to the user
space, by connecting the two previous Xian APIs.
This module is implemented in this version of Xian
as a special character device.

Fig. 2 illustrates how these components interact and
how internal driver/MAC states are provided to other
Linux system components.

User Space

Kernel Space

802.11 MAC/PHY Layer – Madwifi driver

Kernel Space Xian API / KSI (kernel module)

Kernel
code

or
Kernel
module

Xian
Information
Transport

Module

ITM

User Space Xian API / USI (C library)

User Space Xian Extended API / USEI (C library)

Routing daemon Application

Measurement () Operation () Relevance ()

Get Metric () – Aggregated or Per neighbour metrics

Get Metric () – Aggregated or Per Link metrics

IP layer

Transport layer – TCP or UDP

Process

Fig. 2. Xian software architecture for Linux system.

From the developer’s point of view, the two Xian APIs
(i.e. KSI and USI) look exactly the same. As mentioned,
the USI allows user space processes to request the KSI
thanks to the ITM. The ITM is a messages-oriented
module implemented as a character device. This means
that the ITM:

• Implements a ”write” function to ask the KSI from
the user space level (used by the USI).

• Implements a ”read” function to get KSI answers
from the user space level (used by the USI).

• Defines a particular Xian message structure to ex-
change information between the KSI (i.e. the kernel

struct qos_generic_msg /* Generic Xian message structure */
{
unsigned long struct_id; /* Info. type (link metric,

node statistic...) */
unsigned long type_msg; /* Info. Exchange status (request,

response or error) */
char dev_name[10]; /* Interface name */
unsigned int id_error; /* Error code */

};

struct qos_metric_node_msg /* Link metric Xian message
{ structure */
unsigned long struct_id; /* Info. type (link metric,

node statistic...) */
unsigned long type_msg; /* Info. exchange status (request,

response or error) */
char dev_name[10]; /* Interface name */
unsigned int id_error; /* Error code */
char macaddr[17]; /* MAC address of neighbour node */
enum type_metric_t type_metric;
unsigned long metric_name; /* Metric type */
union metric; /* Metric value */

};

Fig. 3. Examples of Xian messages.

space) and the user space level (i.e. USI).

The Xian message structures are designed following
an object oriented approach: a generic message structure
is inherited and then specialized considering the MAC
information type (e.g. link metric, node statistic, etc.).
In this way, each Xian message is decomposed in two
parts:

• A fixed length part, which specifies the Xian in-
formation type contained by the message (e.g. link
metric), status about the exchanged information (i.e.
request, response or error), the network interface
name defined by the Linux system and an error code

• A variable length part containing the value of the
requested internal driver/MAC state/statistic/metric

Fig. 3 shows two examples of Xian messages: at the
top a generic message is presented and at the bottom
a Xian message reporting link metric information is
illustrated.

Note that the Xian information exchanged through the
ITM and reported by the USI and the KSI are simply
extracted from specific structures and states maintained
by theMadWifi driver.

As already mentioned in Sec. III-B, these messages
essentially report link metrics (e.g. RSSI for a specific
neighbor node) or aggregated statistics (e.g. total of
transmitted MAC frames). They can be considered as
elementary MAC metrics, which should be combined
(thanks to specific operations) to obtain refined and
accurate calculated metrics.

The following Sec. III-C describes first how the Xian
APIs are designed and, then, introduces a new com-
ponent of the architecture: an extended Xian interface
providing calculated and refined driver/MAC metrics per
link for processes running at the Linux user space level.

C. 802.11 metrics and Xian interfaces

The metrics offered by the implementation of the
MadWifi driver can be clustered in three groups:

• Configuration states, which mainly concerns the
current configuration parameters of the 802.11 net-
work device, such as the used channel or the number
of queues.

• Aggregated metrics, similar to counters, this kind
of metrics provides global statuses on the use of
the 802.11 network interface since it run;s first
started. For example, the reported information can
be: the number of received frames dropped or with
wrong BSSID, the number of transmitted frames
with CTS or with RTS enabled, the relative signal
strength (RSSI) of the last ACK on transmission, the
number of failed receptions (due to queue overrun,
bad CRC, PHY errors or decryption problems).

• Per neighbour/link metrics, which stores per-
neighbour information related to particular trans-
mission at MAC layer. For instance, this kind of
metric relates the number of received/transmitted
data frames or bytes, the relative signal strength
(RSSI) or the number of transmission retries.

The implementation of Xian was mainly concerned by
the two last kinds of information provided by theMad-
Wifi driver: aggregated metricsand per-neighbour/link
metrics. Moreover, with respect to the Request/Response
communication model, the following simple was chosen:
implementing a function per metric offered by theMad-
Wifi driver.

Therefore, equal to the number of selected metrics,
about 180 functions have been developed and integrated
in the Xian APIs (i.e. in the KSI and in the USI, the
duplicated interface at the user space level). Depending
on the type of the reported metric (aggregated or per-
neighbour/link), the prototype of the function (for a given
metric namedmetric name) was elaborated as follows:

• For per-neighbour/link metrics:

u_int32_t /* metric value */
get_node_metric_name(

u_int8_t * macadd, /* neighbor’s MAC address */
char * dev_name, /* device name */
unsigned int * code_err); /* error code */

• For aggregated metrics:

u_int32_t /* metric value */
get_metric_name(

char * dev_name, /* device name */
unsigned int * code_err); /* error code */

These metrics, obtained directly from theMadWifi
driver, can be considered aselementary metricswhich
should be combined or refined in order to be meaningful
or at least more useful for specific system components.

For example, the number of transmitted MAC frames
(in bytes) would not be an interesting metric if no
time-correlation is introduced to reflect how this metric
evolves during the life-time of the wireless communica-
tion system. In other cases, the average value of a given
metric is more meaningful than an immediate measure-
ment. Therefore, we have decided to complement the
Xian interfaces with another API developed on top of the
USI. This new component of Xian is calledUser Space
Xian Extended Interface(USEI). The USEI interacts
directly with the USI and can be decomposed in three
main set of functions:

• Measurement functions, which provides calculated
metrics resulting from the combination of several
elementary metrics taken directly via the USI or
from the refinement of an elementary metric (e.g.
average values).

• Operation functions, which implements the corre-
sponding mathematical operator required by the
new defined calculated metrics (e.g. min or max
functions).

• Relevance functions, which implements the cor-
responding comparator allowing to indicate if a
significant difference occurs between two calculated
metrics (typically between the previous and the new
ones).

Note that, like the USI, the USEI is implemented as
a usual C library. The function prototypes are defined as
follows:
struct qos_metric_measurement /* Returned metric structure */
get_qos_metric (
unsigned int type, /* metric type to be measured */
char * macaddr, /* MAC address of neighbour node */
char * dev_name, /* Interface name */
unsigned int * code_err); /* Error code */

unsigned int /* Error code */
metrics_operation (
struct qos_metric_measurement qos_metric_1, /* First operand */
struct qos_metric_measurement qos_metric_2, /* Second operand */
struct qos_metric_measurement * qos_metric_result); /* Result */

unsigned int /* Error code */
is_relevant_metric (
struct qos_metric_measurement qos_metric_new, /* Compared metric */
struct qos_metric_measurement qos_metric_old); /* Reference metric */

The following Sec. IV presents the results obtained
with the implemented Xian components on a real 802.11
ad hoc platform and demonstrates their expected benefits
for QoS routing.

IV. QOS ROUTING: A USE CASE

We present in this section two example use cases in
which 802.11 MAC/PHY metrics are measured through
the Xian API and we discuss how they may be used
to improve the quality of the routes selected by routing
protocols.

As shown by De Couto et al. [5], the use of the
hop count may lead to poor quality routes that follow
long range links, suffering from high packet error rate,
or traversing heavily loaded areas, presenting a high
level of radio interference or a high level of congestion.
QoS routing uses metrics from other layers that can
take these parameters into account. A number of such
metrics have been proposed in the literature: theexpected
transmission count(ETX) proposed by De Couto et
al. [6] measures the bidirectional packet loss ratio of
links and themedium time metric(MTM) proposed by
Awerbuch et al. [7] selects high throughput paths, the
available bandwidthintroduced by D́eziel et al. [8],
the metric presented by Iannone et al. [9] combines
the packet success rate, the interference level, and the
physical bit rate. Note that a number of contributions
have been made to integrate those metrics in routing
protocols. Badis et al. [10] proposed a QoS routing
extension to OLSR[11] and Renesse et al. [12] one for
AODV[13].

As pointed out by Sec. III, a number of raw and
calculated metrics can be accessed easily via simple
APIs. The following section shows how to use Xian
to perform the integration of these metrics into routing
protocols and reports the main points and results of our
experimentations.

A. Experimental ad hoc platform and parameters

To highlight the benefit of QoS routing we set up
two experiments: the first one with four nodes (quad
topology) and the second one with three nodes (triangle
topology). We used4 GigaByte GN-WMAG cards with
Atheros chipsets. On each machine involved in the
experiments, we runiperf [14] to generate and measure
performance of TCP and UDP. We also run a simple
program that logs, for each link, the metrics accessed
through the Xian API. We logged:

• The RSSI(Relative Signal Strength Indicator): the
wide-band received power within the used channel.

• The delta occupancy: the sum of total data bytes
received and sent at the MAC layer within the time-
interval of lengthδ.

In reporting the results of the measured metric values
in the following subsections, we used the following con-
vention: the plots in black represent the sampled values
of the metric measured at everyδ time-interval, and the
plots in gray correspond to averaged values computed
over theN past sampled values. Note that sampled and
averaged values are computed within Xian and returned

to the logging tool via the APIs of Sec. III-C. Table I
shows the different parameters we used.

Parameter Value
δ 10ms
N 60
UDP sending rate 100 KBytes/s
Packet size 100 bits
Interval between iperf reports 0.5s
802.11 bitrate 11Mbits
RTS/CTS off

TABLE I

EXPERIMENT PARAMETERS.

B. Quad topology use-case

The first scenario is composed of4 nodes (see Fig. 4):
nodeS is the source and sends traffic to the destination
nodeD. A concurrent UDP flow is generated between
R2 andD.

S

D

R1

R2

Fig. 4. Quad topology.

The purpose of the scenario was to compare the
performances of similar UDP and TCP flows for the two
possible 2-hop count routes fromS to D: the one going
via R1, and the one going viaR2.

All measurements are synchronised on the same time
line by a dedicated tool that handles distributed sce-
narios. For traffic generation we used the following
sequence:

1) [0s : 100s]: S sends UDP traffic toD via R1.
2) [100s : 200s]: S sends TCP traffic toD via R1.
3) [200s : 300s]: S sends UDP traffic toD via R2.
4) [300s : 400s]: S sends TCP traffic toD via R2.

Figures 5(a) to 5(d) show the RSSI values for each of
the unidirectional links taken by data packets. Note that
RSSI measurement for linkS → R1 is carried out at
R1 and that its value is updated by the driver only when
packets are received. We can see that the route going
from S to D via R2 suffers from links having lower
RSSI than the one going viaR1. Figures 5(e) to 5(h)
plot the observed link occupancy. These curves allow
to follow the global experiment and show the different

occupancies that result from the sent traffic. Note that
the concurrent UDP flow generated betweenR2 andD

is visible on Fig. 5(h).

Fig. 6 shows the performance results. It plots the
throughput achieved by UDP and TCP flows when
relayed byR1 and byR2, and the delay measured for
UDP packets. Regarding UDP traffic, we measured a
throughput of667.67 Kbits/sec viaR1 and of 599.98
Kbits/sec viaR2 with respectively a standard deviation
of 50.37 Kbits/sec and85.47 Kbits/sec. The route via
R2 provides better performance with higher and more
stable throughput. The same holds for the delay since
we measured an average delay of2.13 ms via R1 and
of 2.24 ms viaR2 with respectively a standard deviation
of 1.67 ms and1.63 ms. Similar results are obtained for
the TCP flows, with an average throughput of2116.03
Kbits/sec viaR1 and1809.25 Kbits/sec viaR2.

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(a) S → R1

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(b) S → R2

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(c) R1 → D

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(d) R2 → D

 0

 20

 40

 60

 0 200 400

kb
its

seconds

(e) S → R1

 0

 20

 40

 60

 0 200 400

kb
its

seconds

(f) S → R2

 0

 20

 40

 60

 0 200 400

kb
its

seconds

(g) R1 → D

 0

 20

 40

 60

 0 200 400

kb
its

seconds

(h) R2 → D

Fig. 5. Metric values for the quad topology.

 0
 200
 400
 600
 800

 0 50 100

kb
its

/s

seconds

(a) UDP throughput viaR1

 0
 200
 400
 600
 800

 0 50 100

kb
its

/s

seconds

(b) UDP throughput viaR2

 0
 2
 4
 6
 8

 10

 0 50 100

de
la

y
(m

s)

seconds

(c) UDP delay viaR1

 0
 2
 4
 6
 8

 10

 0 50 100

de
la

y
(m

s)

seconds

(d) UDP delay viaR2

 0

 1000

 2000

 3000

 0 50 100

kb
its

/s

seconds

(e) TCP throughput viaR1

 0

 1000

 2000

 3000

 0 50 100

kb
its

/s

seconds

(f) TCP throughput viaR2

Fig. 6. Route performance for the quad topology.

The experimental results highlight the potential bene-
fits of QoS routing. Indeed, in the presence of two routes
of identical length, one would have preferred in that
case the one passing viaR1. The remaining difficulty,
not addressed here, consists in chosing the appropriate
metric that would be able to cope with all cases and
topologies encountered in real life.

C. Triangle topology use-case

The second scenario is composed of only three nodes
(see Fig. 7). The two options to route packets from
S to D are either to go viaR1 or to use the direct
connection between source and destination. The purpose
of the scenario was here to compare TCP and UDP
performances for a2 hop-count route with good quality
links and for a1 hop-count lossy link.

S

D

R1

Fig. 7. Triangle configuration.

We used the following sequence of generated traffic:

1) [0s : 100s]: S sends UDP traffic toD via R1.
2) [100s : 200s]: S sends UDP traffic toD directly.

Fig. 8 shows the RSSI measured for the different links.
We can see that the signal received byD from S is
significantly low compared to that of the other links.
Note that we observed that for an RSSI lower than10dB,
the link is reported as broken to upper layers.

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(a) S → R1

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(b) R1 → D

 0

 20

 40

 60

 0 200 400

rs
si

 (
db

)

seconds

(c) S → D

Fig. 8. Signal strength (RSSI) on links.

 0

 400

 800

 1200

 0 50 100

kb
its

/s

seconds

(a) Throughput viaR1

 0

 400

 800

 1200

 0 50 100

kb
its

/s

seconds

(b) Throughput direct

 0
 2
 4
 6
 8

 10

 0 50 100

de
la

y
(m

s)

seconds

(c) Delay viaR1

 0
 2
 4
 6
 8

 10

 0 50 100

de
la

y
(m

s)

seconds

(d) Delay direct

Fig. 9. Route performance for the triangle topology.

The performances of the UDP flows are plotted on
Fig. 9. We measured an average throughput of927.51
Kbits/sec viaR1 and of625.885 Kbits/sec with a direct
route with respectively a standard deviation of82.24
Kbits/sec and313.74 Kbits/sec. Regarding the delay, we
measured1.11 ms in average viaR1 and1.47 ms by the
direct route. This experiment shows that in some cases,

even when the source and the destination are within
range, relaying traffic by a node in between can provide
a route with better performances.

V. RELATED WORK

The literature discussing cross-layer issues for wire-
less systems is quite large, so we restrict here to cross-
layer simulation, implementation, experimental work on
the use by other layers of metrics from MAC/PHY
layers.

Xian allows higher layers to have a better access and
knowledge of the Wi-Fi MAC status. These higher layers
may be the IP layer as we have seen in Sec. IV but
any layer can benefit from available information. Local
information provided by Xian can be used for instance:

• To support seamless vertical hand-offs between
WLAN and other access technologies such as in
ECLAIR presented by Raisinghani et al. [15].

• To adapt video transcoding function of traffic con-
ditions as shown by Setton et al. [16].

• To perform load balancing by estimating the lo-
cal load as in CrossTalk introduced by Winter et
al. [17].

• To gather topological information such as link
ups/link downs as mentioned by Marrón et al. [18].

The Xian implementation can also be used to validate
cross-layer architectures, such as the ones proposed by
Conti et al. [2] or by Wang et al. [19].

What is not provided by Xian is the means to distribute
globally over the network the information that it provides
access to locally. A number of work in that direction
have been published, such as the use of the link-state
routing protocol OLSR to disseminate QoS information
(see QOLSR [20] or CrossTalk [17]). Additionally the
Xian implementation does not allow either the setting
of internal parameters of the MAC Wi-Fi driver such as
the size of the contention window or waiting times (e.g.
BIFS or SIFS).

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Xian, a cross-layer interface im-
plementation that may be applied to build experimental
set-ups for validating a large variety of use cases of
Wi-Fi cross-layering. Among the contributions of this
work, we described the Xian design and detailed the API
offered to other network layers or system components.
We also presented one of the possible use cases through
a real deployment highlighting the benefits of QoS
routing. And finally, we released our code that can be
downloaded [21].

Future work along these lines would include the
development of interfaces working in a publish/subscribe
manner. This kind of interface may improve further
the integration of the MAC and routing layers as it
would allow, for instance, reporting of link up and link
down events and help the system react more quickly
to topology changes. Weighted average can also been
introduced to favour latest measurements or compound
metrics can be obtained by combining elementary ones.
Other metrics, that should be implemented inside the
MadWifi driver or on top of the MadWifi stripped
driver [22], can be added as well. Finally, one could wish
to extend the generic APIs to support other chipsets than
Atheros in the spirit of the Wireless Tools.

In addition to efforts around improvements of Xian,
we plan to conduct work on integration with other
system components. We intend to use Xian for cross-
layer integration with audio/video streaming components
and QoS routing extensions for MANETs protocols.

ACKNOWLEDGMENTS

We would like to thank the funders of this work:
Thales Communications, Euronetlab, E-Next, the LIP6
and the ANRT, which provided the CIFRE grant
135/2004.

REFERENCES

[1] S. Corson, “RFC 2501: Mobile ad hoc networking (MANET):
Routing protocol performance issues and evaluation considera-
tions,” IETF, January 1999.

[2] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-layering
in mobile ad hoc network design,”IEEE Computer, pp. 48–51,
february 2004.

[3] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross
layer design,”IEEE Wireless Communication Magazine, july
2003.

[4] “MadWifi,” http://www.madwifi.org.
[5] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Morris,

“Performance of multihop wireless networks: Shortest path is
not enough,” inProc. HotNets. ACM SIGCOMM, 2002.

[6] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A
high-throughput path metric for multi-hop wireless routing,” in
Proc. MobiCom, 2003.

[7] B. Awerbuch, D. Holmer, and H. Rubens, “High throughput
route selection in multi-rate ad hoc wireless networks,” inProc.
WONS, 2004.

[8] L. L. M. D éziel, “Implementation of an IEEE 802.11 link
available bandwidth algorithm to allow cross-layering,” inProc.
WiMob, 2005.

[9] L. Iannone, R. Khalili, K. Salamatian, and S. Fdida, “Cross-
layer routing in wireless mesh networks,” inProc. ISWCS, 2004.

[10] H. Badis and K. A. Agha, “Internet draft draft-badis-manet-
qolsr-01.txt: Quality of service for ad hoc Optimized Link State
Routing Protocol (QOLSR),” IETF MANET working group,
September 2005, work in progress.

[11] T. Clausen and P. Jacquet, “RFC 3626: Optimized link state
routing protocol (OLSR),” IETF, October 2003.

[12] R. de Renesse, M. Ghassemian, V. Friderikos, and A. H. Aghva,
“Qos enabled routing in mobile ad hoc networks,” inProc.
IEEE International Conference on 3G Mobile Communication
Technologies, 2004.

[13] C. Perkins, E. Belding-Royer, and S. Das, “RFC 3561: Ad hoc
on-demand distance vector (AODV) routing,” IETF, July 2003.

[14] “Iperf,” http://dast.nlanr.net/Projects/Iperf/.
[15] V. T. Raisinghani and S. Iyer, “ECLAIR: An efficient cross

layer architecture for wireless protocol stacks,” inProc. World
Wireless Congress, 2004.

[16] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod, “Cross-
layer design of ad hoc networks for real-time video streaming,”
IEEE Wireless Communications Magazine, vol. 12, pp. 59–65,
august 2005.

[17] R. Winter, J. Schiller, N. Nikaein, and C. Bonnet, “CrossTalk:
Cross-layer decision support based on global knowledge,”IEEE
Communications Magazine, vol. 44, pp. 2–8, january 2006.

[18] P. J. Marŕon, D. Minder, A. Lachenmann, and K. Rothermel,
“TinyCubus: An adaptive cross-layer framework for sensor
networks,” it - Information Technology, vol. 47, no. 2, pp. 87–
97, 2005.

[19] Q. Wang and M. A. Abu-Rgheff, “Cross-layer signalling for
next-generation wireless systems,” inProc. WCNC, 2003.

[20] H. Badis, A. Munaretto, K. A. Agha, and G. Pujolle, “QoS for
ad hoc networking based on multiple-metric: Bandwidth and
delay,” in Proc. MWCN, 2003.

[21] “Xian,” http://sourceforge.net/projects/xian/.
[22] “Madwifi stripped driver,”

http://pdos.csail.mit.edu/∼jbicket/madwifi.stripped/.

http://www.madwifi.org
http://dast.nlanr.net/Projects/Iperf/
http://sourceforge.net/projects/xian/
http://pdos.csail.mit.edu/~jbicket/madwifi.stripped/

	Introduction
	The Xian design
	The Xian implementation
	MadWifi driver
	Software design
	802.11 metrics and Xian interfaces

	QoS routing: a use case
	Experimental ad hoc platform and parameters
	Quad topology use-case
	Triangle topology use-case

	Related work
	Conclusions and future work
	References

