
Transparent IP Proxy for Tactical Ad hoc Networks
Helder Marques, Jérémie Leguay, Hicham Khalifé, Vania Conan, Damien Lavaux

Thales Communications & Security
4 rue des Louvresses, 92230 Gennevilliers, France

Email: firstname.name@thalesgroup.com

Abstract—This paper presents an adaptive and controllable
framework to optimize the transport of IP packets in military
MANETs. The HBH (Hop-By-Hop) protocol that we propose uses
a combination of hop-by-hop reliability and congestion mitigation
mechanisms. Its major advantage is to run any standard IP
application unmodified on top of the network. Moreover it is able
to improve flow performance in terms of latency or goodput. HBH
is tunable and provides a target level of hop-by-hop reliability.
It uses a transmission window and selective acknowledgements
to improve bandwidth usage. We present the HBH protocol
components, mechanisms and parameters. We carried out an
implementation of HBH very close to a Linux implementation
and validated it in the NS3 simulator. Finally, we demonstrate
how HBH can improve TCP performance on a four-node chain
topology by providing the right amount of additional reliability
that the end-to-end TCP connection requires to overcome lossy
conditions.

I. INTRODUCTION

Mobile ad hoc networks (MANET) are dynamic networks
composed of mobile devices connected wirelessly. Each node
can move freely and communicate with the other nodes in
radio range. Multiple radio hops may be necessary before a
message reaches its destination. This type of architecture has
hence the advantage of being very flexible and infrastructure-
less, making it robust and useful for natural disaster recovery
or military purposes. The next generation of military MANETs
will support new forms of operational engagement, such as
Network Centric Warfare [13]. Massive transformation pro-
grams are following this path in the US [4] and in Europe [9].
Products and waveforms such as FlexNet [12], Falcon III/AN
[3], or ESSOR [2], are either under development or starting
to be deployed.

Battlefield Management Systems (BMS) [1] are the most
common type of applications that a tactical network would
run, supporting message exchanges and distributing orders.
As Fig. 1 shows, these applications may either use dedicated
messaging interfaces to the radio through the SMTP or SOAP
protocols, or use a standard IP interface. Most of the radios
developed so far have been thus offering vertically integrated
messaging interface. However, this reduces the interoperability
with applications and other networks. On the other hand, IP
and its extensions for group communications (multicast or
Xcast) offer a standard mean to address military devices. In
the latter case, a BMS or any data service needs to rely on
standard transport protocols (TCP or UDP) that have shown
major drawbacks in MANETs in general. The frequent link
failures due to mobility, packet losses due to interferences

Fig. 1: Connecting applications to tactical MANETs

or jamming, and network capacity variations due to fluctuat-
ing radio conditions, degrade considerably TCP performance,
because of its end-to-end reliability and congestion control
principle, whereas UDP lacks of any reliability control loop
that can compensate lossy network conditions.

To address these issues, this paper presents an adaptive
and controllable framework, called HBH (Hop-By-Hop), to
optimize the transport of IP packets in military MANETs.
This solution aims at improving flow performance in terms
of latency or goodput while being compatible with standard
IP implementations to run unmodified applications on top of
the network. Most of IP applications are using the TCP or
UDP transport protocols. In practice, IP transport protocols
fall into two extreme behaviors which are not flexible enough
for tactical MANETs. On one hand, TCP offers congestion
control and reliability mechanisms but has been designed for
low latency and low packet loss networks. Its ACK based
mechanism for full reliability makes it behave very poorly in
lossy situations. On the other hand, UDP protocol does not use
any feedback mechanism and is thus unable to ensure any type
of control (i.e. reliability, congestion, fairness, etc...). HBH
works transparently at the IP level in a hop-by-hop fashion
to complement transport layer mechanisms that are end-to-
end by definition. It provides a controllable level of hop-by-
hop reliability and uses a transmission window and selective
acknowledgements to improve bandwidth usage. The level of
reliability can be controlled and chosen according to the nature
of each IP flows. HBH also includes a hop-by-hop congestion
mechanism to dynamically contain congestions outside of the

radio network. It can be used with UDP for tunable reliability
or with TCP to hide transient link quality degradation to the
source. We focus on the latter case in this paper.

The remainder of the paper is structured as follows: we first
present the design choices of our HBH protocol and detail its
positioning with regards to state of the art protocols in Sec. II.
We then present in Sec. III its implementation in the NS3
simulator which is very close to a Linux implementation. We
then study more specifically the optimization of a TCP flow
over a four-node chain topology in Sec. IV. We show that HBH
can provide the right amount of additional reliability that the
end to end TCP flow requires to overcome lossy conditions.
We present several simulation results to analyse the influence
of parameters such as the window size or the desired reliability
level, and to measure the impact of different RTO calculations.
We finally conclude and give some perspectives in Sec.VI.

II. TRANSPARENT IP PROXY

Military MANETs operate in challenging conditions, mainly
due to mobility and radio constraints. Nodes have limited
communication range and share the same wireless medium
with their neighbors, which result in a reduction of available
network resources, and adds interferences and noise issues.
All these restrictions end up engendering high bit error rates
and low transmission rates. These network degradations are
inevitable. Our solutions aims at hiding them to transport
layer protocols and at reducing miss-reactions of end-to-end
transport protocols.

A. Architectural choices

Significant research has been done in the transport area,
especially trying to adapt or improve TCP, the most complex
transport protocol, in wireless networks. A number of lessons
and ideas from this literature have been guiding the creation
of our network level solution.

Standard TCP (new Reno) has been designed for very low
error rates. Its flow control mechanism therefore assumes
that every packet loss is due to a congestion. As a result it
wrongly decreases its throughput in wireless environments.
Two kinds of improvement solutions have been developed:
those who attempt to tune TCP, for example through the use
of Performance Enhancing Proxys (PEP) [7], [8], and those
who propose a completely new protocol, which offers the same
services as TCP.

Improvements of TCP can be categorized into two main
ideas: split of transport connexion and cross layer interactions.
The first one generally prevents the source from reducing its
congestion window in case of packet losses [18]. The source is
spoofed into thinking that the packet has been received (fake
ACK). Similar strategies include I-TCP or M-TCP [14]. This
solution may have the disadvantage of losing the end-to-end
connection. In the second class of solutions, some low-layer
information is forwarded to the upper layers, so that TCP
knows when an error is not caused by congestion. This solution
can be seen as a violation of the layering principle, but has
been proven to be very effective. There are different methods

to provide this cross-layer improvement: Explicit Link Failure
Notification (ELFN) [11] or Ad-hoc TCP (ATCP) [16].

Completely new protocols and architectures have also been
proposed for challenging networks. The Delay Tolerant Net-
working (DTN) [10] architecture defines a messaging ser-
vice using the store, carry and forward principle. Hop-by-
Hop TCP [15] and the Hop [17] protocols provide TCP-like
services with an efficient decoupling of end-to-end and hop-
by-hop operations. We further compare our approach to Hop in
Sec. V. While being adapted to challenging conditions, these
proposals require adaptations from applications.

In our case, we are able to find an happy medium between
these two extremes, for an end result architecture similar to
distributed PEPs: since we control and can deploy our solution
in all the nodes of the network, we have the flexibility of
creating a new and more fit protocol in between intermediates
nodes, all the while giving a standard interface to the applica-
tions. One of the important design choices is the layer at which
our solution should operate (network or transport layer). Both
solutions have their advantages and drawbacks, and both are
viable, the choice depending on the desired results.

The network level solution has the advantage of being able
to be used indifferently by any transport protocol (TCP, UDP,
...), without being concerned about the specificities of upper
protocols. The general idea is to make the network more robust
to link errors and thus make it embrace the same characteristics
a classic network would, hence reducing the misconceptions
made by TCP. Moreover, such a solution could seamlessly be
incorporated into other network mechanisms, such as IPsec.
The transport layer solution has the advantage of being at
a upper level, and hence has a more global view of the
communication, and consequently reacts more efficiently to
the issues it faces. In essence, it would allow this solution to
access TCP data and even modify it if needed.

This paper presents an adaptive and controllable solution at
the network level to improve the transport of IP packets.

B. Key mechanisms

Our objective is to improve flow performance in terms of
bandwidth, latency and fairness, all the while not disrupting
the way applications work. Technically, this is done by inter-
fering between Layer 3 and Layer 4 to add little information
in packets meant to improve the choices made by the network.
As explained earlier, some transport protocols adapt poorly to
the specificities of MANETs, and therefore our solution aims
to increase the (perceived, from the transport protocol point
of view) reliability of the MANET. In addition, in case the
congestion, we prevent the unnecessary use of internal network
resources by pushing the losses back to the source of flows.
As a result, our solution is composed of two main hop-by-hop
mechanisms:

1) Hop-by-hop reliability
2) Hop-by-hop back pressure
The general idea is hence to mimic a well known reliable

protocol, TCP, but modifying its internal mechanism so that

Fig. 2: HBH flow processing

there is a separation between link errors and congestion, in
order to react to them more effectively.

Given that not every transport protocol or application might
require the first mechanism to its full extent (e.g. real time
applications), an option (in the form of a metric ρ) is offered
to tune up the strength employed to provide this feature. How-
ever, the second mechanism is not optional, even if it implies
a slight overhead which might be individually unwanted by
some transport protocols, because it will reduce the overall
network resource usage and will therefore indirectly upgrade
the general performance of our MANET.

We named our solution HBH. HBH is made of two distin-
guishable parts: the first one is meant to intercept a packet
when it enters the MANET, and similarly deliver it when it
leaves the MANET. Further processing can be done here, in or-
der to increase the transport protocol capabilities, through the
use of PEPs for instance. The second part, which constitutes
the most significant work of HBH, is made of a Hop-By-Hop
transport by the nodes in the network, using our own protocol,
which relies on IP and the routing in place. This second part
will be presented in the next section.

III. THE HBH PROTOCOL

As presented in Fig. 2, the HBH protocol intercepts all IP
packets (which are unicast in this work) that arrive to the
MANET or that are created within the MANET itself. It then
transforms them in a HBH messages by adding the HBH
protocol header, which is inserted between the layer 3 and
layer 4 header. Similarly, the last hop of the MANET needs
to remove the HBH header before passing it on. As HBH is not
a transport protocol, a raw socket has to be used to transmit
packets to the next hop. Deciding on the next hop is left to
be done by the underlying routing protocol.

The data flow is processed unidirectionally, from an ingress
node to a egress node, and locally from a node N to a
Node N + 1, henceforth respectively called sender node and

receiver node. The are two types of messages: HDM (HBH
data message) and HAM (HBH acknowledgment message).
For simplicity, both of them have the same structure, described
below in Fig. 3. In the rest of this section, we will describe the
specification of our protocol and the format of our protocol
packet.

A. Hop-by-hop reliability

The hop-by-hop reliability mechanism is ensured by robust
retransmission until either the transmission is successful, or
the robustness reaches the expectancy of the ρ parameter
(for ease of implementation, ρ is only influenced by the
maximal number of retries R). This parameter is used to finely
provide an adequate level of robustness. However, there is no
reordering required, so out of order received packets are sent
to the next hop without delay.

Moreover, HBH offers the ability to acknowledge multiple
packets at a time, in order to reduce the control messages
required. HBH uses therefore a sliding window protocol. The
window size W is measured in packets, and is aimed at
only controlling the reliability (not the throughput, which
is regulated by the back-pressure mechanism), defining the
maximum number of packets not acknowledged at a time.
After the transmission or retransmission of W packets, the
RACK (Request ACKnowledgment) flag is set to ask for an
acknowledgement. At each transmission, a RTO is calculated
to trigger a later retransmission. W can be updated at each
RTT using an AIMD mechanism in order to better synchronize
retransmissions and the reception of acknowledgement. It has a
minimal and maximal value, which for ease of implementation
will be considered equal in the first version of this protocol.
Finally, a selective acknowledgment feature is implemented to
reduce acknowledgments overhead and cope with out-of-order
reception of messages.

Offsets Byte 0 1 2 3
Byte Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0
T
P
E

R
Q
T

OptionValue SeqNb FlowID

4 32 checksum OrigProto Reserved

8+ 64+ Data

Fig. 3: HBH protocol header

B. Hop-by-hop back-pressure

The back-pressure mechanism works by sending a special
message control from the receiver node towards the sender
node (in the form of a HCN (Hop-by-hop Congestion Notifi-
cation) flag inside a HAM), indicating that the packets are not
going out of the receiver node as fast as they are coming in,
causing the packets to accumulate on the receiver node, and
inducing congestion. This back-pressure message is sent to the
sender node whenever a threshold s of messages waiting to
be sent is reached. Nevertheless, the messages coming in are
not dropped until the output message queue length reaches its
maximum size L (≥ s). An additional lower threshold could
be set in place to explicitly notify the sender node that the
congestion is over (not implemented in this version of HBH).

On the sender side, receiving a HAM with the HCN flag set,
forces the emitter to reduce its sending rate, according to its
internal parameter λ, which regulates the number of packets
sent per unit of time.

Two distinct modes of congestion avoidance can be defined.
During the initial phase, the data is sent as fast as the Layer 2
permits. As soon as the first back-pressure message is received,
we enter the permanent mode, in which λ limits the through-
put. λ is modified by an Additive Increase Multiplicative
Decrease (AIMD) mechanism when it enters the permanent
mode, and is initialized to the instantaneous throughput at that
time (which can be estimated by a moving average).

C. Protocol implementation

Fig. 2 presents the overall process of packets in HBH. The
flow management is divided in two parts: the one in charge of
receiving the packets, and the one in charge of sending them.
Each flow (as identified by its flowID) has its own queues.

Each flow reception module is composed of a list that
maintains the sequence number of packets that have been
received out of order, called ooList. This list is required to
send HAMs with appropriate values. The packet themselves
are however not kept in this queue, but immediately forwarded
to the next hop, as there is no reordering in HBH.

The flow dispatch module is composed of two queues : the
output queue and the non acknowledged queue. The output
queue (outputQ) stores packets that are ready to be sent,
but that can’t yet be sent because of the window size limit
or because they would exceed the instantaneous throughput
allowed by λ, the internal parameter that controls the sending
rate depending on the perceived congestion. The non acknowl-
edged queue (nACKedQ) stores a copy of the packets that have

been sent but non acknowledged, in case a retransmission is
required.

Fig. 3 presents the HBH header which contains the follow-
ing variables:

• TPE: TyPE of the message (HDM or HAM).
• RQT: Special ReQuesT from the packet. Represents the

RACK (Request ACKnowledgment) flag for a HDM, and
HCN flag for a HAM.

• OptionValue: SACK option for a HAM. A SACK option
is set to 0 if not used, so there are at most 63 intervals
that can be selectively acknowledged.

• SeqNb: The Sequence Number for a HDM, and the ACK
Number for a HAM.

• FlowID: A unique flow identifier defined hop-by-hop. It
is computed based on the 5-tuple (IPSrc, IPDest, PortSrc,
PortDest, TransportProtocol).

• Checksum: Checksum of both data and payload.
• OrigProto: Identifier of the original transport protocol.
• Data: Data payload for a HDM, and the optional SACK

values (if OptionValue is set) for a HAM.
At each packet reception of an acknowledgement the RTT

and hence the RTO are estimated in a similar way as TCP does.
This calculation includes two constants g = 1

3 and h = 1
3

to define the relations between old and new RTT, and two
constant n = 10 and m = 2 to define the relation between
RTT and RTO. The calculation is performed as follows (M
being the new RTT measure):

srtt ← (1− g) srtt + g M
rttvar ← (1− h) rttvar + h |M − srtt|
RTO ← m ∗ (srtt + n rttvar)

The computation of the λ parameter (in bit/s) which limits
the throughput towards the next hop in congestion avoidance
mode includes two constants p and q to define the relations
between old and new λ. It is set by AIMD:

λ←
{

λ + p at each RTT
λ · q at each HCN received

A HDM or HAM is made of a header and a payload, and all
HDMs are kept by the sender node until acknowledged by the
receiver node. Two internal parameters nbTx and stime are kept
by the sender node to remember respectively the number of
retransmissions already sent for that packet (c.f. the parameter
ρ), and the time at which the last retransmission was sent,
which helps to set up the correct timeouts.

(a) Delay vs. packet loss (W=50, R=1) (b) Load vs. packet loss (W=50, R=1) (c) Delay & load vs. R (10% loss, W=50)

(d) Delay vs. W (10% loss, R=1) (e) Load vs. W (10% loss, R=1) (f) Delay & load vs. RTO (10% loss, W=50, R=1)

Fig. 4: Simulation results for a TCP flow on a four-node chain topology.

IV. PROTOCOL EVALUATION

We have implemented HBH in the NS3 [6] simulator in a
very close form to a Linux implementation. A HBH module
is running at each mobile node to intercept, send or release
packets using a combination of Netfilter [5] hooks and RAW
sockets transmissions.

In order to evaluate HBH in a more controlled environment,
we consider a chain topology in which wired full duplex links
are established between nodes. Thanks to this wired topology,
we can finely control packet losses, transmission delays and
data rates. In the rest of the paper, we consider a four-hop
chain topology with links of 50ms delay and 300 kbps rate
in both directions. This artificially reproduces a situation in
which a distributed TDMA would have perform a uniform
resource allocation. Our implementation can also run on top
of a wireless network running the OLSR protocol. TCP or
UDP traffic can be generated to emulate user applications. We
consider in our simulations, a single TCP transfer of 100KB
from the first node of the chain to the last one. Fig. 4 presents
the simulation results.

Fig. 4(a) and Fig. 4(b) show the delivery delay and the
network usage (in terms of number of IP packets exchanged)
for HBH and the non optimized TCP connection. Results are
averaged over 5 simulation runs and present 95% confidence
intervals computed with the Student’s t-distribution. We ob-
serve in 4(a) that the delivery delay of HBH is approximately
2 times lower than end-to-end. The price to pay is the network
usage which in turn doubles for HBH because of the hop-

by-hop acknowledgments that it uses. For high packet loss
situations (greater than 10%), the network usage of HBH in-
creases linearly while the one of TCP increases exponentially.
Between 0% and 10% packet losses, HBH performs better than
end-to-end at 0% packet loss. This indicates that the RTOs
calculated by HBH lead to some over reactions. This may be
reduced by choosing different constant values involved in the
RTO calculation at a price of a higher delivery delay.

Fig. 4(d) and Fig. 4(e) show the impact of the window
size W on performance. The lower W is, the closer HBH
becomes to a normal ARQ (Automatic Repeat-reQuest) which
repeats packets until a transmission has been successful or
the maximum number of retransmissions has been reached.
Such a blocking scheme does not take advantage of the
full channel capacity, especially in military MANETs where
packet losses can be high. The window size W (in number
of packets) has then to be sufficiently high to allow parallel
transmissions and retransmissions. The difficult part is to
reduce acknowledgements when large values of W are used.
Indeed, acknowledgements are requested at the end of each
transmission window, which may lead to high values of RTOs
and issues when the acknowledgment request is lost. This last
packet should be repeated with a shorter RTO and the receiver
should also send gratuitous acknowledgments if no packet has
arrived recently.

Fig. 4(c) presents results when the threshold R is increased.
R defines the maximum number of times a packet can be
retransmitted. This value is maintained hop-by-hop but could

be transported and used at end-to-end connection scale using
the reserved field in the HBH header. This result shows
that the delay is minimum for R=4. Indeed, increasing the
reliability hides packet losses to TCP. However, trying to
achieve full or too high reliability on behalf of TCP leads to
poor performance. The reason for this is that packet delay may
exceed TCP’s RTO in some cases. This leads to duplicates of
the same TCP segment that HBH has to handle at the same
time but at different places.

Fig. 4(f) compares the performance of HBH with a slightly
modified version of itself where a static value for RTOs is
used. In this simulation, the RTT on 1 hop is around 110
ms. Results show that for static RTOs below this value, lower
delays could be obtained as it accelerates artificially packet
transmissions at very high overhead and fairness costs. On the
other hand, static RTOs much higher than this value reduce
the overhead a lot while leading to poor delays. This result
highlights the benefits of our dynamic RTO estimation but
also emphasises the importance of choosing good constant
parameters in its calculation.

V. RELATED WORK

We believe Hop [17] to be the solution closest to ours.
However there are many conception design differences, which
we highlight in this section.

Perhaps the easiest difference to spot is that these two
solutions do not work at the same level. Hop is a layer 4
protocol specifically designed for MANETs. HBH, however,
is a layer 3.5 solution, so that standard transport protocols
may work over HBH. In this way, applications do not need
to be modified and may use their usual sockets. One of the
consequences of this design choice is that HBH may not
propose 100% reliability. It offers the opportunity to tune the
desired reliability depending on the level required. It can be
tuned for example so that a TCP traffic may not suffer too
much from high losses or so that a real time application may
not pass unusefully a delivery dead line.

Unlike Hop, HBH is a connectionless protocol, in the sense
that there is no SYN/ACK mechanism. The virtual retransmis-
sion mechanism in Hop is hence not used in HBH. There is
also no end to end ACK mechanism (unless implemented by
the transport protocol). In case of routing changes, new link
sessions will be created on the fly. As opposed to Hop, HBH
does not provide a cache that remains in the node even after
a hop-by-hop acknowledgment has been received.

Finally, Hop works in a block scheme, whereas HBH
provides a flow mechanism in a packet switching network.
Therefore, HBH uses a sliding window mechanism, and a
selective acknowledgment method, that is not used by Hop.
The back pressure mechanism is also different: in Hop, the
congestion is inferred from the non reception of an ACK.
In HBH, there is an explicit message to inform the previous
node of the congestion.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented an adaptive and controllable
framework to optimize the transport of IP packets in military
MANETs. This solution aims at improving flow performance
in terms of latency or goodput while remaining fully com-
patible with standard IP implementations to run unmodified
applications on top of the network. We have proposed the
HBH (Hop-By-Hop) protocol which uses a combination of
hop-by-hop reliability and congestion mitigation mechanisms.
We have presented the extensive implementation work that we
realized in the NS3 simulator to evaluate HBH performances.
Our simulation results show that HBH can provide the right
amount of additional reliability that end to end TCP flows
require to overcome lossy link conditions. We presented sev-
eral simulation results to analyse the influence of parameters
such as the window size or the desired reliability level, and to
measure the impact of different RTO calculations.

Future work includes large scale testing to evaluate
performance of HBH flows in terms of fairness, delay and
overhead when mixing various end-to-end TCP and UDP
connections. Different methods for RTO calculations in lossy
environments should also be evaluated to achieve the best
latency while keeping the overhead low.

REFERENCES

[1] Battlefield Management System. http://www.thalesgroup.com/Portfolio/
Defence/LandJoint_Products_CommandControl_tactical_T-BMS/.

[2] European Secure SOftware defined Radio. www.occar.int/28.
[3] Harris AN/PRC-117G wideband tactical radio. http://rf.harris.com/

capabilities/tactical-radios-networking/an-prc-117g/.
[4] Joint Tactical Radio System Homepage. http://jpeojtrs.mil.
[5] Netfilter/iptables project homepage. www.netfilter.org.
[6] Network simulator 3 - ns3. http://www.nsnam.org.
[7] Performance Enhancing Proxies (PEP) Intended to Mitigate Link-

Related Degradations. RFC 3135 (Proposed Standard).
[8] TCP Performance Implications of Network Path Asymmetry. RFC 3449

(Proposed Standard).
[9] Le GTIA Renouvelé, Dossier Scorpion. Proc. Terre Magazine N 215 -

In French, June 2010.
[10] K. Fall. A delay-tolerant network architecture for challenged internets.

In Proc. ACM SIGCOMM, 2003.
[11] G. Holland and N. Vaidya. Analysis of TCP performance over mobile

ad hoc networks. In Proc. ACM Mobicom, 1999.
[12] R. Iovine and J. Bouis. The Flexnet-Waveform in the international SDR

arena. In Proc. IEEE MILCOMM, 2009.
[13] B. K. Haberman J. L. Burbank, P. F. Chimento and W. T. Kasch. Key

Challenges of Military Tactical Networking and the Elusive Promise of
MANET Technology. Proc. IEEE Communications Magazine, 2006.

[14] S. Singh K. Brown. M-TCP: TCP for Mobile Cellular Networks. ACM
Computer Communications Review, 1997.

[15] Yao-Nan Lien and Yi-Fan Yu. Block-switched Networks: A New
Paradigm for Wireless Transport. In Proc. IEEE APSCC, 2008.

[16] J. Liu and S. Singh. ATCP: TCP for Mobile Ad Hoc Networks. Proc.
IEEE Journal on Selected Areas in Communications, 1999.

[17] Deepak Ganesan Arun Venkataramani Ming Li, Devesh Agrawal. Block-
switched Networks: A New Paradigm for Wireless Transport. In
Proc. ACM/USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2009.

[18] S.V. Krishnamurthy S. Kopparty and M. Faloutsos. Split TCP for mobile
ad hoc networks. In Proc. IEEE GlobeCom, 2002.

